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The modification of dilaton black holes which result when the dilaton acquires a mass are investigat-
ed. We derive some general constraints on the number of horizons of the black hole and argue that if the
product of the charge Q of the black hole and the dilaton mass m satisfies @m <1 then the black hole
has only one horizon. We also argue that for Qm 2 1 there may exist solutions with three horizons and
we discuss the causal structure of such solutions. We also investigate the possible structures of extremal
solutions and the related problem of two-dimensional dilaton gravity with a massive dilaton.
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I. INTRODUCTION

The notion that Einstein’s theory of gravity should be
modified by the addition of scalar fields has a long history
dating back to the pioneering work of Brans and Dicke
[1] who were motivated by the desire to more directly in-
corporate Mach’s principle into physical law. In recent
times a particular variant of this idea, dilaton gravity, has
received attention because of its close connection with
low-energy string theory. In this theory neutral black
holes are still described by the Schwarzschild metric and
the scalar dilaton plays no role. For charged black holes,
however, the dilaton plays a crucial role in modifying the
causal structure of the solution.

The causal structure of charged black holes described
by the Reissner-Nordstrom metric in Einstein gravity has
given rise to a number of puzzles and speculations. The
solution has an outer event horizon at r,, a Cauchy ho-
rizon at r_, and a timelike singularity in place of the
spacelike singularity of the Schwarzschild solution. This
gives rise to many peculiar features. For example, an ob-
server crossing the Cauchy horizon at r_ would see the
whole history of the asymptotically flat region she
originated in flash by in finite time at infinite blueshift
and then find that her future is no longer determined by
her past. These bizarre features suggest that the inner
Cauchy horizon is unstable against small perturbations.
In contrast, the charged dilaton black hole has a
Schwarzschild-type causal structure with only one ho-
rizon, and a spacelike singularity, suggesting stability of
the solution to perturbations.

In a different direction, there have been recent at-
tempts to unravel the mysteries of Hawking radiation in
a class of two-dimensional theories of dilaton gravity [2].
These theories can be viewed as low-energy effective
theories of four-dimensional extremal dilaton black holes.
In contrast with the extremal Reissner-Nordstrom black
hole, the extremal dilaton black hole has the singularity
and horizon merging at “r =2M and the horizon actual-
ly becomes an internal null infinity of the spacetime, thus
giving the four-dimensional spacetime the causal struc-
ture of the two-dimensional linear dilaton vacuum re-
viewed in [2]. In some attempts to understand resolu-
tions to the puzzles raised by Hawking radiation the
infinite “throat” structure of extremal dilaton black holes
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has played a significant role [3—5]. The idea here is that
the infinite volume of the throat can store the arbitrarily
large amount of information which may be lost in the
standard semiclassical picture of Hawking evaporation of
a black hole.

So far the structure of dilaton black holes is under-
stood only in the physically unrealistic limit of vanishing
dilaton mass. If string theory and its low-energy limit are
relevant to the real world then the dilaton must eventual-
ly acquire a mass. We would then like to know how the
above features are modified by the presence of a dilaton
mass. In particular, we would like to know what causal
structures are allowed and whether the feature of an
infinite “throat” persists. Unfortunately our current un-
derstanding of how the dilaton acquires a mass is rather
primitive and is tied to our lack of understanding of su-
persymmetry breaking. Since we do not have a good
model of how the dilaton mass is generated, we perform
as much of the analysis as possible for a general choice of
dilaton potential and when we need an explicit choice of
potential we consider two simple choices of mass term
which we hope will reflect the general structure of such
solutions.

The outline of the paper is as follows. The second sec-
tion contains a review of massless dilaton black holes,
and serves to establish our notation and conventions. In
Sec. IIT we discuss adding a mass term, derive general
constraints on the number of horizons, show that there is
only one horizon when Qm <1, and derive expansions for
the behavior of the solutions in various asymptotic re-
gions. In Sec. IV we discuss the structure of the possible
extremal limits of massive dilaton black holes. Section V
contains a brief discussion of two-dimensional massive di-
laton gravity. We end with some brief final comments in
Sec. VI.

II. MASSLESS DILATONIC BLACK HOLES

Black holes in dilaton gravity were first analyzed in
some generality by Gibbons and Maeda [6]. An elegant
form of the solution was given in later work by Garfinkle,
Horowitz, and Strominger (GHS) [7] and we will for the
most part follow their approach. GHS considered a
massless dilaton field coupled to electromagnetism and

gravity. Taking the signature of the metric to be
(+,—,—,—) the appropriate action is
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S= [d%V =g [—R+2V¢?—e 2F], (.1

and one wants to find static, spherically symmetric solu-
tions with a nontrivial dilaton field. The metric may be
written in the general form

ds?= AXr)dt*— A " Xr)dr*— CHr)(d6*+sin’0d ¢?) ,
2.2)

where A(r )=0 marks the outermost event horizon, and
C(r,)*=A /4 is given in terms of the area of the event
horizon. The Hawking temperature 87! of the black
hole is given by (42|, =4mB~".

Varying the action (2.1) gives the equations of motion

V,[e #F®]=0, (2.3)
V,Vip=Lle 2F2 | (2.4)
and the “Einstein” equations
1 24A4'C'  2A4%C”
o___1 — 2012y __ —_ o
Gi=—z(1—4’C’?) C c —To,
1 , 24A4'C" _
G,’=~C~2~(1—A2C 2)_T_T: , 2.5
1 244'C' A*C”
G9=__ A2 "__ . — g0
8 2( ) C o Ty,
with
‘Tab =2Va¢vb¢—ze_2¢Fachc
—1g,[2(Vg)Y—e F2] . (2.6)

Notice that the field strength of a magnetically charged
black hole in Einstein theory, F=Q sin80d0Ad¢, also
satisfies the equation of motion (2.3) for dilaton gravity.
However, if there is a nonzero electromagnetic field
strength then (2.4) demands a nontrivial dilaton field.
This is to be contrasted with zero electromagnetic field
where a no-hair theorem demands that the dilaton van-
ish.

Looking for a static monopole solution, and rearrang-
ing the equations of motion, yields

Cu=____(¢7-8_¢2~:)=_c¢12 ,

2,—2¢
[(42YC?) = —CYTg+ Ty - TY=22E—
=_2(A2C2¢')’ ,

(A2C?)"=2—2CHTY+T))=2.

2.7

The last two of these equations are readily integrated to
yield

(A%2YC?+24%C%'=A/B,
A (2.8)
A2C2=(r—r+)2+—B—(r—r+) .

From this, it is straightforward to show that, choosing
B=4nmr, =87M,
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where ¢, is the value of the dilaton field at infinity. One
obtains an electrically charged solution from the magnet-
ic solution above by performing a modified duality trans-
formation on the electromagnetic field and changing the
sign of the dilaton. Starting from the field strength, dila-
ton, and metric for a magnetic solution, F¥, ¢¥, and g¥,
we obtain the electric solution as

E —1,-26M_ rppM
F;w 7€ €uv pF}‘P ’
¢E:__¢M

’

E M
g‘uv—g‘uv .

(2.10)

The important differences to stress between the dilaton
and Einstein magnetic black holes are the horizon and
singularity structure and the nature of the extremal limit.
The dilaton black hole has only one horizon and a space-
like singularity, giving rise to a Schwarzschild-type
Penrose-Carter diagram; on the other hand the typical
Einstein magnetic black hole has two horizons and a
timelike singularity, giving rise to the familiar “vertically
infinite” Penrose-Carter diagram for the Reissner-
Nordstrom solution shown in Fig. 1.

The extremal limits of these two types of black hole
differ both in their charge-mass ratios and in their struc-
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FIG. 1. Penrose-Carter diagram for a Reissner-Nordstrém
black hole.
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ture. For the dilaton hole the extremal limit is
0*=2M 2ez%, as opposed to Q*=M? in the Reissner-
Nordstrom case. Further, the event horizon is actually
singular in this limit and has zero area, as opposed to the
Reissner-Nordstrom case which has finite area and is
nonsingular.

It is also interesting to analyze the solution in terms of
the string metric g, defined by

~

gab:ez¢gab . (2.11)

The introduction of g is motivated in part by the fact that
in fundamental string theory the string world sheet has
minimal surface area with respect to the metric g,,. The
line element is then

1—2Me” /r

—_—T‘dtz
1—Q% "°/Mr

a5 t=

2
- dr —r2d 0% (2.12)

(1—2Me® /r)(1—Q% % /Mr)

2¢ .
where we have absorbed the factor of e %o in order that
the metric have the canonical asymptotic form. Note

that in this metric the singularity at r, =Q7‘e‘¢°/M cor-
responds to a two-sphere of area 4rQ% %/M? rather
than to a point as in the Einstein metric.
In the extremal limit Q?—2M 26’ the line element
(2.12) becomes
dr?
(1—2M /r)?

In this limit the previous singularity at r, coincides with

ds?=dt>— —r2dQ} . (2.13)

the horizon at r L, =2Me % and both have been pushed off
to infinite proper distance. In terms of a new coordinate
o with

_ dr
do —_I—ZM/r , (2.14)
we have, as r —2M,
&8> [—dt*+do*+(2M)*d 03], (2.15)

so that the geometry approaches that of an infinite

“tube” of radius 2Me %.

However, note that this infinite tube is quite distinct
from the infinite tube of the spatial sections of extremal
Reissner-Nordstrom black holes. In this extremal metric,
r=2M =V2Q is not only at an infinite spatial distance,
but also at an infinite proper distance to any causal ob-
server so that in effect the event horizon provides another
internal asymptotic null infinity as can be seen from the
Penrose-Carter diagram of Fig. 2. For extremal
Reissner-Nordstrom black holes, however, while
r=M =Q is located at the end of an infinite tube in a spa-
tial section of the metric, it is at a finite proper distance
for any infalling observer—thus there is no internal
asymptotic region, only an event horizon as shown in Fig.
4. It is also worth emphasizing that the infinite throat of
the extremal solution in the string metric occurs only for
the magnetically charged solution and not for the electri-
cally charged solution.
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FIG. 2. Penrose-Carter diagram for an extremal dilaton
black hole. The subscripts AF and Th refer to the asymptotical-
ly flat and “throat” regions of the black hole respectively.

In the following section we will also find useful an al-
ternative parametrization of the string metric in the form
(2.2). We can write

&3 =A4%p)dt>— 4 "Up)dp*—C2p)dQ}  (2.16)
with
CUp)=rip),
2, (2.17)
ag v [1=2M/r(p)le®
A (p)— 24 ’
1—Q% “°/Mr(p)
with 7(p) defined implicitly by
26 Q? r—0% /M
p=e °(r—r0)+ﬁln —_— (2.18)

ro—Q% P/M

and r, the (arbitrary) point at which p=0. Note that the

. . 2
singularity (r=r,) occurs at p=— o and that p—e %oy,

asr— o0,

In this metric the equations of motion can be seen to
admit solutions which are products of two two-
dimensional solutions. In particular, they admit a solu-
tion of the form S2X.M3, where S? is a two-sphere of
constant radius and M}y is a two-dimensional black hole
solution. Explicitly this solution is given by

Cxp)=207,
AXp)=1—2Me 7, (2.19)
¢=—2p,

where A2=1/(8Q?) and M is the arbitrary mass of the
two-dimensional black hole. For a more detailed ex-
planation of the relation between four- and two-
dimensional dilaton black holes see [8]. We will see later
that the addition of a dilaton potential no longer allows
solutions of the above form.

To summarize, in either metric the important features
to note are that the equations of motion are readily
solved, the horizon structure of a dilaton black hole is
different than in Einstein gravity, and the thermodynami-
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cal relationships are also different. These latter features
will persist when we add a mass term for the dilaton, al-
though the equations will not be so easy to solve.

III. MASSIVE DILATONIC BLACK HOLES

In this section we consider adding in a potential term
for the dilaton field. Instead of the value of the dilaton at
infinity, and hence the string coupling constant being ar-
bitrary, it will now be determined by the minimum of the
potential. Since we want to generate a mass term for the
dilaton, the leading term in the potential should be
Vi(¢)=2m*d—dy)* [the factor of 2 is due to the uncon-
ventional normalization of the kinetic term in (2.1)]. In
string theory the natural variable is e? which plays the
role of the dimensionless coupling constant. We thus ex-
pect that the true potential for the dilaton will also have
higher-order corrections in an expansion in ¢. Where
possible, we will try to make general statements without
making detailed assumptions about the form of the po-
tential. When we need to consider specific possibilities
we will consider either the potential ¥V, or
V,=2m?inh*(¢ —¢,). This latter choice of potential is a
simple function of e? which agrees with ¥, to lowest or-
der in ¢? but which is more divergent at the singularity of
the black hole than V.

Intuitively, we expect that if a field has mass m, then at
length scales large compared to m ~! the potential will
suppress fluctuations in the field while at lengths small
compared to m ~! it will behave rather like a massless
field. Therefore we would expect that at large distances
our black hole would look like a Reissner-Nordstrom
black hole, and at small distances like a massless dilaton
black hole. We might also expect that the classical treat-
ment here will break down unless the Compton wave-
length of the dilaton 1/m is small compared to the gravi-
tational radius of the black hole ~M /M} with M, the
Planck mass. In geometrized units this means mM >>1.

For large black holes (i.e., those satisfying this cri-
terion) we thus expect the structure to be asymptotically
Reissner-Nordstrom type. If the black hole has large
charge Q ~M then both the outer and inner horizons of
the Reissner-Nordstrom solution occur in a region where
we expect the dilaton to play a negligible role. However,
as we approach the singularity a new possibility arises.
Namely that the dilaton ‘“‘switches on’ and the solution
becomes like the massless dilaton black hole which would
cause a third horizon and the causal lattice shown in Fig.
3.

As we will see, this final possibility requires a violation
of the strong energy condition, which in turn requires the
dilaton to become dominant at some length scale, thus
validating our intuition. On the other hand, for real
physical black holes we should replace the magnetic
charge Q by the electric charge Q,, and we would expect
Q, << 10" M since otherwise the black hole would neu-
tralize itself by attracting charged particles from the sur-
rounding medium. In this case we expect the dilaton to
become important long before we reach the inner horizon
of the Reissner-Nordstrom solution and the exact solu-
tion may have one, two, or three horizons.
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FIG. 3. Penrose-Carter diagram for a massive dilaton black
hole with outer horizon 7., middle horizon 7y, and inner ho-
rizon #_. I7T indicate future and past null infinity respectively,
while the shading indicates regions not included in the space-
time. The figure repeats periodically to tile the plane.

The organization of this section will be as follows. We
first set up the equations of motion in the Einstein metric
and discuss some general properties of solutions, examin-
ing under what circumstances three horizons may occur.
We then obtain a specific restriction on the number of
horizons, given a certain constraint which is satisfied by
our test potential V,, but not ¥;. We then examine the
equations of motion in the string metric, giving a plausi-
bility argument that for Om <1 the solution will have
only one horizon. We conclude by commenting on the
dual electric solutions. Note that we will be concerned
only with the nonextremal black holes in this section.

We begin by stating the general equations of motion.
Remaining with the general expression V(¢), we note
that the action becomes

S= [d*xV =g [-R+2V$?—V($)—e ¥F4]. (3.1)

Thus the Maxwell equations are unchanged, and the
equations of motion and energy momentum are modified
to

13V _ Q%%
4 3¢ ct

Tab :2va¢vb¢—2e '2¢Fachc

V,V%+ , (3.2)

—18a[2(V9Y —e "XF—V($)],

which implies
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C//:_C¢12 ,

1av
2 3¢

(A%C?)"'=2—2C*V(¢) .

[(4?%yC?y=C? —V|—204%C?%')y, (3.4

Note that the presence of the potential means that we no
longer have a first integral to simplify the process of solv-
ing these equations. A few general remarks however can
be made.

Note that the first of Egs. (3.4) implies that C’ is al-
ways decreasing; therefore if we wish to have C'(r)—1 at
infinity, then, as with the massless case, the singularity
will occur at positive 7, Fsg > 0. (In fact the dominant en-
ergy condition guarantees r,, = 0.) The final equation of
(3.4) shows that with a potential, ( 42C?)" is no longer
necessarily positive. Since, roughly speaking, it is the
positivity of (A2C?)" that guarantees a single horizon,
we see that if C2V > 1, then multiple horizons are possi-
ble. The middle equation of (3.4) actually gives us some
more concrete requirements on the stress-energy-
momentum tensor, and hence V(¢), if there are to be
three horizons. Note that the existence of three horizons
requires (at least) two zeros of ( A2)'. Since

[(4%)C*'=—C*2TY+T.—TY)

this in turn implies a violation of the strong energy condi-
tion (SEC). A violation of the SEC is by no means impos-
sible, for although electromagnetism satisfies the strong
energy condition, a massive scalar field does not neces-
sarily; nonetheless, it again emphasizes the point that if
the scalar potential is weak, the horizon structure of the
massless dilaton black hole will not be altered.

The dilaton equation (3.2) can be used to prove that if
the potential V(¢) is convex, then ¢’ <0 when A%>0.
To show this we first argue that ¢’ <0 for some range
outside an event horizon, and then for the whole range.

Multiplying (3.2) by ¢’ and integrating yields

IQ ¢ f ¢AK__¢_ 2C2¢I)I

[ 42412
V=A%)
(242 Ly g
[ =+ |2, 63

Evaluating this integral between the horizon and infinity
shows

e

i.e., that ¢’ <0 at some point.

Now that we have shown that ¢’ <0 at some point out-
side the horizon, we will show that this holds at all points
outside the horizon. The proof is by contradiction. If ¢
is not monotonically decreasing outside the horizon then
it must have a maximum outside the horizon (possibly at
infinity). At this maximum (3.2) then implies

¢’ <0, (3.6)

1oV _ Q%% _

2 3¢ ct
(with equality for the case where the maximum is at
infinity). As we move from this maximum in towards the
horizon, ¢ can either have a minimum or decrease to the
horizon. Equation (3.2) then implies that

’ 24
2)’¢’+—¢—zcg >0.

(3.8)
The right-hand side (RHS) of (3.8) is positive for either
case since at the supposed minimum 4?2 and ¢' are posi-
tive and C is monotonically increasing while in the latter
case the RHS of (3.8) is positive at the horizon since
A?=0 and (A42)'¢’>0. So we have established that the
left-hand side (LHS) of (3.8) must be positive at or outside
the horizon if ¢’ is positive at or outside the horizon.
However, for ¢’ >0 and a convex potential, the LHS of
(3.8) is an increasing function of ». Hence it cannot be-
come nonnegative given (3.7). We have thus derived a
contradiction and shown that ¢’ remains negative every-
where outside the event horizon. A similar argument
shows that we expect ¢’ <0 in any inner regions of the
black hole where 42> 0.

Having used the equations to extract some general in-
formation, let us now be specific about the form of the
solution. We can confirm some of the previous reasoning
by solving Eqgs. (3.4) in a power series in 1/7, that is, at
large distances from the singularity. To lowest nontrivial
order the asymptotically flat solution depends only on the
quadratic part of the potential and therefore will essen-
tially be independent of the potential, being given by

2 " 2%

24 4, "%
2 v 2M | Q% Q%
A (r)—l—T+ r? 5m2r

A% <0 3.7)

+...+Fe"mr+... S

p + e,
4 4%
Clr)=r— 22“6—4—7— +
Tm°r
where F is an arbitrary constant. This asymptotic expan-
sion agrees with the Reissner-Nordstrom solution at large
distances, remembering that ¢, shifts the value of the
gravitational coupling at infinity, and indeed up to
2 %Q /m, which will be past at least the event hor-

’

re~e
izon for large mass black holes. In addition, note that ¢
is monotonically decreasing as claimed.

Examining the equations of motion near the central
singularity (C2—0), the form of the potential becomes
important. For our two test potentials V| and V, we find
the following behavior for the metric and the dilaton:

C~co(r—r0)1/2+cl(r—ro)3/2 ’

c
e M folr—ro)= 2 S folr—ro)?,

0

) ) (3.10)
2 1—-2f,0 /co 2f0Q
A~ (r—rg),
CoCy Co
mz(r—-ro)
Ai~AF———F,

2f,
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where A? is the go, appropriate for V;. For V|, (A4?%) is
always positive at the singularity, whereas for ¥V, the sign
of ( A2)" will depend on how large the dilaton mass is.

Notice that in (3.9) there is only one free parameter,
since we are looking for an asymptotically flat solution
with a particular charge and mass. As we approach the
singularity with Q fixed, there are, however, four residual
free parameters. Thus, since our solution space is five di-
mensional, we do in general expect a solution to exist,
however without, for example, a numerical integration,
this is not a certainty.! However, in certain cases, we can
eliminate possibilities for the causal structure of the solu-
tions, and we will therefore concentrate on what we can
say analytically about the general properties a potential
must have to admit one, two, or three horizons.

We start by proving that the potential V,(¢) can have
at most two horizons. To do this we integrate the middle
equation of (3.4) between the first and second horizons.
This gives

<0. (3.11)

At first sight this may not seem at all restrictive, but for
the potential V,(¢) we have

1 9V,
2 9¢
Since we have already shown that ¢ is decreasing on the

interval [r;,r,], (3.11) would require ¢(r,)<¢,. But a
rearrangement of (3.4),

—V,=m¥1—e 7%, (3.12)

[4%C?¢')=C? y+ 1V +(A4%cc’y—1 (3.13)
2 3¢
integrated in a neighborhood of r, gives
, ry+8 2$—g,)
A*C% \,ﬁ&:frz miCxe " %'—1)
—8+A4%CC'>0 (3.14)
which implies
r,+8 _
[ mrcxe™ ™ —1>0 (3.15)

)
so that ¢(r,)> ¢,. So, V,(¢) does not admit a black hole
with three horizons. V| on the other hand has

1 oV
Vi=3 39 ~2m9=80—d0= 1),

(3.16)

thus as ¢—¢, becomes greater than 1, (3.11) can be
satisfied. This can be seen to fit in with some of our ear-
lier intuitive arguments. Since V, becomes very impor-
tant for large ¢ compared to V|, we might expect greater
resistance to approaching a GHS massless solution.
Therefore for large dilaton mass we might expect the
solution to remain much like a Reissner-Nordstrom black

IThis issue is currently being addressed by Horne and
Horowitz, and we thank them for discussions on this point.
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hole except very close to the singularity, by which stage
there is no possibility of a third horizon forming.

It is obviously now of interest to determine whether
the solution for V| can have three horizons, not least be-
cause of the bizarre causal structure associated with three
horizons. It would also be useful to know whether, and if
so when, even two horizons are possible. One of the nice
features of the massless dilaton black hole was that it had
a (presumably stable) Schwarzschild-like causal structure,
with no Cauchy horizons. It would therefore be useful to
know if this single horizon structure persists, and if so,
for approximately what range of parameters.

In order to get a clearer picture of what is happening,
and to simplify some of the arguments, let us transform
to the string metric (2.11). The action in the new metric
is

S=[d*xV —ge [~ R —4g 3,40,¢
—8 G FpFea—e V(9)) .
(3.17)

The equations of motion which follow from this action
are

A A

89,9 ”¢—-8(e¢)2+4e“2¢V(¢)=e_2"’%

s —2R —2F2,

(3.18)

R, +2F, F,c+2V,9,¢
=18, (R+F2+e 2V(¢)+4V,V%9—4(V$)?)
(3.19)

where all contractions are taken with the new string
metric g,,. Taking the trace of (3.19) simplifies (3.18),

—4€a6“¢+8($¢)2=e‘2¢%g—2F3,, , (3.20)
and (3.19) then can be written as
Gab= —26a6b¢—2Fach”
+%g,,,, 3Fczd+e_2¢V(¢)—e_2¢%¢K +aGg2 | .
(3.21)

The Maxwell field equation is unchanged; hence,
F=Q sin0d0O N\d¢ is also a solution in this theory.

Looking for a static spherically symmetric solution as
before with the metric

ds2=A42%d7— 4 "2dp*—C?{d6*+sin’0 d ?) (3.22)
gives, for the dilaton,
N _ 20% % 1 _4p OV
202 Wy =22 2wl 3.23
[42C2%e ¥)] 2 2@ e 3 (3.23)

and the equations of motion for the metric variables can
be boiled down to
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6I1=6¢I1’
A0 2% W) =—02—4 _19¥
[(42)C2% ¥ C2 14 206 | (3.24)
[/’1\2(6 2);e ~2¢]:
2
=e 2 2—46%—6%*2‘# V——%%

Note immediately that the last two “gravity” equations
imply

< ' T2\ - ' 4 2 —
([AHC—(A2yE2)e )= |2— 6QZ e 2
(3.25)
Thus if C2>2Q% for all p, then [AXC?)

—(A42)C?)e  must be monotonically increasing; this
is not compatible with a third inner ho-
rizon. In fact, (3.25) shows that if there are to be three
horizons not only is  <2Q required, but also a turning
point in C before the final inner horizon is reached. Note
that although C(r) in the original metric is strictly in-
creasing, this does not imply a similar result for g (p),
since

4 A3)=87C| 4 212¢ “(p)

das

_4 d
=9 L (520
e ds (e“®?A)

=87C| 4% %e?[C'(r)+C¢'(r)], (3.26)

hence if ¢'(r)< —C'/C, ¢ '(p) can be negative. Thus in
the string metric, the event horizon actually masks undu-
lations in the ¢ =const surfaces, areas of the two-spheres
actually increase before the innermost horizon.

Now let us examine the equations of motion for a weak
potential (by which we mean sup,.(2Q% "’V <1) at a
putative inner horizon. We first note that since C(r) is an
increasing function of r, e ~26C 2 is an increasing function
of p. Thus

2
[4%e 202y )= 2—%—@29_2"’”(;5) e~ (3.27)
implies that the term in square brackets on the RHS of
(3.27) is negative at the inner horizon. We would like to
use this to establish an upper bound on C 2. First notice
that (3.25) implies that € 2 <2Q? for some range between
the outer horizon and the putative inner horizon. If we
assume that C 2 is strictly increasing between the inner
and outer horizon then we also know that the previous
inequality is satisfied at the inner horizon. Thus solving
(3.27) as a quadratic for 2Q2/6 2 gives

2
C2< 1O S—
1+V'1—2Q% %y

The equation of motion for the dilaton (3.23) implies

(3.28)

2
20 <%62e -269V (3.29)

c? 9¢
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Equations (3.28) and (3.29) thus give us
2 2
20" g 7 — (3.30)
V' Q% ~2%3V /3¢ 1+V'1—20% 2y
which in turn requires
Q% (V4 13V /03¢
1< . (3.31)

oV /3¢

If we are looking for a lower bound on Qm, then we max-
imize the RHS of (3.31) with respect to ¢. The maximum
occurs when

2

v | 3V _pe

22—+ —

8¢  3¢p* 9¢
If the potential is convex, d¥ /3¢ will be positive for posi-
tive ¢; hence the maximum will occur when

1|3y

4

e =0. (3.32)

19V
V(dna) =3 5

- 2(’Smax

= 1<2V(¢a0)Q% (3.33)

¢max

Obviously this is in contradiction with our initial suppo-
sition that the potential was weak. So, since generically
this RHS will have an order of magnitude of (Q%m?),
hence, for Qm <1, there can be only one horizon. For
our test potentials, (3.33) gives for V|, ¢ ..—do=1,

+ . .
QOm>e '°/2 for an inner horizon, and for V,,

Drmax— Do ‘=" giving Qm > e, Although we have
found several arguments that suggest the validity of this
reasoning, which is further supported by the analysis of
extremal solutions in the following section, we do not
have a watertight proof that C'>o.

We end this section by mentioning that the transforma-
tion (2.10) can be used to trivially construct electrically
charged solutions from the magnetic solutions discussed
above as long as the potential V(¢) is an even function of

¢.

IV. EXTREMAL SOLUTIONS

In thinking about the extremal limit(s) of a black hole
with a massive dilaton, the situation is more diverse than
either Reissner-Nordstrom or massless dilaton black
holes. In these cases, there is a unique extremal limit:
For Reissner-Nordstrom black holes, Q=M and the
inner and outer horizons merge, on the verge of disap-
pearing and leaving a naked singularity. The resulting
Penrose-Carter diagram is shown in Fig. 4.

For massless dilaton black holes the singularity and
horizon merge, the singularity again on the verge of
becoming naked, although this time by moving “outside”
the event horizon with a Penrose-Carter diagram as
shown in Fig. 2. For the case of massive dilatons howev-
er, we have several options, depending on the number of
horizons. For example, if we have only one horizon, we
might expect an extremal limit similar to the massless
case, but for V,=2m 2(4)—(;50)2 there is also another pos-
sibility, namely that 42 develops first a stationary, then
two turning points, and finally an additional double ho-
rizon. In other words, black holes with massive dilatons
can exhibit both kinds of extremality. We will first look
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Singularity

FIG. 4. Penrose-Carter diagram for an extremal Reissner-
Nordstrom black hole.

at the conditions for Reissner-Nordstrom extremality, be-
fore analyzing the massless dilaton type of extremality.

In looking for a Reissner-Nordstrom-type extremal
solution, the defining feature is the repeated horizon.
This corresponds to a repeated zero of A2, or indeed A4 2.
In other words 42=(A4?%)=0 at such a point. Examin-
ing the equations of motion in the string metric yields the
following equalities that must then be satisfied:

2
2-22 _¢2uy=o,

2
207 1 3V 4.1)
——— 2,-20°97
o2 > C2 36 0.
These equalities can be solved for C ? and give
20° = 20° 4.2)
1+V1—20% %y V0% 23V /3¢ '
which can then be solved for ¢, giving
2
14 2 24 1V
— = V+——— 4.
Y Q% 2 36 (4.3)
We will examine each test potential in turn.
For V, these boil down to a modified cubic for ¢,
(d—do)(d—do+1)%e ¥=1/m2Q?, (4.4)
and, for V,,
e tanh(¢—g,)=1/m2Q? . 4.5)

The former relation generically has two solutions for ¢,
whereas the latter relation has only one positive-¢ solu-
tion. This is of course because there can only be one pos-
sible extremal type for the sinh?$ potential, namely a
positive- 4% Reissner-Nordstrdm type, since it does not
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admit three horizons. It is therefore appropriate that in
the limiting value for Qm =e'°, it also corresponds to
¢— o= o0, ie., the  singularity. For Vi,
(¢ —do)(d—do+1)%e 2 has a maximum of de 2% /2 at
¢—do=1; therefore, at the limiting value QOm =¢%% /2,
the two roots of (4.4) coincide at ¢ —¢p,=1. At such a
point ( 42)"" also vanishes, and there is a triple horizon.

In Einstein gravity the throat region of the extreme
Reissner-Nordstrom metric is described by an exact solu-
tion of the Einstein equations with constant radius two-
spheres sometimes known as the Bertotti-Robinson elec-
tromagnetic universe [9]. A similar situation prevails
here. Looking for a solution of (3.23) and (3.24) with C
and ¢ constant we find a solution with ¢ given by (4.4) or
(4.5) and with

1 2Qe?
Vv /3¢ ’
/0 (4.6)
2\ — 2¢ —_— =
(A ) e V ) a¢ ’

where the RHS of (4.6) is to be evaluated at the solution
of (4.4) or (4.5) depending on the choice of potential.

For the other type of extremal solution, the defining
feature is that the singularity and horizon coincide, in
other words, that 42=0 at the singularity. Searching for
an expansion of the solution near the singularity reveals
an interesting difference between the massless and mas-
sive cases, which is reflected in the two-dimensional
theory, as we will see in the next section. In the massless
case, the solution in the neighborhood of the singularity
was a linear dilaton vacuum (LDYV), i.e., ¢ = —ap, with
(vanishing) corrections of the form e®. As we will see,
the form of these corrections may alter, although the
LDV will still persist. Since this “throat” structure of
the original massless dilaton black holes was so attractive
for hiding information, it is important to demonstrate
that this structure remains.

We are looking for a solution of the form

A%=a,+a,(ple®+ -,
C=co+ci(ple®+ -+,
e M= foe -+ f(ple? P+ - -

4.7)

as Using C""=C¢" readily shows that
f1= —2foci(p)/cy, independent of whether or not there
is a potential; however, the other two equations in (3.24)
rapidly show that while ¢3=2Q? as with the zero-mass
case, the situation for the other variables is quite
different. The corrections ¢; and a; must now satisfy
nontrivial differential equations:

p—)OO,

19
apy ,ap 1t — __ 2ap —_
[(a,e?) e foe 4 > ,
(4.8)
[(Cleap)leap]l
= 1 9V
— 20p 4c. —2V 3 — =7
2Q2a1e €y 2 2Q fO vV 2 a¢ >
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and These equations can be solved for one’s chosen potential.
For example, for V,=2m2%(¢—¢,)% a,=e 0/2Q2a2 as
—1—02 -9V pe, ! o/ 41
20%%a,;=1-Q le 36 | 4= —(1/2aptinsy) 4.9) in the zero-mass case, but the corrections take the form
J
__Jom 2
a,=— Toa? [2p 2—2pa(1—2Infy)+1—21Infy+21n%*f,],
2,3, 3% (4.10)
__m Q% S 3 3 2 2 2
= _—TZ\/E—[TM p°+27a%p*(2+1Infy)— (3ap—1)(4—161Infy—91In*fy) ]+ K /3a ,
[
where K is an integration constant. bined Reissner-Nordstrom-massless-dilaton extremal

For ) V, the result is  much simpler:
a;=(e ¢°—Q2m 2)/2Q%?, a,=m*f,/2a? and
c\=—fo0e °/V2+Ke @.11)

where « is a root of

2a*m?Q?
e ¢O_m 2Q2
The main thing to note about this solution is that if
Om >e¢°, then @ <0. In other words, down the throat
of the black hole, space and time would actually reverse
roles. Clearly by contmulty, this can only happen if there
is_ an event horizon (4 <0 near the singularity implies
A? has a zero before the singularity), which clearly
means that this is not a GHS extremal solution, where
the singularity is on the verge of becoming naked. How-
ever, it can be an extremal solution in the sense of a tran-
sition between two and one horizons, where the singulari-
ty and the inner horizon merge in the interior of the
black hole. In this case, therefore, the “throat” of this
inner extremal solution is an inverted LDV —space and
time have swapped roles. A possible Penrose-Carter dia-
gram for such a solution is shown in Fig. 5.

It is interesting that these more massive dilatons can-
not exhibit a GHS extremal solution, which can only

occur for Om Se%, the case of equality being the com-

k*+3ak — =0.

FIG. 5. Penrose-Carter diagram for an extremal massive di-
laton black hole where one starts from an asymptotically flat re-
gion (AF) and approaches the linear dilaton vacuum (LDYV)
after passing through an event horizon.

type already discussed above. Thus the type of extremal
solutions for this potential can be quite neatly cataloged:
For Om <e’° there can only be a massless-dilaton-type
extremal solution, the singularity and horizon merge.
For Om >e¢° there can only be a Reissner-Nordstrom-
type extremal solution where the singularity is about to
become naked, with also the possibility of an inverted
GHS extremal solution in the interior. For Qm =%
there is a situation analogous to the triple horizon of V,
namely that the singularity merges with a repeated ho-
rizon.

Of course we also expect some relation between Q, M,
and m to be satisfied in order to obtain these various
types of extremal solution; however, unlike the massless
case, we do not have an analytic closed-form solution
from which we can extract these formulas. However, it is
possible to obtain approximate information as to the ex-
tremal mass-charge relationships.

For mQ >>e¢°, searching for a Reissner-Nordstrom re-
peated horizon [( 42)" >0], both (4.4) and (4.5) give the
same result, namely

(p—do)=e " /m?Q? 4.12)
Using (3.4) and (3.2), this implies
- 1
c=Q% %o |1— (4.13)
Q m2Q2
therefore
- 2, —2¢ 2, 2%
[(a?yc?)z =2m= [~ |22¢ 7 _cap |20
H Ty C2 CH
(4.14)

Knowing that mM >>e¢°, we can use (3.9) to find the ex-
act form of the corrections which turns out to be

1
10m2Q2e %o

M=0ge % |1— (4.15)

Thus, perhaps not surprisingly, the effect of the dilaton is
to increase the charge carried by an extremal solution.
As mQ decreases, this discrepancy obviously increases, so
we will estimate it at presumably what is its maximum—
the triple extremal solution.

For VI , this occurs at

c?=0% ®/em=1/2m2 Qm =

(¢—¢p)=1,
9/2. We then use
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24,
[( AZ)ICZ]I <

2,—2¢ 20,
20¢ 7 _29°Ce (4.16)
C C
integrated between the horizon and infinity to conclude
_ 2
o £ (4.17)

M = -
2V2m

<

V2
Obviously, this is not a concrete result; nonetheless, it
will give the correct order of magnitude for M. It is in-
teresting to note that while this looks similar to the mass-
less black hole charge-mass ratio when expressed in terms
of Q, when expressed in terms of the dilaton mass the in-
equality is more eloquent. It shows that unless the dila-
ton mass is very small, only mini black holes are capable
of attaining this special extremal limit. For example, if
the dilaton acquires a mass of around 1 TeV, then the ex-
tremal black hole would have to be no heavier than about
10'° g while if the dilaton mass is 10'® GeV then the black
hole mass would have to be less than the Planck mass.
Since the dilaton mass could lie anywhere in this range,
such solutions would be relevant only for primordial
black holes.

For GHS-type extremal solutions, by integrating the
final two equations of (3.4), we find

w 020 26
M=%fr Q—éz—— : (4.18)
sg

Estimating this integral as lim,_ _, Qze_%/C gives, for

V,, M~V2Q /3. It must be stressed that this is only an
estimate; therefore we should not compare its numerical
value to that of the massless extremal limit, or indeed the
Reissner-Nordstrom limit; however, it does show that the
extremal mass-charge relationship is in the same ballpark
as these other two cases. Without a numerical solution
and integration, however, we cannot be more specific.
For V, this estimate gives M ~V2Qe %3, again, roughly
the same order of magnitude.

V. TWO DIMENSIONS

Addition of a dilaton potential no longer allows exact
solutions of the form S?X.M%y with constant radius S2
and a two-dimensional black hole spacetime JM3.
Nonetheless it is of some interest to study black holes in
two-dimensional massive dilaton gravity even if there is
no longer a direct connection with four dimensions.
Solutions to two-dimensional dilaton gravity with a dila-
ton potential have also been studied in [10].

Motivated by the four-dimensional Lagrangian (3.17)
we take as our starting action

=L a2 —ge—2 24 gp2— 20
S=o-[d’xV=ge R +4V +4—e T HV($)] .

(5.1)

Note that in this section we change our conventions to
comply with those commonly used in two-dimensional di-
laton gravity [metric signature ( —, +) etc.]. The equa-
tions of motion following from (5.1) are
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2e ¥V, V. $+8,,[(V$)— V29—

+1le 2y(¢)]}=0, (5.2)
e 2 |R+402+4V2p—4(Ve)?
24 |1 OV =
+e X 2V(¢) 0, (53)

with (5.2) resulting from variation of the metric and (5.3)
from variation of the dilaton.

Looking for static solutions in a ‘“‘Schwarzschild”
gauge with

ds’=— A%o)dT*+ A *0o)do? (5.4)
the dilaton equation becomes
—(A)"+40>+4(A%¢') —4A4%(')
2|10V
+e 2 |28 oy = .
e X 2V |=0 (5.9

while the metric equation and constraints may be written
as

¢u=0 ,

5.6

AP P —AA'Y — 2+ Lle 2V (4)=0. -0

Now ¢ =0 implies ¢=p,+p,0 and if p;70 we can

choose p, =0 by shifting 0. There are thus two cases to
consider: ¢=p,0 or ¢ =p,.

We first consider solutions with ¢ constant. As is clear
from the second equation of (5.6), there are no such solu-
tions when V' =0. With ¢ constant and choosing the po-
tential to be V(¢)=m 2¢? the equations reduce to

e P0p2=4r2/m? (5.7)

and an equation that says that the curvature is constant:

R=—(4Y)"=4)\(1—1/p,) . (5.8)

The function p2e 7?0 has a minimum at Po=0, a max-
imum at p,=1 where it equals e ~2, and approaches + «
as pg— — oo and 0 as py— + co. Thus (5.7) has one solu-
tion if 4A?/m?>e~? with R >0, two solutions if
4\*/m?*=e "% with R >0 at the solution with p, <0 and
R =0 at the solution with py=1, and three solutions if
4rA*/m?*<e % with R >0 for p, <0, R <0 for 0<p, <1,
and R >0 for py>1. These solutions are the two-
dimensional analogue of the throat solutions (4.6) dis-
cussed in the previous section.

We next look for “linear dilaton” solutions with
¢=p,o0. Equations (5.5) and (5.6) then reduce to

—(A%)"+4r>+4p,(A4%) —44%p}

18y
2 3¢

4A2p%—2(Al)'pl—4x2+e—2¢V(¢)|¢=pl,,=o .

+e ™% -2V

¢:P1‘7
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When V=0 these equations have a two-dimensional

black hole solution [11] given by
¢=—Ao , )
(5.10
A*=1-2Me >,

with M the (arbitrary) mass of the black hole.
With V0 adding the two equations in (5.9) gives

1ov_,

2\rr __ 2V — , —2¢
(A2)"=2p (A2 =e ™2 |22

¢=p,0

2

=m e‘ZP'U(pla—pfaz) (5.11)

for the potential V(¢)=m2$% This is easily integrated to
give [using (5.9) as well]

¢=FAo ,
(5.12)
2
AP=1—2Me TPo— #0082 %62 Fapo +1) ,
6412
with M arbitrary. If we want to obtain a solution which
is asymptotically flat at one end of our one-dimensional
world we must take M =0. With the usual convention
that the singularity occurs at 0 — — o« we then have as a
solution (5.12) with the lower choice of sign and M =0.
In contrast with the usual two-dimensional black hole of
(5.10) which has a singularity at strong string coupling
gsze4’=e_)‘°—>+ oo, this solution has a singularity at
weak string coupling with g, =e*?—0, with the potential
playing a crucial role.

The causal structure of this solution depends as before
on the ratio A*/m? In particular, the function
f(x)=e *(8x2+4x +1) appearing in (5.12) has a max-
imum at x=(1+V3)/4 where it takes the value
Fay=e 1FV3/2(4421/73) and the solution has one, two,
or three horizons depending on whether the ratio
64A%/m? is larger than f,,, equal to f,,, or less than f,,,
respectively.

Of course it is not clear that this choice of potential
plays any particular role in two dimensions, and one
might argue that it is not physically sensible to add a
term which dominates at weak coupling. Another choice
of potential of some interest is V(¢)=e?**m?¢$?. Repeat-
ing the previous analyses with this potential we find two
types of de Sitter (constant curvature) solutions. If ¢=p,
is constant we now find a solution with

¢2=P(2)=47\.2/m2, R:_(AZ)H:_mZPO , (5.13)
and if $=p,o we find a general solution
2 2
Ar=1-" 52 o pe™ (5.14)
4p, 4
with p, given by
P=22 1= | (5.15)
pi a2 ]

This represents a two-dimensional black hole with a
singularity at 0 — — o (for p; <0) and which asymptoti-

cally approaches de Sitter space with constant curvature
R=m?/2as0—+ .

VI. CONCLUSION

We have seen that an addition of a dilaton potential al-
lows for a richer variety of charged black hole solutions
than is present either in the case of Einstein gravity or
massless dilaton gravity. Depending on the values of the
black hole mass and charge and the dilaton mass and po-
tential it is possible to have solutions with either one,
two, or three horizons, the single horizon having a
Schwarzschild structure, the double a Reissner-
Nordstrom causal structure, and the triple horizon the
causal lattice of Fig. 3. We were able to establish that for
our second test potential,

V,(¢)=2m%sinh* (¢ —a,)* ,

only one or two horizons were possible. Our first test po-
tential, however, ¥V, =2m?*(¢—¢,)?, could possibly have
three horizons, provided mQ, the product of the black
hole charge and the dilaton mass, was sufficiently large.
We examined the various types of extremal solutions,
which again were more varied than either Einstein or
massless dilaton gravity. We found that there could be
Reissner-Nordstrom-type extrema, with two horizons
coinciding, and also GHS type extrema, with the singu-
larity and event horizon coinciding. In this case the
causal structure in the string metric would contain an
infinite throat as in the massless dilaton case. However,
whereas for V', the singularity always coincided with an
( A%) >0 horizon, for V,, the singularity could only be of

GHS type if Om <e®. For Qm >e¢°, the event horizon
and singularity meet in the interior of the black hole and
the throat has an inverted LDV structure leading to the
Penrose-Carter diagram of Fig. 5. Unfortunately, this
type of extremal solution is not very useful as a “cornu-
copion” since one is always doomed to traveling down
the throat, never to return to the outside world to pass on
all the information one has found; in any case, it does not
even qualify as a remnant—the Hawking temperature
(A 2)',+ /41 is most definitely not zero. It might be possi-

ble for these solutions to radiate until the outer event
horizon merges with the inner horizon/singularity, pro-
vided sufficient charge is lost; however, it is also possible
that they would turn into a Reissner-Nordstrom extremal
solution. This would depend on how preferential it was
for the black hole to discharge.

In addition to the above extremal solutions, there are
also special triple extremal solutions, where gy has a sta-
tionary point of inflection. These correspond to the three
horizons meeting for the potential ¥, and the two hor-
izons and singularity meeting for V,. For V, this solu-
tion has an absolute upper bound on its mass, indepen-
dent of the charge on the black hole.

Finally, we should remark that, just as in the case of
massless dilaton gravity, for every magnetic black hole
solution, there is a corresponding electric black hole solu-
tion, given by the special duality transformation (2.10).

In conclusion, while the addition of a potential de-
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stroys the simplicity of the solution, which cannot ap-
parently be written in closed form, it greatly increases the
wealth of the possible spacetimes. It seems that massive
dilatons allow for many more black hole causal structures
than either their massless cousins of Einstein gravity. It
would be interesting to further investigate these extremal
solutions since we expect some of them to share the sta-
bility of both extremal Reissner-Nordstrom and massless
dilaton black holes, while the presence of a dilaton poten-
tial would seem to forbid embedding them in a theory
with unbroken supersymmetry.
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