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Stringy cosmic strings and axion cohomology
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The static stationary axially symmetric background ("infinite cosmic string") of the D =4 string
theory provided with an axion charge is studied in the effective theory approach. The most general exact
solution is constructed. It is found that the Kalb-Ramond axion charge, present in the string topology
R'XS', produces nontrivial gravitational field configurations which feature horizons. The correspond-
ing "no-hair" theorems are proved, which stress the uniqueness of black strings. The connection of the
solutions with the gauged Wess-Zumino-Witten-Novikov o. model constructions on the world sheet is
discussed since they are the only target spaces which hide their singularities behind horizons, and thus

obey the cosmic censorship conjecture.

PACS number(s): 04.20.Jb, 04.50.+h, 11.17.+y, 98.80.Cq

INTRODUCTION

Interest in cosmic strings as possible gravitational solu-
tions has arisen in response to the study of cosmological
phase transitions in the early Universe. Investigations of
mechanisms of the phase transitions have led us to be-
lieve that the field configurations specific to theories with
spontaneously broken symmetries can provide the neces-
sary energy-momentum sources to support stringlike
solutions of the coupled gravity-matter equations [1].
Two generic types of solutions were found, depending on
the type of the symmetry that gets broken. When the
spontaneously broken symmetry is a local gauge symme-
try, the string solution associated with it appears to be
devoid of all long-range interactions, due to the low-
energy cutoffs introduced by the symmetry breaking [1,2]
(except, possibly, in the case of the superconducting
cosmic string, which may have electromagnetic long-
range interactions with interstellar plasma [3]). Thus, the
only nontrivial gravitational effect produced by a local
string is the deficit angle, a phenomenon truly topological
in its nature.

The situation is significantly different in the case of glo-
bal strings. These were shown to be consistent gravity-
matter configurations in theories with broken global sym-
metries. Long-range gravitational interactions persist in
this case due to the coupling of gravity to Goldstone bo-
sons left after the symmetry breaking. The presence of
the Goldstone bosons actually assures that there are no
low-energy cutoffs that rule out long-range interactions
for local strings. However, for the very same reason, the
gravitational field associated with global strings is not
asymptotically Hat, since the energy-momentum density
of the matter does not fall off to zero rapidly enough.
The gravitational force of the string, curiously, turns out
to be repulsive [4—6]. A peculiarity of the presence of a
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horizon in the geometry of a global string was observed
by Harari and Polychronakos [7] in the limit of small
Goldstone-boson energy density (necessary in their
analysis for establishing boundary conditions at the string
core), and further elucidated by Gibbons, Ortiz, and Ruiz
Ruiz [8]. In particular, the analysis of Ref. [8] points out
general circumstances under which global cosmic strings
exist, which are singular and possess event horizons. It is
interesting to note that in order to find such solutions,
Gibbons, Ortiz, and Ruiz Ruiz resort to string theoretic
o. model target spaces as matter source.

Stringy aspects of cosmic strings have already been in-
vestigated [9—11],along with cosmic strings in other non-
minimal theories of gravity [12]. A common feature of
such treatises is that all these theories are characterized
with the presence of an extra scalar field nonminimally
coupled to gravity and/or matter, so that its variation
produces a non trivial gravitational field exterior to a
string even for local cosmic strings. Of particular interest
here are the recent studies that attempt to extend the
1+1 Witten black-hole solution [13] and its conformal
field-theory interpretation to higher dimensions. Some
solutions of the gauged Wess-Zumino-Witten-Novikov
(WZWN) o models on axially symmetric static target
spaces have been constructed already [14—18]. More
comprehensive approaches are under way [19]. Also, in-
vestigations of topological configurations in the massless
sector of the theory have been conducted, leading to su-
persymmetric instanton solutions [20].

In this paper a class of exact solutions with an axion
charge will be derived and analyzed. It will be demon-
strated that classically they represent global stringlike
solutions with different analytic properties due to the
presence of a nontrivial dilaton field and axion charge
around it. A black-string version of the "no-hair"
theorem will be proved, showing the uniqueness of a class
of charged four-dimensional (4D) black strings with hor-
izons. These are singled out, as they correspond to the
WZWN models and represent exact conformal-field
theories on the string world sheet. As such, they are vi-
able candidates for the string-field-theory vacua.

47 2403 1993 The American Physical Society



2404 NEMAN JA KALOPER 47

AXION COHOMOLOGY

The starting point of our investigation is the action for
the bosonic sector of the supergravity multiplet in the
background field formulation of string theory. In the
Einstein frame (in all that follows Yang-Mills fields are
ignored) to order O(a ) it is

&=f d x&g R — 2+' ~II H '~ ——g Cpu@
1 1

22 pvA, ~ p

dg = e ~dr2+e ~dr +e i dz +e2 id/ (2)

where the metric functions depend only on the radial
coordinate r. The four metric functions are not indepen-
dent, however, since by a coordinate transformation (for
example, p=e"'"') any combination of them can be fixed.
It is convenient to keep all four arbitrary for calculational
purposes and simplify the equations of motion by a
specific choice. This freedom is a remnant of the full
GL(3, 1) gauge invariance of gravity in four dimensions.

The equations of motion are, in terms of the dual of the
Kalb-Ramond field strength

where R is the Ricci scalar, H„z is the Kalb-Ramond ax-
ion field strength, and N is the dilaton. Conventions of
Ref. [21] are followed throughout the paper. Here it was
implicitly assumed that the cosmological constant at the
string world-sheet level, leading to the exponential dila-
ton potential in the Einstein frame action, is zero. This
assumption can only be justified by inspecting the evolu-
tion of the structure of a vacuum with the complete
description of string theory. In the absence of such a
description, it is reasonable to imagine that the various
conformal anomalies conspire to yield cancellation of the
total central charge (for example, the string vacuum
could be decomposed as M XK, where the internal de-
grees of freedom yield the cancellation of the central
charge, but at low enough energies are dynamically
decoupled). Furthermore, the compactification scale is
expected to be high above the supersymmetry-breaking
scale, where the dilaton obtains mass. Hence, solutions
of the theory above may be expected to describe cosmic
strings in an early phase of the Universe, somewhere be-
tween the compactification and the supersymmetry-
breaking scales. For the sake of simplicity, we will first
ignore the dilaton field and look only at the coupled
axion-gravity system. It is our goal here to examine the
influence of the nonvanishing axion charge on the gravi-
tational field.

The metric of a cosmic string is described by the cylin-
drically symmetric static stationary background:

where V= V dx p is the associated one-form.
p

Usually, one would search for

V=da

where Q is the axionic charge per unit length of the
string:

This charge generalizes the uniform line distribution of
the electric charge, as is obvious from Q —j ~*0.

Clearly, because of its topological nature expressed via
the Gauss law above, the charge Q is conserved. Further-
more, we can rewrite the energy-momentum tensor of
this configuration as

2

T„= e "diag(1, —1, —1, 1), (10)

recognizing it as the matter source giving rise to the grav-
itational field of a global cosmic string. This should not
be a surprise, since Gibbons, Ortiz, and Ruiz Ruiz [8]
showed that global strings arise whenever matter sources
can be identified with target spaces containing closed geo-
desics. As a consequence, the gravitational field of global
strings arises when the principal bundle describing the
matter content is of nontrivial first cohomology. In the
case demonstrated above, where V=Qdg, one can identi-
fy the space-time angle P as a representation of a matter
field living on a U(1) target manifold, a closed target
space geodesic by itself. Then [1,2,4,5] it is easy to write
down the solution for the gravitational field around such
a cosmic string:

ds
rp

'1 —w

d +
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as the solution of the two axion equations. In the most
general case, when the base manifold has nontrivial first
cohomology,

V=da+C&y

where y are the harmonic forms generating the first
cohomology group of the manifold and C~ are constants.
Upon substitution of the axion in Einstein's equations for
the assumed background describing a base manifold of
topology R XS' one sees that the axion can be
represented by a purely topological contribution [3]

(8)

—V g e H'v2. 0'
p vAop

of the form (in a = 1 units)

(3)
(w —I )/2

+%2
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2

dP . (11)

and

1 —1 2
p& 2gp& 3 p v 6 p~

dV=d V=O,

(4)
Here w, rp, 5, and 4 are constants of integration. Ob-
serve, that when Q =0 the solution above correctly
reduces to the static cylindrically symmetric metric solv-
ing the vacuum Einstein s equations, i.e., to the class of
solutions containing the local cosmic string [to demon-
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3
(12)

strate this one would have to take the zero limit of other
parameters in (11) as well]. With the help of a coordinate
transformation, the case w = —1 can be cast in the form
first discussed by Harari and Polychronakos [7]:

string propagation in curved backgrounds, its role being
exactly the string-coupling constants. Also, this will be
more convenient for later comparison with the WZWN
constructions. Of course, the analysis of the background
field equations of motion, understood as a classical
theory, really does not depend on which frame one
chooses to work in, since a simple conformal transforma-
tion relates the equations of motion in different frames.

Thus, the action describing the theory on the target
space is, to order 0(a ) in 4D,

where a. =In'. and po=3ro/Q cr. The Kalb-Ramond ax-
ion then is f d4 QG —V2a@ R —H H"

pvA,

1H= 2dwh, dz h, dp .
2Q o.p

Note that in the limit Q~O, a ~ co, Q cr =const Eqs.
(12) and (13) reduce to the local cosmic string, as claimed
above.

The difference between this solution and the one previ-
ously analyzed by Harari and Polychronakos is that it is
an exact solution valid everywhere representing a doubly
singular line distribution of axial charge, the singularities
being located at the origin and at infinity. Note, howev-
er, the strange property of the above solution, that if we
allow imaginary axion charge, and at the same time Hip
the sign of cr, we obtain the (more appealing)
configuration where the physical region of the metric (12)
is outside of the horizon p&

=poe, as opposed to the
solution of Harari and Sikivie, who find a rather peculiar
situation, where the physical region of the metric is inside
it. In this case, the metric (12) has a well-defined
Newtonian limit, the gravitational potential being

e.=- '
ln P

po
' (14)

exactly the expression for the Newtonian potential of a
nonrelativistic line distribution of mass with density per
unit length 2m~cr~ '. Then it is easy to understand the
appearance of the singularity at infinity. This is just the
usual infrared divergence in the classical limit of a theory
describing massless particles.

It is interesting to note that the need for an imaginary
axion to produce solution (12) with cr )0 can be relaxed if
the three-form H„& has been given a tachyonic kinetic
term instead. Such a degree of freedom might arise, for
example, after dimensional reduction of a higher-rank
form defined in some background metric with
compactified internal space of pseudo-Euclidean signa-
ture.

+a„ca~e+w (15)

B2O = ——exp(&2Ic4&+v+p+A, —g),

where the prime denotes a derivative with respect to r.
The constant of integration Q represents the axion coho-
mology charge, defined via the Gauss law (9), which in
this case can be written as

1 —&z~e ~H
2~ s'

It is easiest to work in the action on the tangent bundle
to derive the equations of motion. Defining the locally
fiat coordinate system with tetrads e =exp(v )dx (no
summation) with a E I 0, . . . , 3], and computing the con-
nection and curvature forms, the action can be rewritten
in terms of the degrees of freedom, in units of Planck's
mass (Ic =1), as

where the cosmological constant has been included for
the background theory above to represent the noncritical
string theory too. The world-sheet cosmological constant
can arise from the leftover conformal anomaly, which
may not have been canceled between the central charges
of the particle and ghost systems. Then, the requirement
of cylindrical symmetry of the target space is equivalent
to using the metric (2) on the world sheet and allowing
the dilaton to depend on the radial coordinate only. As
for the axion, since we are interested in picking it so that
it is given by the S' cohomology of the manifold, its
equations of motion dH=O and d exp( —&21c&b)'H=O,
in conjunction with the duality transformation and the
metric ansatz, yield

8 =282pdz Q dt

H=2B2pdr Adz h, dt

THE SUPERGRAVITY MULTIPLET

We will now investigate the cylindrically symmetric
static solutions with axionic charge on the target mani-
fold of topology R XS' in the theory describing the
complete bosonic sector of the supergravity multiplet. It
contains the graviton, the dilaton, and the three-form
Kalb-Ramond axion. This time, however, we choose to
work in the world-sheet frame, which has been argued to
represent the more natural background for discussing the

S=f dr I
[v'p'+v'rI'+p'rl'

~)] v p, +q +i.—v 2@—
v+ p+ q+ i.—V24&+ cI i2 v+ p+ q —i.—v 24&

]

(18)
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where r = Q exp( v+ p+ k —g+ &2@) is obtained after
substitution of the axion solution (16).

Variation of the action (18) gives the equations of
motion. With some simple algebra, and after the choice
of gauge A, =v+ p —&24 has been made, they become

r]"+q'=0,
p" —v" + (p' —v')q' =0,
p"+v" + (p'+ v' )q' =

—,
'

Q e '+"
(19)

2 2(v+P —q) +2A 2(v+P —v 2N)e — e

v'p'+ v'g'+ p'g' —&2C&'( v'+ p'+ g' ) + 4&'

2(~+p —+2+)~ & 2(v+p —g)
6

The system of equations above is exactly integrable.
Clearly, the function g serves the role of the "evolution
kernel" and is determined by a Riccati equation which in
this case is easy to solve. There exist two different classes
of solutions, determined as follows. The general (in-
equivalent) solutions of the Riccati equation are q =qo or
g =go+ in(r+ ro ), where go and ro are integration con-
stants. The constant ro is irrelevant and may be dropped.
The other constant, however, may be physically
significant as it measures the deficit angle. The remaining
equations can be simplified upon substitution of these for-
mulas and integrated. Hence, the solutions are the fol-
lowing.

Case 1:

1/2 'go —Y r Y rfoe e ' dr' —e ' dz'
dS

2 Q sinh(A +for)
28 o 2go r 2 2r/0+ 2cTr+e dr +e

1/2
Qe )) 0+so r —a( pa+ r )

fo

82o=D+ — e coth(A + for) .3 o (1+o)qo
20 —

4 Q
(22)

determine solutions. We will always assume QWO, as we
are interested in the effects of the axion cohomology. In
addition, the case Q=0 is equivalent to the Jordan-
Brans-Dicke cosmic string of Ref. [12]. Furthermore, we
will require that A= ——25cT= —,'(cT —4) ~0, as is known
to be the case in string theory [22]. The central charge
deficit 5cT arises via the algebraic construction of the tar-
get manifold. The k is determined then with the gauge
choice above.

Typically, the integrals above are combinations of po-
lynomials and hyperbolic and trigonometric functions.
The trigonometric functions, however, are highly un-
desirable, since their periodicity compactifies the radial
direction and introduces an infinite number of ringlike
singularities inconsistent with the assumed cylindrical
structure of the target space. Avoiding them is
guaranteed with choice C=go, and 2go —Y, =fo or
2go —Y) —2=f0, respectively.

The explicit solutions can be classified with respect to
the values of C, Y„Q, and A. They are listed below.

Strings with A=0:

g go

p —v= Yo+ Y1r,

p+v=X,
&2@=X—8',
X'=++2C —Y, + —,'Q exp[2(X —rh)],
W'=+&C+2A exp(2W) .

Case 2:

(20)

Strings with A) 0:

3
d$ 2—

2

Io —YrYrfoe e ' dr —e ' dz

Q sinh(A +for)
2 2go dr 21/0+ 20'I'

+e
2A sinh (8+gor)

Qe go sinh(A + for) (~ +„)24 e
fov'3A sinh(8 -+gor )

(23)

g
——g,+ lnr,

p —v= Yo+ Y1 lnr,

p+v=X,
+2C) =X+rI

—W,
+2(C —1)—Y, + —', Q exp[2(X —go)]X'=+

(21)

QC+2A exp[2( W —go)]8"=+

Here qo, Yo, Y1, and C, together with vo and po, are the
(independent) integration constants, which completely

3 fo ( +ca()g o82o =D+— e 'coth( 3 + for ),

with 2go =f0+ Y, +2o.. The parameter o can take
values 0 and 1. A coordinate transformation has been
performed to bring the solution of the second case to the
form above. Notice that in case of a A of opposite sign
the only change would be replacing sinh(8 +gor) with-
cosh(B +gor ).

The coordinate frame chosen for representing the solu-
tions above is very transparent for further analysis. We
note a few interesting features of these configurations. It
is not difficult to evaluate the curvature invariants of (22)
and (23) and inspect the type of potential singular behav-
ior in the metric (we absorb + in the parameters):
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2 2 2—2WD+2gar 7 f0 fo+go 0R= —2e
4 sinh (A+f )

—fogo coth( 2 +for )+
2

+0 (fo coth( 3 +fov )+go)+o
2

(24)

4A . 2 7 fo
sinh (B+gor ) — fogo —coth( 2 +for ) coth(B+gor )

go 4 sinh (A+for)

fo+go2 2

+ +o (go coth(B+gor ) fo c—oth( 2 +for ))+cr ——0

J

(25)

We will first concentrate on the noncritical string case.
Assume goA&foB. Then, the solutions contain a singu-
larity determined by r, = —A /f o. Hence, they are
charts of the target valid only on open intervals
r E (

—~, r, ) and r E(r„~). On the other hand, the sur-
face r = —B /ga is well behaved, although the
coefficient of dr diverges here. The curvature actually
vanishes here. Inspection of (25) leads to the conclusion
that in order to prevent blowing up of the curvature at
"spatial infinities, " one has to require fo —

go =+o (with
the "regular" point at +oo). Note that this is just a
necessary, but not sufficient, condition for regularity.
That is the reason for the quotation marks. Regularity at
the point would still have to be double checked. Only
when 0.=0 will both "spatial infinities" be nonsingular.
Regularity of one implies regularity of the other. When
o.=1, there appears another singularity at one of the
"infinities. "

The constraint 2go =fo+ Y, +2o translates into
fo + 40 fo

= Y&. When cr =0 it is indeed very stringent:
It asserts that fo =go =+Y, . This fixes the solution
uniquely. It is constructed as follows: for simplicity, as-
sume that all the parameters are positive, and that
foB (go A. This does not restrict generality of the con-
struction. Take the patch (r„, oo ) to describe the exteri-
or of the black string; identify r with the physical spa-
tial infinity, and ~ with the (outer) horizon. Note that
the choice of r as the physical spatial infinity is
motivated by the vanishing curvature there. It tells that
such space-time is asymptotically Aat. The identification
of oo as the (outer) horizon is consistent as the curvature
is finite there, although the metric appears singular. This
signals the horizon. Also note that the singularity at r, is
pushed "outside" of the space-time, and that asymptotic
Aatness guarantees that it is completely decoupled from
the physical region of the space-time. Similarly, con-
struct the interior from the patch ( —ao, r, ): fiip the roles
of the t and z coordinates, identify —~ with the inner
horizon, and note that then r, represents a singularity in
the space-time, which is unavoidable because the point
r was embedded in the outside. Finally, interpolate the
region between the horizons with a Bianchi type-I
universe, equivalent to the region of imaginary r and the
parameters go fo Y, in the original coordinates. This
patchwork can be represented compactly with a transfor-
mation of coordinates, and the analytic continuation

spelled out above. The transformation is
p=go coth(B+gor), with fo=go= Y&, and the solution
becomes, with the help of additional simple coordinate
transformations,

2= x+ x
ds = — 1— dt+ 1— dz

d 2

+ +e 'dP
2A(x —x+ )(x —x )

Y/0—&~e Qee
&3A

(26)

&6 +x+x-
B20 =D

x

where x+ denote locations of the horizons, and
x E(0, ~).

This is exactly the gauge WZWN o. model solution
first constructed in four dimensions by Raiten [16] (with a
slight modification, the one-point compactification of the
P space). The limit when fo~0 corresponds to the criti-
cal case of the above solution.

In all other cases, when at least one of the "spatial
infinities" is a singularity, the situation is dramatically
different. For example, suppose again that the parame-
ters are positive, that foB (god, and that —~ is a
singularity. The patch (

—~, r, ) then cannot be extended
continuously by gluing extra pieces to it, since both end
points are singularities. Assuming that the manifold is
connected establishes this as an entire space-time, which
contains two naked singularities, one at the origin and
the other at infinity. The other patch (r„oo ) contains the
point r . If oo were not a singularity (cr =1), it could, in
principle, be made singularity-free with the point r
identified with the physical spatial infinity, and ~ with a
horizon (or the coordinate origin). However, closer scru-
tiny reveals that unless foal[0, 1], ~ is a singularity,
since the Riemann curvature squared diverges otherwise
[lim„R„& R" —fo(fo —1) sinh (B+for ) ]. The
solution contains a naked singularity at the origin and
cannot be extended past it. For the remaining two values
for fo, the constraints 2go =fo+ Y&+2 and go+ 1 =fo
rule out fo= 1. Thus, fo= Y, =0 and go= 1; the solu-
tion in this case is
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ds 2—
1/2

3 e dt —dz
2 Q A+r

d2 2Y/ +27

2Asinh (B+r)
(27)

Qe ( A +r) (qo+r—)
e ev'3+ sinh(B + r )

3e"' 1

4 Q A+
The distinct points of this metric are r = —2,

+~, B. I—nvestigation of the Ricci curvature (25) for
this metric then shows that r, = —3 and both +Do are
singularities. So, any one of the patches ( —oo, r, ),
(r, r„), or (r„, ao ) contains at least one singularity. The
fact that the signature of the metric does not change as r
passes through r says again that r can at best be
identified with the physical spatial infinity but is not a
horizon. More properly, a timelike Killing vector trans-
ported along a geodesic passing through r „does not Hip
into spacelike. Thus, solution (27) always describes
space-times with naked singularities.

The solutions where either both"spatial infinities" are
singular or with the point r sandwiched between r, and
the singular "spatial infinity" are all hopeless, since by
necessity they contain naked singularities.

When goA =foB (=0, by a shift of r ), the singularity
r, disappears. Instead, r + =0—are regular points. If+

+~ are also required to be regular, fo —go=+o. . When
a =0 the solution is fixed uniquely, with both "spatial
infinities" regular. Hence, both patches (

—oo, 0 ) and
(0+, ~ ) represent singularity free regions. In effect, they
are exact replicas of each other, as can be clearly seen un-
der the transformation r ~—r, t~z. Note that the
patches have constant Ricci curvature R = —3A and di-
laton exp( —V2@)=lQle /&3A. Actually, one can
compute that, at the tangent bundle, the Riemann curva-
ture tensor for this configuration is constant, and so are
all the curvature invariants. This solution is completely
singularity free. It is a 3D anti —de Sitter space-time
crossed with a Aat circle. Each patch separately is an ex-
tremal black string of (26), as shown in the 3D case by
Horne and Horowitz [15]. Then, to patch up the solu-
tions, one can identify 0— with the physical spatial
infinities and ~ with the outer and inner horizons and
interpolate between them with a Bianchi type-I universe.
This, in fact, again corresponds to an analytically
continued coordinate transformation. So, start with

p =go coth(gor ) and rewrite the solution as
1/2

ds = — — [(p —go)dt (p+go)dz ]—
d 2 2'+ "P +e "'dy'

2«p —go)(p+go)

, -~pe IQle
"'

(28)

IO

B20 D
4 Q

p.

Notice that the solution suggests that the base space
consists of two identical images p —+ —p, t~z glued to-
gether along the boundary 8 OM. This is a rather awk-
ward situation, in that one can imagine an observer mov-
ing along a radial geodesic who can enter the replica
universe passing through the axis of the string. More can
be learned from the study of radial geodesics. The geo-
desic equations can be easily integrated to yield (discard-
ing the fiat direction P)

P go

Lz'=
P+go

' (29)

p'=N(p go )(p—+g 0)

+2+2/3
l Q l« "'(p —go)(p+go )

K L
P go P+go

Here, and in Eq. (30), the prime denotes a derivative
with respect to the affine parameter. This states that no
matter where the observer starts from, he or she never
stops moving in the radial direction when p~go, unless
K =0. In other words, the point go represents a classical
turning point where kinetic energy vanishes and motion
ceases, only when the time coordinate exterior to the hor-
izon is constant during the motion. However, this in turn
implys that the geodesic is spacelike, and hence physical
motion along it is impossible anyways. Similar analysis is
valid for the inner horizon, too. The only difference is
that here, in principle, L can be set equal to zero as a
physical initial condition, and so it would appear in the
original coordinates that, at least for this case, the inner
horizon can not be crossed. However, the simple trans-
forrnation of coordinates x =p+go confirms the naive
expectation that the passage may be possible. Then,

4~' =N(x —2go)+2&2/3 Q 1« 'E (30)

' 1/2
3 e dt —dz

ds
2 Q r

2Asinh r
(31)

and therefore the observer, very slowly, and never pass-
ing —

go in the original coordinates, can cross the inner
horizon, too. Thus, it appears that the observer can trav-
el all the way past, squeezing through the origin into the
region p(0 and eventually reenter the copy universe. A
similar tour through the black-hole interior was investi-
gated by Horne and Horowitz in three dimensions [15],
with the difference that their observer had only one hor-
izon to cross. That would correspond to our case when

go =0.
If o =1, then both "spatial infinities" turn out to be

singular, unless go =1 (by the already-mentioned asymp-
totic behavior of the square of Riemann tensor). If
go2 = 1(fo= F, =0), the metric is the same as (27) with
3 =B=O:
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where both +~ are again singular. Consequently, the
patches ( —oc, 0) and (0, oc ) both contain naked singular-
ities. However, the situation here more resembles the
Harari and Polychronakos solution [7], with an addition-
al bonus that it now possesses manifest boost invariance
in the t, z plane. Namely, with a coordinate transforma-
tion p=e", the solution can be rewritten as

1/2
3 e ' dt —dz

ds
2 Q lnp

2d2dP + 2'Io 2dp2 (32)
A(p —1 )

and here the horizon is located at p=1. Still, because of
the presence of the logarithm in the metric, the solution
is singular at both the origin and infinity. The singularity
at infinity should not come as a surprise, since, as argued
in the preceding section, the metric above has the
(quasi-)Newtonian limit and the singularity at ao can be
understood as the standard infrared divergence.

For all other solutions, the "spatial infinities" are
singular, as can be seen from investigating the curvature
invariants. Hence, they all contain naked singularities.

Therefore, it has been demonstrated that the WZWN
o. model construction of Raiten is the unique axionically
charged cylindrically symmetric target space of the 4D
supergravity multiplet in string theory with a central
charge deficit, which does not have naked singularities,
i.e., obeys cosmic censorship. The other soluton, which
was found to be free of naked singularities, represents an
entire space-time without singularities but with horizons.
It corresponds to an extremal black-string solution. It
can be extended by gluing an identical copy resulting in a
total space-time where the observer can travel from one
region into the other.

In a sense, this result could be dubbed the no-hair
theorem for black strings, saying that the strings are de-
scribed by their mass, axion charge, and external dilaton
hair, and that they develop well-behaved horizons. We
will not dwell here on the global properties of this solu-
tion, as it has already been studied [15,16]. We remark,
however, that in order to obtain the full picture about the
global properties of the solution, one should study geo-
desics of conformal transforms of the world sheet metric.
They describe the motion of particles with different con-
formal charges (scaling dimensions) and thus couple
differently to the dilaton [23]. The solution (28) is thence
standing out as the motion of the probes in it is universal,
irrespective of the nature of test particles, due to the con-
stancy of the dilaton.

The string-theory targets with no central charge deficit
are analyzed in exactly the same way. The task is much
easier here, though. Repeating the study of the singulari-
ty structure of the solution (22) along the lines outlined
above, one can easily verify that none of these solutions
contain a point equivalent to r, and contain a singulari-
ty at the equivalent of r, . Furthermore, the "spatial
infinities" there are also singular. Thus, every such solu-
tion involves naked singularities. So there are no black
strings among the string-theory target spaces that bear no
central charge.

SUMMARY

Studies of the nonperturbative aspects of string theory
have recently produced novel, unorthodox solutions to
the effective theory, which appear to bear resemblance to
the conventional black holes. They involve nontrivial
causal structure of the space-time, and feature horizons.
Here general solutions of the 4D effective theory for the
supergravity multiplet with cylindrically symmetric tar-
get spaces have been studied. It was found that the only
solutions consistent with the (hoped for) cosmic censor-
ship are indeed the gauged WZWN o. models. These
solutions are just the 3D black hole of Horne and
Horowitz, crossed with a circle, which is necessary to
carry the axion charge. In four dimensions it is given by
an integral of a one-form, and the subspace over which
the integration is performed must be compact to give rise
to a finite charge. They appear to be the unique space-
time configurations, which give rise to event horizons and
thus in a sense justify the trust of representing universal
theories that may be used to describe the string-theory
ground states.

These solutions may also have relevance in cosmology,
as it is well known that there is a simple relationship be-
tween static axially symmetric geometries and Bianchi
type-I anisotropic universes. In that case, the axion
charge could be interpreted as a homogeneous distribu-
tion of axion condenstate in the Universe, regardless of
whether or not the Universe had a compactified direc-
tion. Some similar solutions were considered recently by
Tseytlin [24].
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