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van Vleck determinants: Geodesic focusing in Lorentzian spacetimes
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The van Vleck determinant is a ubiquitous object, arising in many physically interesting situations
such as (1) WKB approximations to quantum time evolution operators and Green functions, (2)
adiabatic approximations to heat kernels, (3) one-loop approximations to functional integrals, (4)
the theory of caustics in geometrical optics and ultrasonics, and (5) the focusing and defocusing of
geodesic flows in Riemannian manifolds. While all of these topics are interrelated, the present paper
is particularly concerned with the last case and presents extensive theoretical developments that
aid in the computation of the van Vleck determinant associated with geodesic flows in Lorentzian
spacetimes. A fortiorithese d. evelopments have important implications for the entire array of topics
indicated.
PACS number(s): 04.20.Cv, 04.60.+n.

I. INTRODUCTION

The van Vleck determinant is a truly ubiquitous object
in mathematical physics. Introduced by van Vleck in
1928 [1], it was first utilized in elucidating the nature
of the classical limit of quantum mechanics via WKB
techniques. Further developments were due to Morette
[2]. A nice discussion of this original line of development
can be found in Pauli's lecture notes [3].

In a difFerent vein, DeWitt [4—7] and others have
developed extensive and powerful adiabatic expansion
methods for approximating quantum Green functions in
Lorentzian and Riemannian manifolds. Textbook discus-
sions may be found in Birrell and Davies [8] and Fulling
[91

By extension, these adiabatic techniques lead to power-
ful point-splitting techniques. These techniques are use-
ful, for example, for estimating the vacuum expectation
value of the renormalized stress-energy tensor of a quan-
tum field propagating on a Lorentzian spacetime. As will
soon be apparent, in this particular context the van Vleck
determinant is essentially a measure of the tidal focusing
and/or defocusing of geodesic flows in spacetime.

This paper will develop several formal techniques for
getting a handle on the van Vleck determinant. The evo-
lution of the van Vleck determinant as one moves along
a geodesic will be explicitly evaluated in terms of the
expansion of the geodesic How. The relationship with
the (spacelike, lightlike, or timelike) versions of the Ray-
chaudhuri equation is thus made manifest. Constraints,
such as the weak energy condition (WEC), are then used
to develop powerful inequalities limiting the behavior of
the van Vleck determinant. The evolution of the van
Vleck determinant is then reformulated in terms of tidal
effects —the evolution of a set of Jacobi fields under the
inHuence of the full Riemann tensor. A formal solution to
the resulting integral equation is presented. Using these

formal techniques, a weak-Beld approximation is devel-
oped. This weak-Beld approximation will be seen to de-
pend only on the Ricci tensor of spacetime. In a similar
vein, a short distance approximation is developed. Fi-
nally, an asymptotic estimate is provided of the behavior
of the determinant as one moves out to infinity.

The physical problem that originally stimulated my
interest in these investigations was Hawking s chronol-
ogy protection conjecture [10, 11]. That conjecture led
to several different computations of the vacuum expec-
tation value of the renormalized stress-energy tensor for
quantum fields propagating in spacetimes on the verge of
violating chronology protection [12—15]. The van Vleck
determinant is an overall prefactor occurring in all those
computations. Another paper, currently in preparation,
will discuss the application of these techniques to worm-
hole spacetimes.

It is nevertheless true that much of the mathematical
machinery developed in this paper has a considerably
wider arena of applicability. Accordingly, some effort will
be made to keep the discussion as general as reasonably
possible.

¹tation. Adopt units where c:—1, but all other
quantities retain their usual dimensionalities. In partic-
ular G = h/mz ——EP/h. The metric signature is taken
to be (—,+, , +). General conventions follow Misner,
Thorne, and Wheeler [16].

II. THE VAN VLECK DETERMINANT

A. General definition

Consider an arbitrary mechanical system, of n degrees
of freedom, governed by a Lagrangian 8(q, q). Solve the
equations of motion to find the (possibly not unique)
path p passing through the points (q, , t, ) and (qf tf).
Then calculate the action of that path

S~( ;q, t, ;q ft )f=— l:(q, q)dt

*Electronic address: visserkiwi. wustl. edu The van Vleck determinant is then defined as
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(qflexp( —iH(ty —t, )/h)l q) =

(2vrih, )
"~ ) 6 (q, , t, ;qf, ty)

x exp(+iS~(q, , t, ; qf, tf )/h, ).
In the particular case of a geodesic Bow on a Lorentzian
or Riemannian manifold the appropriate action to be in-
serted in this definition is the geodetic interval between
a pair of points.

B. Geodetic interva1

Consider a Lorentzian spacetime of total dimensional-
ity d+ 1. That is, d space dimensions, 1 time dimension.
With appropriate changes, these results apply also to a
Riemannian manifold of total dimensionality d+1. To go
from the Lorentzian to the Riemannian case the only sig-
nificant change is that one should forget all the subtleties
associated with lightlike (null) geodesics.

The geodetic interval may be defined by

1
o&(x, y) —= +2[s&(x y)j'. (4)

Here we take the upper (+) sign if the geodesic p from
the point x to the point y is spacelike. We take the lower

(—) sign if this geodesic p is timelike. In either case we
define the geodesic distance s~(x, y) to be positive semi-
definite.

Note that, provided the geodesic from x to y is not
lightlike,

7'*„o.~(x, y) = +s~(x, y) V'*s~(x, y),
=+s~(x, y) t„(x;p; x ~ y),

(5)
(6)

Here Y'(z; p; z ~ y) = kg~" T*„s~(x,y) denotes the unit
tangent vector at the point x pointing along the geodesic

p away from the point y. When no confusion results we
may abbreviate this by t"(x ~ y) or even Y(x).

If the geodesic from x to y is lightlike things are some-
what messier. One easily sees that for lightlike geodesics
T„o~(x,y) is a null vector. To proceed further one must
introduce a canonical observer, described by a unit time-
like vector V& at the point x. By parallel transporting
this canonical observer along the geodesic one can set up
a canonical frame that picks out a particular canonical
afBne parameter:

V'„*o ~ (x, y) = +(~(x, y) t„(x;p; x ~ y),
t„(x;p; x ~ y) V" = —1,
(,~(x, y) = —V"7'* o.~(x, y).

(8)
(9)

(10)

O~S t. t
Ke(q;, e;;qg, tg) = (

—1) det " " ' ). (2)
Bq, Bqf

The van Vleck determinant, in this original incarna-
tion, occurs as a prefactor in the WKB approximation
to the quantum time evolution operator [1—3j. In the
Schrodinger picture

Note that this affine parameter ( can, crudely, be thought
of as a distance along the null geodesic as measured by
an observer with four-velocity V". By combining the null
vector t~ with the timelike vector V", one can construct
a second canonical null vector: m~—:2V" —t~. A quick
calculation shows

1
V'„*(~(x, y) = ——m„(x; p; x ~ y),

m„(x) V" = —1;
t„(x) m„(x) = -2.

(12)
(13)

Unfortunately, while spacelike and timelike geodesics can
be treated in a unified formalism as alluded to above, the
subtleties involved with lightlike geodesics will require
the presentation of several tedious variations on the gen-
eral analysis.

C. Specific definition: Geodesic flow

& ( )=+[— ( )j"
g(x)y(y)

=+[-s&(x y)j" J~(x y) (17)

If the points x and y are lightlike separated then the
two trivial zeros arise from the fact that the tangent vec-

Consider geodesic Bow in a Lorentzian spacetime. In
the present context the (scalarized) van Vleck determi-
nant is defined by

A~(x, y
—= —1 " " . (14)

„det{7'„*9''(ro~ (x, y) )
a(x)~(y)

This definition has a nice interpretation in terms of the
3acobian associated with the change of variables from
(x, t) to (x, y). One may specify a geodesic either by
(a) specifying a single point x on the geodesic and the
tangent vector t at that point, or by (b) specifying two
separate points (x, y) on the geodesic. The (scalarized)
Jacobian associated with this change of variables is

det (8(x, t)/B(x, y)) det' (Bt/Oy)

gy(x)~(y) V'g(x)e(y)

Here the det' indicates the fact that we should ignore
the known trivial zero eigenvalue(s) in determining this
Jacobian.

If the points x and y are spacelike or timelike sepa-
rated then the one trivial zero arises from the fact that
the tangent vector is normalized, t&t& ——+1, so that
t"( )x'(7t„( )z= 0. To see the connection with the van
Vleck determinant, observe

7'*„'(7"(r~(x,y) = 7'„"[s~(z,y) t„(x;p; x +- y)),
= s~ (x, y) '7 "t„(x;p; z ~ y)

+t (y) t (z). (16)

By adopting suitable coordinates at x, and independently
at y, one can make the tangent vectors t„(x) and t~(y)
both lie in the t direction (if they are timelike) or both
lie in the z direction (if they are spacelike). Then, by
inspection,
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tor l" satisfies two constraints: l&l„= 0, and li'U~ = —1.
Thus both /" (x)V'"t„(x) = 0, and Vi'(x)'((7&t„(x) = 0.
To precisely determine the connection with the van Vleck
determinant requires some subtlety. For a point x close
to, but not quite on, a null geodesic emanating from y
one may usefully decompose the gradient of the geodetic
interval as

&*,o (z y) = +C, (x, y) t, (x;~;x y)
+(~(x, y) m„(x; p; x ~ y). (18)

Here ( and ( are to be thought of as curvilinear null
coordinates. They are the curved space generalizations
of (t 6 x)/2. One is now in a position to calculate

&~&"&~(»y) =&" [('(z y) 4(x ~ y)+((z y) m~(x ~ y)],
j. 1= ('(x y) &"4(x &'z y) + 4(» y) ™)(z"Y z ~ y) ——m (y) ti (x) ——t (y) m/ (z) (19)

Now go to the light cone, by setting ( = 0. By adopt-
ing suitable coordinates at z one can arrange: l„(z) =
(1, 1, 0, 0) and m„(z) = (1, —1, 0, 0). Independently, one
can arrange the same to be true at y. Finally, careful
inspection of the above reveals

( ) ( 1)d[ ( )](d 1) e ( —v P(zi 1(x y)k

V'g(x)g(y)

=(—1)"X~(x y)]'" "~~(x y) (20)

D. Elementary results

o~(x, y) = —g~ 7'*„sr~(x, y) 7'*o~(x, y). (22)

Repeated differentiations and contractions result in [4—7]

'(v'" 4~(x, y) 7'~o~(x, y) = (d+1)d~(x, y). (23)

Assuming that x and y are either timelike separated or
spacelike separated, this may be rewritten as

&.' [& (* y) ( y) t ( )] = (d + 1)& ( y)

Use of the Leibnitz rule leads to

(24)

sp(x y) tv(x) &."&p(z y) + 4(x) t"(z) &~(x y)

+s~(x, y) A~ (x, y) 9'"t„(x)
= (d+1)&~(x y) (»)

One notes that ti'(x) defines a normalized spacelike or
timelike vector field. Thus

t (z) &."&.(z y) = —[&."t (z)] &,(x, y)
(

(26)

Now define A~(s) to be the van Vleck determinant cal-
culated at a proper distance s along the geodesic p in the
direction away from y and towards x. Note the boundary

In view of the equation

'V„*o~(x,y) = s~(x, y) t„(z;p; x ~ y),

one has as an exact result (valid also on the light cone)

condition that A~(s = 0) = 1; and define

t~(x)T*„f =——.
ds (27)

Here the integration is to be taken along the geodesic p
from the point y to the point x. The interpretation of
this result is straightforward: take a geodesic spray of
trajectories emanating from the point y. If they were
propagating in flat space, then after a proper distance
s the (relative) transverse density of trajectories would
have fallen to s ". Since they are not propagating in
flat spacetime the actual (relative) transverse density of
trajectories is given by the exponential of minus the inte-
grated expansion. The van Vleck determinant is then the
ratio between the actual density of trajectories and the
anticipated flat space result. Note that by explicit calcu-
lation, the van Vleck determinant is completely symmet-
ric in 2: and y.

An analogous development holds if the points x and
y are connected by a null geodesic. The details are, as
one has by now grown to expect, somewhat tedious. One
returns to Eq. (23) and uses Eq. (18) to derive

&". [&9(x y)(& 4(x)+ 4 mp(x))] = (d+1)&9(x y)

(30)

Use of the Leibnitz rule, followed by the limit ( —+ 0, now
leads to

( l„(x) '7 "A~(x, y) —l„(x) m" (x) A~(x, y)

+( &~(z y) 7."4(z) = (d+1)&&(z y) (»)

One finally obtains a first-order differential equation gov-
erning the evolution of the van Vleck determinant:

dA~ (s) fd'
ds is

Here 8 is the expansion of the geodesic spray defined by
the integral curves of Y'(x), that is, 6) —= 7'„t" Direct.
integration yields

4 (z, y) = s (T, y) exp
~

— 8ds) .
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One recalls that, by definition, t& (x)ni&(x) = —2. Adopt-
ing suitable definitions, analogous to the non-null case,
one derives

dK~(() (d —1

)

like) convergence condition then one has the inequality

(35)

This inequality is immediately integrable:

Direct integration yields
1 1 8

~( ) e(0)
(36)

&&(x, y) = C&(x, y)" 'exp I—
)

In particular, note that while the affine parameter (, and
the expansion 8—:T„t" both depend on the canonical
observer V", the overall combination is independent of
this choice. The appearance of the exponent d —1 for
null geodesics, as contrasted with the exponent d for
spacelike or timelike geodesics might at first be some-
what surprising. The ultimate reason for this is that in
(d + 1)-dimensional spacetime the set of null geodesics
emanating from a point x sweeps out a d-dimensional
submanifold. As one moves away from x an affine dis-
tance g into this submanifold the relative density of null
geodesics falls as (i ". In (3+ 1)-dimensional spacetime,
this is just the inverse square law for luminosity.

Equation (32) above should be compared with Eq. (22)
of Kim and Thorne [12]. The typographical error in that
equation (the 3 should be a 2) fortunately does not prop-
agate into the rest of their paper. The virtue of this
tedious but elementary analysis is that one now has a
unified framework applicable in all generality to cases of
timelike, lightlike, or spacelike separated points x and y.

—= —(R„ l"l ) —2o.
ae . , e'
d( " d —1' (38)

See Eq. (4.35) of Hawking and Ellis [17). If the space-
time now satisfies the null convergence condition one can
deduce the inequality

d6I t92

d( d —1
(39)

For the geodesic spray under consideration, one has
g(s) ~ d/s as s ~ 0. Therefore [1/8(0)] = 0. One
has thus derived an inequality, valid for geodesic sprays,
under the assumed convergence conditions

d
9(s) &+—.

S

This implies that the van Vleck determinant is a mono-
tonic function of arc length, dE/ds & 0, and immedi-
ately integrates to an inequality on the determinant itself
&~(x y) & l.

For null geodesic fiows the Raychaudhuri equation be-
comes

E. Inequalities

Now that one has these general formulas for the van
Vleck determinant, powerful inequalities can be derived
by applying the Raychaudhuri equation and imposing
suitable convergence conditions. Restricting attention to
vorticity free (spacelike or timelike) geodesic fiows the
Raychaudhuri equation particularizes to

For a concrete textbook reference, this is a special case
of Eq. (4.26) of Hawking and Ellis [17], generalized to
arbitrary dimensionality. While Hawking and Ellis are
discussing timelike geodesics, the choice of notation in
this paper guarantees that the discussion can be carried
over to spacelike geodesics without alteration. The quan-
tity o. denotes the shear of the geodesic congruence, and
o. is guaranteed to be positive semidefinite.

Definition. A Lorentzian spacetime is said to sat-
isfy the (timelike, null, or spacelike) convergence con-
dition if for all (timelike, null, or spacelike) vectors t":
(R~ t"t ) & 0.

Definition. A Riemannian manifold is said to pos-
sess semipositive Ricci curvature if for all vectors tj":
(A~ t"t") & 0.

If the points x and y are (timelike or spacelike) sepa-
rated, and the spacetime satisfies the (timelike or space-

Upon integration, and use of the relevant boundary con-
dition, one derives in a straightforward manner the in-
equality

e(r) & + (40)

which implies that the van Vleck determinant is a mono-
tonic function of the null affine parameter, d4/d( ) 0,
and immediately integrates to an inequality on the de-
terminant itself A~(x, y) & l. One is now in a position
to enunciate the following results.

Th, eorem. In any Lorentzian spacetime, if the points
x and y are (timelike, null, or spacelike) separated, and
the spacetime satisfies the (timelike, null, or spacelike)
convergence condition, then the van Vleck determinant is
a monotonic function of affine parameter and is bounded
from below: A~(x, y) & l.

Theorem. In any Riemannian manifold of semipositive
Ricci curvature, the van Vleck determinant is a mono-
tonic function of an affine parameter and is bounded from
below: 6~(x, y) & 1.

To see the physical import of the (timelike, null,
or spacelike) convergence conditions, consider a type-
I stress-energy tensor. The cosmological constant, if
present, is taken to be subsumed into the definition
of the stress energy. Then T„„di g[pa; p, ]„„,where
the p, are the d principal pressures. From the Ein-
stein equations, R„—2'„= 8vrC T„', one deduces
R„4vrG diag[p+ Q, p, ; p+ 2p, —P, p,]„.
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The timelike convergence condition implies: (1) p+
Q p~ & 0; (2) Vi, p+ p, & 0. This is equivalent to the
strong energy condition.

The null convergence condition implies: Vi, p+ p; & 0.
This is a somewhat weaker restriction than the WEC.
(The WEC would require the additional constraint p &
0.)

The spacelike convergence condition implies: (1) Vi, p+
2p, —Q. Ji~ & 0; (2) Vi, p+p, & 0. This is a rather strong
constraint that is not equivalent to any of the standard
energy conditions. Particularize to 3+1 dimensions, then
the constraints (1) can be made more explicit as p+
P1 P2 jP3 + 0 P + P2 P3 dP1 + 0 P + P3 P1
p2 & 0. By adding the first two of these constraints one
may deduce p —p3 & 0. Similarly Vi, p —p, & 0. Thus
the spacelike convergence condition implies the dominant
energy condition, which in turn implies the WEC. The
implication does not hold in the reverse direction. In
particular, for an electromagnetic field of zero Poynting
flux T&„p diag[+1; —1;+1;+1]&. This stress-energy
tensor satisfies the dominant energy condition but not the
spacelike convergence condition. A canonical example
of a stress-energy tensor that does satisfy the spacelike
convergence condition is a perfect fluid that satisfies the
dominant energy condition: p+ p & 0; p —p & 0.

Note that the timelike and spacelike convergence con-
ditions separately imply the null convergence condition.

The physical reason behind the inequality satisfied by
the van Vleck determinant is now manifest: "Ordinary"
matter produces an attractive gravitational fieid. An at-
tractive gravitational field focuses geodesics, so that they
do not spread out as much as they would in flat space.
Then the van Vleck determinant is bounded from below,
and in fact continues to grow as one moves along any
geodesic.

One should note, however, that several interesting
classes of spacetimes violate one or more of these con-
vergence conditions. This makes the inequalities de-
rived here somewhat less useful than they might oth-
erwise be, and suggests that it would be useful to ex-
plore the possibility of deriving more general inequalities
based on weaker energy conditions. For example, space-
times containing the interesting class of objects known as
traversable wormholes violate all three of these conver-
gence conditions [18, 19]. Indeed in that particular class
of spacetimes the required presence of "exotic" matter
leads to van Vleck determinants that are arbitrarily close
to zero [12].

F. Reformulation: Tidal focusing

Direct computations using the preceding results are
unfortunately rather difBcult. To get a better handle on
the van Vleck determinant we shall first apparently make
the problem more complicated by deriving a second-order
differential equation for the van Vleck determinant. By
going to the second-order formalism it is possible to relate
the van Vleck determinant directly to the tidal forces
induced by the full Riemann tensor —more specifically
to the focusing and defocusing effects induced by tidal
forces.

The most direct route to this end is to pick up a stan-
dard reference such as Hawking and Ellis [17]. Equation
(4.20) on page 83 implies that

8ds = lndet[A)'„(s)]. (41)

A(s) —= Pexp (V (3 t)ds (43)

Here the symbol P denotes the path ordering process.
By definition of path ordering,

dA = (V tm t )P exp — (V tp t )de j.
d8

(44)

On the other hand, A(0) = I. Comparison with Eq.
(4.10) of Hawking and Ellis now shows that A(s)
A(s)" o)& dx . Finally note that

det A = exp tr(W tt t)ds j = expI 8 ds j. (45)

This reformulates the van Vleck determinant in terms of
a path ordered exponential

A~(z, y) = s~(x, y)" det P exp — (V (3 t )ds

(46)

This observation serves to illustrate formal similarities
(and differences) between the van Vleck determinant and
the Wilson loop variables of gauge theories.

By taking a double derivative with respect to arc
length the matrix A(s) may be shown to satisfy the
second-order differential equation

„,A~. (s) = —(R& .iit ti') A .. (47)

See Hawking and Ellis [17],Eq. (4.21) on page 83, partic-
ularized to a geodesic flow. The boundary condition on
A(s) is that A"„(s) t sb" as s —+ 0, this being the flat
space result for a geodesic spray. This is the promised
tidal formulation for the van Vleck determinant.

Here A)'~(s) is the d x d matrix describing the evolu-
tion of the separation of infinitesimally nearby geodesies.
This formalism may also be reformulated in terms of the
Jacobi fields associated with the geodesic p. Note that
the d x d matrix A" (s) may equivalently be thought of
as a (d+ 1) x (d+ 1) matrix that is trivial in the extra
entries: A~~+il = Ad s. In terms of A,

A~(x, y) = s~(x, y)" det(A„') = det (s~(x, y)A '),
(42)

where the last determinant can be taken in the sense of
either a d x d or a (d + 1) x (d + 1) matrix.

An alternative, more explicit, but also more tedious
route to establishing the preceding equation is to define
the object
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A particularly pleasant feature of the tidal reformu-
lation is that the case of null geodesics can be handled
without too much special case fiddling. The analogue of
the tidal equation is

concentrated on thin shells [20—22]. In that case the ma-
trix [Q" (s)] is described by a series of 6 functions. Be-
cause of the presence of the Heaviside step function, the
formal expansion terminates in a finite number of steps

A~ (s) = —(R" p l l~) A (48)
A = (I + [GRQ] + [GRQ]' + . + [GRQ] ) (sI). (56)

See Hawking and Ellis [17], Eq. (4.33) on page 88. Note
that two of the eigenvectors of A suffer trivial evolution.
This is a consequence of the two normalization conditions
on the null tangent vector. Thus A ean be thought of as
either a (d+ 1) x (d+ 1) matrix with two trivial entries,
or as a reduced (d —1) x (d —1) matrix. The formulations
are related by Ai~+ql = A~~ ql g3 gI2. Other results can
be simply transcribed as needed.

C. Reformulation: Formal solution

To solve the above differential equation (in a formal
sense), introduce the one-dimensional retarded Green
function

GR(sy, s, ) = (sy —s, )O(sy —s,). (49)

Q~.(s) = —(R& .Zt t~). (5o)

Integration of the second-order "tidal" equation for
A~, with attention to the imposed boundary condition,
leads to the integral equation

Here O(s) denotes the Heaviside step function. For no-
tational convenience define

Here N denotes the total number of shell crossings. This
type of calculation will be explored in considerable detail
in a subsequent publication [?]. For the time being, one
may observe from the above, that when the Riemann
curvature is concentrated on thin shells, the matrix A is a
piecewise linear continuous matrix function of arc length.
Consequently the reciprocal of the van Vleck determinant
A~(s) = det(A/s) is piecewise a Laurent polynomial
in arc length.

H. Weak-field approximation

A~(s) ' = det(s 'A),
=exp[trln(s '(I —GRQ) 's)],
= exp [tr ln(I + s [GRQ]s

+s '[GRQ] s+ )],
= exp (tr(s '[GRQ]s + O(Q ))). (57)

Now, recall that the determinant and trace in these for-
rnulas are to be taken in the sense of (d + 1) x (d + 1)
matrices, so, in terms of the Ricci tensor,

These formal manipulations permit the derivation of
a very nice weak-field approximation to the van Vleck
determinant. Observe

A~ (s) = s6"„+ GR(s, s')Q" (s')A (s')ds'. (51)
tr[Q] = —(R Zt t~) (58)

More formally, one may suppress the explicit integration
by regarding GR(s, s'), multiplication by Q(s), and mul-
tiplication by s, as functional operators. Then

The tr[O(Q )] terms involve messy contractions depend-
ing quadratically on the Riemann tensor. In a weak-Beld
approximation one may neglect these higher-order terms
and write

(52)(I —GRQ)A = (sI).
This has the formal solution

A = (I —GRQ) (sI)
= (I+ [GRQ]+ [GRQ] + ) (sI). (53)

This formal solution may also be derived directly from
Eq. (51) by continued iteration. To understand what
these symbols mean, note that

More explicitly

(GRtrlQ])s+ O(Q')).

+O([Riemann] )

S

A~(z, y) = exp — (s —s')(B pt t~)s'ds'
s

(59)

(6O)

(s —s ) [Q (s )]s "s

Similarly

[GRQ] (sI) = ds' ds" (s —s')

[GRQ](sI) = GR(s, s') [Q" (s')]s'ds'

(54)

This approximation, though valid only for weak fields,
has a very nice physical interpretation. The implications
of constraints such as the (timelike, null, or spacelike)
convergence conditions can now be read off by inspection.

Another nice feature of the weak-field approximation
is that the results for null geodesics can also be read off
by inspection:

s' s' —s"
x [Q (s")]s". (55)

The formal solution in terms of continued iteration is
particularly advantageous in the case where matter is

A~(x, y) = exp — (( —(')(Q &1 1~)('d('

+O([Riemann] ) (61)
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Consider, for example, the effect of a thin perfect fluid
in an almost flat background geometry. The Ricci tensor
is related to the density and pressure via the Einstein
equations, with the result that, for a null geodesic,

(62)

Unsurprisingly, one sees that energy density and/or pres-
sure located at the hal&vay point of the null geodesic is
most effective in terms of focusing.

I. Short distance approximation

Another result readily derivable from the formal so-
lution (53) is a short distance approximation. Assume
that x and y are close to each other, so that s~(x, y) is
small. Assume that the Riemann tensor does not Huc-
tuate wildly along the geodesic p. Then one may ap-
proximate the Ricci tensor by a constant, and explicitly
perform the integration over are length, keeping only the
lowest order term in s~(x, y):

Z,(,y) =1+- (B.~t ts).,(,y)'+O(.,(,y)').

(63)

This result can also be derived via a tedious combination
of index manipulations and point-splitting techniques [4],
see Eq. (1.76) on page 233.

By adopting Gaussian normal coordinates at x one
may write s~(x, y) t„(x;p;x ~ y) = (2' —y)" + O[s ]
to yield

&,(~, y) =1+ [& p(*-y)-(~-y)']
6

+o(s (~ y) ). (64)

In this form the result is blatantly applicable to null
geodesics without further difficulty.

J. Asymptotics

To proceed beyond the weak-Field approximation, con-
sider an arbitrarily strong gravitational source in an
asymptotically Bat spacetime. Let the point y lie any-
where in the spacetirne, possibly deep within the strongly
gravitating region. Consider an otherwise arbitrary
spacelike or timelike geodesic that reaches and remains
in the asymptotically Bat region.

Far from the source the metric is approximately Qat
and the Riemann tensor is of order O[M/r ]. Using the
tidal evolution equation, a double integration with re-
spect to arc length provides the estimate

A" (s) = (Ap)" + s(Bp)"„+O[M/s),

this estimate being valid for large values of s, where
one is in the asymptotically flat region. Here (Ap) and
(Bp) are constants that efFectively summarize gross fea-
tures of the otherwise messy strongly interacting region.
For the van Vleck determinant A~(s) i = det(A/s} =
det(Bp + (Ap/s) + O[1/s2]). Thus the van Vleck de-
terminant approaches a finite limit at spatial or tempo-
ral infinity, with A~(oo) = det(Bp) F. inally, defineJ = (Bp) '(Ap), to obtain

(
A~(oo)

det(I+ (2/s) + O[l/s2])' (66)

which is our desired asymptotic estimate of the van Vleck
determinant.

III. DISCUSSION
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This paper has presented a number of formal devel-
opments with regard to evaluating the van Vleck deter-
minant. The evolution of the van Vleck determinant as
one moves along a geodesic has been studied in some de-
tail. By utilizing the Raychaudhuri equation stringent
limits have been placed on this evolution. There is some
hope that it might be possible to formulate more general
theorems requiring weaker convergence hypotheses than
those discussed in this paper. The evolution of the van
Vleck determinant has also been reformulated in terms
of tidal effects. Such a presentation has several technical
advantages. Among other things, the presentation man-
ifests the influence of the full Riemann tensor. A formal
solution to the resulting integral equation was presented.
This formal solution in terms of an iterated integral equa-
tion has the very nice property of terminating in a finite
number of steps if the curvature is confined to thin shells.
Using these formal techniques, a weak-field approxima-
tion was also developed. This weak-field approximation
depends only on the Ricci tensor. In a similar vein, a
short distance approximation was developed. Finally, the
asymptotic behavior at infinity was investigated. The
mathematical machinery developed in this paper has a
wide arena of applicability. Accordingly, some effort has
been made to keep the discussion as general as reasonably
possible.

Stimulated by Hawking's chronology protection conjec-
ture [10,11],a subsequent paper will present applications
of this machinery to spacetimes containing traversable
wormholes.
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