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Cosmic strings and chronology protection
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A space consisting of two rapidly moving cosmic strings has recently been constructed by Gott that
contains closed timelike curves. The global structure of this space is analyzed and it is found that,
away from the strings, the space is identical to a generalized Misner space. The vacuum expectation
value of the energy-momentum tensor for a conformally coupled scalar field is calculated on this
generalized Misner space. It is found to diverge very weakly on the chronology horizon, but more
strongly on the polarized hypersurfaces. The divergence on the polarized hypersurfaces is strong
enough that when the proper geodesic interval around any polarized hypersurface is of the order of
the Planck length squared, the perturbation to the metric caused by the back reaction will be of the
order one. Thus we expect the structure of the space will be radically altered by the back reaction
before quantum gravitational efFects become important. This suggests that Hawking's "chronology
protection conjecture" holds for spaces with a noncompactly generated chronology horizon.

PACS number(s): 04.20.Cv, 98.80.Cv

I. INTRODUCTION

It has long been known that changes of spatial topology
give rise to either singularities or closed timelike curves
[1]. It was therefore not too surprising, with hindsight,
when several topologically nontrivial spaces were recently
constructed that generically contained closed timelike
curves [2—4]. These spaces were formed by removing
two spheres from a spacetime and then joining the re-
sulting holes together by a cylinder to form a "worm-
hole. " It was found that if one of the wormhole mouths
was in a generic gravitational field, or if the wormhole
mouths were in generic relative motion, then closed time-
like curves would form. One of the major drawbacks of
these spaces, however, is that they are not vacuum so-
lutions of Einstein's equations, and the matter required
to maintain the spaces must violate an averaged form of
the weak energy condition [3].

A simpler space with closed timelike curves has now
been constructed by Gott [5]. Gott's space just contains
two cosmic strings moving past each other at high veloc-
ity. The space is locally flat away from the strings, so
there is no violation of the weak energy condition, and
the topology is just B .

Gott's space, however, has other drawbacks. It was
shown in [6] that Gott's space could not develop from
regular initial data posed on a Cauchy surface. It was
also pointed out that Gott's space, away from the strings,
was related to Misner space. (This was a consequence of
the point made in [7] that closed timelike curves could
form around a rotating string. )
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The aim of the present paper is to study the quan-
tum mechanical stability of the Gott spacetime. We con-
sider putting a conformally coupled scalar field into the
Gott space background and calculate the vacuum expec-
tation value of its energy-momentum tensor. Early cal-
culations of such quantities in spaces with closed time-
like curves [8] suggested that such quantities would di-
verge at the chronology horizon (the boundary of the
region containing closed timelike curves). It was then
shown in [9] that in any spacetime with closed timelike
curves, the chronology horizon is the limiting surface of
a family of polarized hypersurfaces, and that the energy-
momentum tensor of the field will diverge on all of the
polarized hypersurfaces (see also [10] for a specific ex-
ample). This means that in any space with closed time-
like curves there will be surfaces arbitrarily close to the
chronology horizon where the energy-momentum tensor
is divergent. If this divergent energy-momentum tensor
is now used as a source term in the semiclassical Einstein
equations, R b

—2Rg b = 8vrlp(T b), then we expect
the back reaction to radically alter the spacetime around
the chronology horizon, and to stop us from reaching the
causality-violating region.

In Gott's space, we find that the divergence of the
energy-momentum tensor is very weak at the chronol-
ogy horizon. The perturbation of the metric due to the
back reaction of this divergence would be unobservable
even when we are a Planck length /~ from the chronol-
ogy horizon. However, the divergence is stronger as we
approach the polarized hypersurfaces. Here we And that
when the proper geodesic distance squared around any
polarized hypersurface o.„for some integer n is of order
l&, .then the metric perturbation is of order 1. This will
radically alter the structure of the spacetime, and sug-
gests that Hawking's "chronology protection conjecture, "
originally only meant to apply to spaces with compactly
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generated chronology horizons, will also apply in the non-
compactly generated case.

We begin in Sec. II with a brief review of the Gott
construction. Section III is devoted to an analysis of the
space s geometrical properties. Here, in the spirit of [7],
we give a more explicit derivation of a result alluded to in
[6], that far away from the strings, Gott's space is identi-
cal to a generalized Misner universe, the relevant proper-
ties of which are then reviewed. In Sec. IV, we calculate
the vacuum expectation value of the energy-momentum
tensor for a conformally coupled scalar Beld on this gen-
eralized Misner space. In Sec. V we discuss these results
and their implications for Hawking's "chronology protec-
tion conjecture. "

Identify

Identify

MX

II. GOTT'S COSMIC STRING SPACETIME FIG. 2. Gott's spacetime.

We consider a space containing an infinitely long,
straight cosmic string. This can be viewed as flat
Minkowski space with a wedge of angle 2a cut out along
the axis of the string. We can choose Minkowski coordi-
nates (t, x, y, z) and place the core of the string on the
line x = 0, y = d, with z as the coordinate along the axis
of the string. We remove the wedge from the space so
that points with x = + (y —d) tan o. are identified (see
Fig. 1).

Suppose we now consider two points A and B at rest
on the surface y = 0, where xg = (t, x0, 0, 0), xg =
(t, —xo, 0, 0). There are now two paths that a light signal
sent from A could follow to arrive at B. The first would
be the direct path AOB. If xo is big enough, then there is
an alternative path ACDB that goes around the cosmic
string, making use of the angular deficit. If xo tan o. )) d,
then this second light ray will arrive at B before the direct
one.

If a light beam traveling around the cosmic string can
arrive before the light beam passing through 0, then so
can a rocket traveling at sufBciently high velocity. The
event of the rocket leaving A, x;, and arriving at B, xt,
will be spacelike separated, since the light ray traveling
along y = 0 arrives at B after event xy. Hence we can find
a Lorentz frame, in which the string moves at velocity v
in the +x direction, in which the events x, and xf are
simultaneous; i.e. , the rocket is seen to arrive at point B
at the same time as it left point A.

We can take two copies of the above space and glue
them together along their y = 0 surfaces. We boost the
region y ) 0 at velocity v in the +x direction, and the re-
gion y & 0 at velocity v in the —x direction. Physically, if
we are in the center-of-mass frame, all this means is that
we see two cosmic strings going in opposite directions at
speed v, with impact parameter 2d (see Fig. 2).

The construction above showed that in the center-of-
mass frame, we could see a rocket leaving event x, and
simultaneously arriving at event xf if it followed the path
ACDB. If the rocket then turns around at xf, then by
the same argument it can travel back around the lower
cosmic string by path BEI"A and arrive back at event
x, . We have thus created a closed timelike curve through
event x;.

There is, however, a restriction on the velocity v. It
can be shown [5] that, if xc &) d, then we need

cosh/sino, ) 1

in order to get closed timelike curves, where v = tanh(.
Grand unified theories usually predict o, —10, mean-
ing that v —c (1 —10 ). This may seem rather unreal-
istic, but it is possible that cosmic strings created in the
early universe mould have such high velocities.

III. GEOMETRY OF THE SPACE

Identify

0

FIG. l. One string spacetime.

Following [7], we now look for a more geometrically
transparent representation of the above construction.

If one considers parallel transport of vectors around a
closed curve in a spacetime that includes a cosmic string,
then there is a nontrivial holonomy if the closed curve en-
closes the string. If the string is at rest, this holonomy is
just a rotation through angle 2n, where 2o. is the deficit
angle of the string. If the string is moving at constant
velocity v in the positive 2: direction, then the holonomy
is represented by the matrix B(v) R(2o.) B( v), where—
B(v) is the boost matrix corresponding to velocity v, and
R(2n) is the matri~ corresponding to a rotation through
angle 2o;. In the case of the Gott spacetime, the holon-
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omy matrix for a closed curve around both strings will
be

H(v, n) = [B(—v) A(2n) B(v)] [B(v) R(2n) B(—v)].

(2)

We would like to know if this corresponds to a rotation,
or a boost. Therefore we consider the trace of H, which
will be less than 4 if H corresponds to a rotation and
greater than 4 if H corresponds to a boost. If we take
tanh ( = v, then we find

Tr(H) —4= 8cosh ( (1—cos2n) (sin acosh (—1).

(3)

By (1), the Gott space has closed timelike curves if
sinn cosh/ ) 1, and thus corresponds to a holonomy of
a boost,

The Gott space is flat away from the strings. The
holonomy around a closed curve that encloses both cos-
mic strings is a boost. This suggests that one could view
the region with closed timelike curves as flat Minkowski
space identified under the action of a boost.

The exact identification we require can be found by
tracing a curve in the Gott space that would usually
close up in flat space. This is similar to the ease with
one cosmic string where a curve that would close up in
flat Minkowski space will not close up if the curve goes

around the string. The amount the curve does not close
up by is a rotation about the axis of the string, through
the deficit angle of the string. Therefore in this ease, the
amount that the curve does not close up by is the same
as the holonomy around the string. In general the end
point of the curve will be x' = Hx+ C, where H is the
holonomy around any closed curve enclosing the string,
and C is some constant vector.

Defining the function

b, = cosh (sin a —1,

and expressing the results in terms of the coordinates

1t' = —[tsinhg sinn —ycosn]

——cosh ( sin 2n [4 sin a + (2A + 1) ],

x = x ——cosh( sinn sin 2m (M, + 1) (1+cosh (6),I d 2

1
y' = —[y sinh ( sin n —t cos a],

it is straightforward to show that the components of H
and C are given by

H(n, () =
(1+f(a, ()K

g(~ ()
0
o

g(a, ()4
1+f(~ ()&

0
0

(8)

4dC" = ——sinh ( sin n,

c' = c*' = c"= o. (1o)

Here we have defined the functions

f(o., () = 4 cosh ((1 —cos2a),

4d
b = —

&z
sinh( sinn. (14)

g(a, () = 4 cosh g sin n [cosh g (1 —cos 2n) —1].

(12)

If we assume there are closed timelike curves, then (1)
implies that 4 & 0. If we change to coordinates t =

t', y = h. i y', the metric becomes the fiat space
metric ds = —dt~+dx' +dy +dz . In terms of these
coordinates, the holonomy takes the form of a boost in
the t x' plane with param-eter a given by

cosha = 1 + f(n, () 4,
and the vector C becomes a displacement in the y direc-
tion of distance 5, where

Thus, for any observer that travels around both
strings, the Gott space will be physically indistinguish-
able from fiat space identified under the combined dis-
crete action of a boost in the t-x' plane and a translation
in the y plane (see [6]). (From now on we drop the tildes
and primes on these coordinates. )

This is just a generalization of Misner space [ll,
12]. Here we pick an origin, 0, in flat two-dimensional
Minkowski space, and identify the points A" (x), for all
integers n and x c J (0), where

A" (x) = (t cosh na+ x sinh na, x cosh na+ t sinh na).

Under a Lorentz boost of velocity v = tanh a, the point
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x is carried to the point A(x). Thus, physically, Misner
space corresponds to the bottom quadrant of Minkowski
space identified under the action of a discrete boost.

Introducing coordinates T and X such that t
—T cosh X, x = —T sinh X, the metric becomes ds2 =

dT—+ T dX and the above identified region corre-
sponds to T & 0 with coordinate X having period a. We
can extend this metric through the surface T = 0, where
it becomes degenerate, by introducing coordinates r =
T, u= .X —ln T, giving the metric ds = du & +r du,
which is nondegenerate for all real ~. The region ~ & 0
now contains closed timelike curves, and the surface
7 = 0 contains closed null geodesics. This extended
space corresponds to the bottom and left-hand wedges

of Minkowski space identified under the action of the
boost defined by A above. One can do similar extensions
and consider the whole of the two-dimensional Minkowski

space being identified under this discrete boost. In or-
der for the resulting space to be a manifold, however, we

must delete the origin, O. The resulting manifold is then
a non-HausdorfF manifold and the space is geodesically
incomplete [12].

Two flat dimensions can now be added to the above
space. We then have the freedom to make identifica-
tions in these extra directions. The discussion above sug-

gests that the Gott space is the same as four-dimensional
Minkowski space with the points B"(x) identified, for all

integers n, where

B"(x)—:(t cosh na + x sinh na, x cosh na + t sinh na, y + nb, z),

and a and b are defined by (13) and (14) respectively.
As long as b P 0, no points need be removed from the
space. The resulting manifold is a Hausdorff manifold,
and the space is geodesically complete. The fact that
the Gott space has closed timelike curves at any value
of t [13] is now analogous to the fact that the identified
left- (and right-) hand quadrants of identified Minkowski
space have closed timelike curves at arbitrary values of
the Minkowski coordinate t. Further, the fact that in
Misner space the surfaces ~ = const & 0 are not inter-
sected by any closed timelike curves suggests that there
will exist similar achronal surfaces in the Gott space
which are not on any closed timelike curves [14].

Any point in the covering Minkowski space is null sep-
arated from another copy of the same point if its coordi-
nates satisfy

2 2

x —t
n 6

2 (cosh na —1)
'

Thus every point on this surface can be joined to itself by
a (unique) null geodesic that passes around both strings
n times. Although, in the physical space, the above null

geodesic passes through the same point twice, its tangent
vector differs on these two occasions by the holonorny H".
Following [14] and [9] respectively, we call such lines self
intersecting null geodesics and call the surface defined
by (17) the nth polarized hypersurface. We reserve the
term closed null geodesic for a line whose tangent vector
coincides at the point each time, and thus goes through
the point an infinite number of times.

If we take the limit n —+ oo in (17) then we find that
the chronology horizon is situated at t = +x. This is
a null surface, but unlike in the ordinary Misner space
case it does not contain any closed null geodesics. This
is because any null geodesic in the surface must have y =
const, and so cannot join two identified points. Therefore
the null geodesics that generate the horizon will never
enter and remain within a compact region when followed
backwards in time. So, in the terminology of [15] the
chronology horizon is noncompactly generated.

IV. MATTER FIELDS ON THE SPACE

We here use the results of the preceding sections to
coosider placing quantum mechanical matter into the
Gott space. For simplicity we take a conformally cou-
pled scalar field, and we calculate the vacuum expecta-
tion value of the energy-momentum tensor for this field,
(T b) In a flat. four-dimensional space, the renormalized
propagator of a scalar field is

+oo

G(x, x') =, ) o„(x,x')-',
rb +0

(T,b(x)) lim ) o.„(x,x')

n.+0

(19)

If there is a self-intersecting null geodesic through x,
then one of the o„(x,x) will vanish, and so (T b) will

diverge at x. If one now makes a semiclassical approx-
imation and treats (T~b) as a source term in the Ein-
stein field equations, one might hope that the divergence
of (T b) on the polarized hypersurfaces would induce a
singularity, making these surfaces nontraversable. Since
there are polarized hypersurfaces arbitrarily close to the
chronology horizon, we would therefore hope that these

where o.„(x,x') is the square of the proper geodesic dis-
tance from x to x' along the nth geodesic joining the two
points. To calculate (T~b), we difFerentiate this propa-
gator twice with respect to position and take the limit
x' —+ x (see below). Thus we would expect (T b(x)) to
behave like
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divergences would also make the chronology horizon non-
traversable. This is the basis upon which Hawking put
forward the "chronology protection conjecture" which
states that closed timelike curves cannot be created [15].

In the covering space of Gott space, we begin with the
ordinary Bat space propagator

Go(x, x) = [ (t——t') +(x —x')2
(27r) 2

+(y —y') + (z —z') ] (20)

The renormalized propagator on the identified space-
time is then

+OO

G(x, x') = ) [
—(t —(t'cosh na+ x' sinh na)) + (x —(x' cosh na+ t'sinh na))(2') 2

n+0

+(y —(y + nb)) + (z —z ) ] (21)

This propagator is already symmetric under inter-
change of x and x', so we obtain the renormalized energy-
momentum tensor of the field [16] from

(Tb) = lim[IV Vb —3V Vb —sg bV, V ]G(x,x).

(22)

On carrying out this calculation with the above prop-
agator, one finds that the only nonzero components of
(T~b) are Kt2

6g = " ln(T/b),
g2 (28)

verge like K/b T, where K is a negative constant. We
can estimate the perturbation this will cause in the met-
ric by using it as a source term in the semiclassical Ein-
stein equations, R~b —

2 Rg b = 8vrlz (T b), where l~
is the Planck length. Therefore the perturbation to the
curvature will be of order KLJ2, /b T To find . the metric
perturbation felt by someone travelling along a geodesic
(X, y, z) = const, we have to integrate twice with respect
to T, giving

T 1 . coshna+ 2

3&2 ~ f2n=l n

1 ) . coshna+ 2

3vr2 fn=l n

1 . cosh na+ 2Tii
3~2 ~ f2n=l n

4n'6'—3 + f (24)

(25)

2n b (coshna+ 5)
f3

T =tI. . (29)

This perturbation diverges at the chronology horizon.
However, we expect quantum gravity will come into play
before the horizon, and may smooth out the divergence
before it becomes noticeable. It seems reasonable to as-
sume that quantum gravitational effects will become im-
portant at some Lorentz-invariant, observer-independent
distance from the horizon [15]. Thus a first approxima-
tion would be that quantum gravitational effects come
into play when

(T') = 1 . coshna+ 2

3vr2 - f2n=l n

2n b2(cosh na —1)
f3

(26)

where t = T cosh X, x = T sinh X, and

f„=2 (t —x ) (cosh na —1) + n b

= 2 T (cosh na —1) + n b2. (27)

These expressions diverge on the chronology horizon,
where T = 0, and on the polarized hypersurfaces, where
f„=0 for some integer n (We note in. passing that the
(T, X, y, z) coordinate system becomes singular at T = 0,
the chronology horizon. )

If we approach the chronology horizon, we can ap-
proximate the above sums by integrals, and evaluate the
asymptotic behavior by a saddle point method. We find
that the components of the energy-momentum tensor di-

Putting this into (28), and assuming that b is some typ-
ical macroscopic distance of the order of one meter, gives
a metric perturbation of the order 10 . This would be
completely unobservable.

We can study the behaviour of (T b) near the polarized
hypersurfaces by defining a coordinate T by T = z —t2.
We find that the components of (T b) diverge, at worst,
like K'b2/(T + T )3 (T —T )3 as we approach the nth
polarized hypersurface, where T„ is the value of T on
that surface, and K' is a constant. This means that the
dominant contribution to the metric perturbation caused
by the back reaction of the matter will be

(30)

It is more dificult to estimate when quantum gravita-
tional effects become strong close to the the polarized
hypersurfaces. If we were to treat the gravitational field
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like a massless spin-2 field in flat spacetime, we would ex-
pect the quantum fluctuations of the field to be governed
by the geodesic interval around the polarized hypersur-
face cr„(x,x) [17]. This suggests that quantum gravity
would become significant when (T + T„)(T —T„) —lP.
This leads to a metric perturbation of order 1, which
would radically alter the structure of the space around
the polarized hypersurfaces and the chronology horizoni.

Thus, it appears that around the polarized hypersur-
faces, quantum gravity will not enter until the metric per-
turbation has become large enough to change the struc-
ture of the space.

V. CONCLUSION

We have shown that, away from the strings, the Gott
space is identical to flat Minkowski space identified un-
der the action of a discrete boost and translation. On
calculating the vacuum expectation value of the energy-
momentum tensor for a conformally coupled scalar field
on this space, we find that it diverges on the chronology
horizon and on the polarized hypersurfaces. The diver-
gence around the polarized hypersurfaces is suKciently
strong that we expect the back reaction of the field to
radically alter the structure of the space before quantum
gravitational e6'ects have come into play.

These results seem to extend Hawking's "chronology
protection conjecture" which states that closed timelike
curves cannot be created [15]. The chronology protection

'I am grateful to Kip Thorne for this argument; see [18].

conjecture originally only referred to spaces where the
region of closed timelike curves was compact, but our
results seem to suggest that it also applies in spaces with
noncompactly generated chronology horizons.

It remains to be shown that the Green function of the
wave equation given by (21) corresponds to the prop-
agator of a physically acceptable quantum state of the
field on the space (in the sense of [19]). Indeed, there
are serious problems in doing quantum field theory on
any nonglobally hyperbolic spacetime (see [20] for one
approach to this problem). It has been shown, however,
that the Green's function constructed in [8] for Misner
space i8 a propagator for a real quantum state and that
the Hiscock-Konkowski state is actually a thermal state
[21]. Hopefully, similar arguments should apply to the
present case.

Note added in proof Aft. er this work was completed,
I received a preprint of a paper by Boulware considering
quantum fields in a particular case of the Gott spacetime
[22].
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