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Cosmological models in the Schmidt-Greiner-Heinz-Miiller theory of gravitation
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An exhaustive study of homogeneous and isotropic cosmological models in the Schmidt-Greiner-
Heinz-Muller {SGHM) theory of gravitation is performed, where present values of dynamical functions
are consistent with astronomical observations and solar-system experiments. We find two types of
SGHM models: a first class which is exactly equal to the standard general relativistic {GR)cosmological
models, and a second class which never reduces to GR. Some analytical and numerical solutions for the
second type of SGHM models are then obtained. The age of the Universe predicted by these models is
compatible with the age of old globular clusters except for weak bounds on the Ao parameter defined in
this paper.

PACS number{s): 98.80.Hw, 04.50.+h

I. INTRODUCTION

The Schmidt-Greiner-Heinz-Miiller (SGHM) theory of
gravitation was proposed in order to prevent the collapse
of massive dense objects [1]. In this theory, the gravita-
tional constant depends on a scalar field P which couples
to the surrounding masses via the curvature scalar %.
This coupling is such that the gravitational interaction
decreases with the strength of the scalar field. In princi-
ple, if P increases when rnatter density decreases, the col-
lapse of a massive object could be stopped by the whole
system reaching a new stable configuration. However,
Schmidt et al. [1] have shown that the purpose of their
theory was inviable because, even when the coupling con-
stant between scalar and gravitational fields varies within
the whole allowed range, the effective gravitational con-
stant only varies within a narrow interval.

Nevertheless, this theory has cosmological interest be-
cause, although its predictions at the present time are
very close to those of general relativity (GR), the cosmic
evolution during earlier epochs can be different from the
standard one, giving rise also to different conditions in
the early Universe. Banerjee and Santos [2] have ob-
tained some analytical Robertson-Walker models in the
framework of the SGHM theory by assuming a particular
relationship between the scalar field and the scale factor
R. In a class of these models (with negative curvature),
the Universe oscillates between finite limits, avoiding a
point singularity.

In this work we present a detailed study of SGHM
cosmological models, consistent with astronomical obser-
vations and solar-system experiments, which does not as-
sume a particular form for any dynamical function of this
theory. The aim of this study is to analyze whether these
kind of models are able to predict an evolution of the
Universe different from that obtained in the standard GR
models.

The paper is arranged as follows. We begin outlining
the SGHM theory (Sec. II) and then show how to build
up homogeneous and isotropic cosmological models in its
framework (Sec. III). Some analytical (Sec. IV) and nu-
merical (Sec. V) solutions of SGHM field equations are

II. THE SGHM THEORY

The starting point of the SGHM theory is the confor-
mally invariant equation for a massless scalar field [3],
which is generalized by adding a mass term and allowing
for an arbitrary coupling constant /3 between P and the
scalar curvature A:

( + —,'/3A +p )($ =0,
where p has dimensions of sec ' because it includes a
factor c /h, h being the Planck constant.

Equation (1) can be obtained from the action integral
I=IG+IM, with IM as in general relativity, but with

)P l 2 2 l 2

where

+y% —2yA)& —g d x,

c 2

16~6
is half of the inverse gravitational constant, A is the
cosmological constant, and g=det(q„), g„being the
metric tensor.

From the action integral (2), one deduces that the
effective inverse gravitational coupling constant is

(4)

That is, the gravitational constant, as measured, e.g. ,
by a Cavendish scale, depends on P and is then a function
of space-time coordinates. Note that P has to be negative
in order that y, s. decreases when P increases.

From (2) we also deduce that the effective mass of the
scalar field is now

—
( 2+ ]/3~)1/2

and the effective cosmological constant

then obtained. Finally, conclusions and a summary of
our results are given in Sec. VI.
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A,s=A+p P /4y . (6) then has a Robertson-Walker form,

The variation of Eq. (2) with respect to P and g„ leads
to the field equations

(y —
—,', pp }(A„——,'g„%)

ds = d—t +R (t) dr +r dQ
1 —Er

(10)

,' T—„.—0,„—4,. ,'g—„.—(N,A' V'—0')

+ —,', p((4'), „,.—g„.(0')';:f

0$+ ,'PAP—+p /=0,
which satisfy the usual conservation law

Tt" =0;v

(8)

(9)

where T" is the energy-momentum tensor.

III. COSMOLOGICAL MODELS IN SGHM THEORY

T" =(p+P/c )u„u +Pg„

where K =0, +1; R (t) is the scale factor; p and P are the
energy-mass density and pressure, respectively; and u„ is
the four-velocity of the gas.

By defining

H—=R /R, (12)

and the energy-momentum tensor corresponds to a per-
fect Auid:

A. Cosmological equations (13)

In order to build up cosmological models, we consider
a homogeneous and isotropic universe. The line element

I

where a dot means a time derivative, the homogeneous
and isotropic field equations become

P P +12y tr

2

P+ —,'(3 2p)D + ,'(3 —2p)p p +——,'ppDH+( ——,'p p +2y,s) +( ', p $ +6y—,ff)H (14)

3'
P P +12y,~

KP+ —,'(3 —2p)D —2y, s. 2y, ffH — — [(—,'p p + 12y,s.)DH ( ,'pp +4—y, ff—)pp ),
R P P +12y,s.

together with the algebraic equation

2 2 ] 2 & 2 26y, tr 2
=Pc 6y,sH +—,'D ,'P P +—PPD—H—. (16)

The dynamical evolution of the temperature T can be
obtained from Eq. (9) and the standard state equation [4]:

dT 3H(p, +P, /c )

dt dp&/dt
(17)

B. Initial conditions

In order to obtain cosmological models compatible
with astronomical observations, we take as initial condi-
tions the present values of the dynamical functions ($0,
Ho, Do, c IC /R 0, To } and we integrate the field equations
backwards in time (for fixed values of the P and p param-
eters). By present values we mean their current observa-

where p& =p, +pz, Pi =P, +Pz, and subscripts e and y
refer to electron-positron and photon, respectively.

Equations (12)—(15) and (17) constitute the basic set of
equations to build up cosmological models in SGHM
theory. In these equations, we have considered as in-
dependent functions the scalar field P, the Hubble param-
eter H, D —=P, and the photon temperature T. The alge-
braic equation (16) gives, at any time, c K/R as a func-
tion of P, H, D, and T.

y, =0. (18)

Furthermore, if A=p/p„where p, is the critical den-
sity needed to close the Universe, Eq. (16) can be written
as

pc /A=6y, ffH ,'D + ,'p P PPDH——, ——(19)

which is a second-order algebraic equation in D with
solutions

2 2
D= PPH+ PH P +—2 6y H +

2 n

1/2

(20)

Notice that there exist two types of SGHM cosmologi-
cal models.

(i) If we impose the condition that SGHM theory
reduces to GR in the limit p=p=0, then Eq. (20) implies

tional values or their limits from observational data.
Some of these initial data can be expressed in terms of the
others, or can be directly known from observations. In
fact, since the gravitational constant is well known from
experiments such as, e.g. , the Cavendish scale, the
present value of y,z must be equal to the general relativis-
tic y value. Therefore, if we impose y,~= y at the
present time, Eq. (4) implies
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pC gFRW
6yH

(21)
The spectrum of cosmic microwave background can be

fitted by a blackbody at [6]

(FRW refers to the Friedmann-Robertson-Walker model)
and, from Eqs. (18) and (15), we obtain

DO=0,

DO=0 .
(22)

As a consequence, P =0 for every time, and Eqs.
(14)—(16) become the usual GR field equations. That is,
these types of models are exactly the standard ones.

(ii) If we consider Qo as a free parameter (Qo
WQ,O:poc /—6yH0 ), the SGHM theory never reduces
to GR, and we find

D = —i/ 12yH (1—II" /Sl ) (23)

where we have taken the negative solution for D because
P must grow with p [1]. In order to have a real Do, Qo
must be greater than AO

) gFRW
0 0 (24)

Since these models only reduce to GR when QO

~QO, we can always find, for any P or p, a value of Qo
close enough to QO to imply cosmological models
compatible with observations. Consequently, no bounds
on p and p can be obtained from observations.

We must also note from Eq. (23) that fiat or closed
universes are possible even for 00" «1, that is, even
for small p0 values.

The difference between type (i) and type (ii) models can
be parametrized by 50—= 1 —Oo /Ao. Only models with
60%0 will be considered in this paper.

C. Observational limits on the initial data

Since the post-Newtonian parameters of the SGHM
theory are [1]

pro
1'ppN=1 PPPN= I+

Xeff0
(25)

HO=100h kmsec ' Mpc '
( —,

' ~h 1) . (26)

the condition (18) implies that these parameters reduce to
the standard ones and, consequently, this theory is com-
patible with solar-system experiments for any p. Also,
Eqs. (4) and (18) imply a vanishing present value of y, tr

(even for Do&0) and, hence, we cannot use the experi-
mental bounds on Go to obtain a constraint on P or P.
Moreover, we cannot set bounds on p from the present
value of A,s because, from Eqs. (6) and (18), it reduces to
the standard cosmological constant.

In conclusion, there does not exist any observational
limit on the SGHM parameters P and p. This is con-
sistent with the fact that SGHM theory reduces to GR
for 00=DO even if P and p are nonvanishing.

The observational bounds on the remaining initial data
are as follows.

The Hubble constant is usually taken as [5]

TO=2. 735+0.017 K . (27)

The values obtained for QO from several dynamical
methods increase with scale, from (0.0016+0.0008)h in
the solar-system neighborhood to as large as unity on
scales of ~ 100h ' Mpc [7].

In order to obtain an observational bound on the
SGHM parameter Ao we can use the deceleration param-
eter q —= —RR /R to eliminate H in Eq. (14). By com-
bining this result with Eq. (16) and evaluating at to, we
obtain

~FRW 4~GpR
qo

= + +(2—p)bo,
2 3HO

where p~ is the present value of the relativistic energy
0

density.
The determination of q0 through a Hubble diagram is

not accurate because of the galaxy photometric evolution
[8]. It is usual to take

O~q0 ~2,
which implies

1ho~ 2—
~FRW

0

2

4~Gp~

3HO

(29)

(30)

IV. ANALYTICAL SOLUTIONS

K 1e4x+ ' D2+2c +6H
2p R2 H

D'=3D,
D /H, —

t'= 1/H,
(33)

(34)

R'= —R, (35)

where primes denote differentiation with respect to
X—= ln( T /To ).

The only analytical solutions to the SGHM cosmologi-
cal equations which can be found in the literature are
those obtained by Banerjee and Santos [2] assuming
/ =$0(RO/R )" and then allowing for a difference between
the present value of y,~ and the general relativistic y
value.

Here we present a different analytical solution which
does not assume a particular form for any dynamical
function and which is compatible with the boundary con-
ditions quoted in Sec. III B. This solution is valid when
P=IM=O and is exact for pure matter or pure radiation
universes with Aat geometries. For a mixed gas and
nonAat spaces, we can also obtain exact expressions for
D(T), H(T), and R (T), but only semianalytical expres-
sions for P( T) and t ( T).

By using T as the independent variable in Eqs.
(12)—(17), and taking p=p=0, we obtain

2
pR CH'=— (31)

4 3 y
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D /D() = ( T /T() )

R/R()=T()/T .

Substituted into Eq. (31), these lead to

(36)

(37)

Do T PR c

T 12@ T 6y To

pboc
+

6y To

c K
Ro

(38)

and Eqs. (33) and (34) become

= —&6) D,
XdX

"(/AX +BX +CX D— (39)

The solutions of Eqs. (32) and (35) are straightforward: YdY
D—Y +CY +BY+ A

(40)

where X=T/Tp= 1/Y' A—:Dp/2 B:pg c C:)()b c

and D—:6yc E/Ro.
The integrals in Eqs. (39) and (40) are elliptic. In par-

ticular, the integral in Eq. (39) has the same mathemati-
cal form as that appearing in the function t (R) of stan-
dard FRW models with a nonvanishing cosmological
constant. Consequently, the solution of Eq. (39) is simi-
lar, but with different definitions of constants and vari-
ables than those obtained by Edwards [9] for t" (R) in
terms of Jacobian elliptic functions.

The integration of Eq. (40) between 0 and 1 gives us the
age of the Universe. A semianalytical expression for to
can be obtained by developing the integrand of Eq. (40) in
a series of A (a similar procedure to evaluate tp was used
by Agnese et al. [10] in FRW models with Ap&0). We
obtain

A )nB
—(n+)/2) Yl —2n( 1 Y)

—(n+)/2
( 1 Y)

—(n+)/2)d Y
(2n —$ btI 1

„—o 2"n t 0

'
( —A)"B '"+'/ 'FD(2 2n, n +——,),n + —,', 3 —2n, u, v),(n+)/Z)—

p (2 —2n)n.
(41)

where FD is the hypergeometric function of two vari-
ables, and

' (C+&C'+4BD),
2B

(C +C +4BD—) .
2B

(42)

A. Pure matter universe with flat geometry

Since these solutions are too complex to be used, we will
consider two limit cases where simple analytical expres-
sions for P(T) and t (T) can be found. The other cases
will be solved by numerical integration of Eqs. (12)—(17).

which implies that SGHM models are younger than the
standard ones.

We must note that the limits of H ( T), t ( T), and R ( T)
for T~ ~ or T~0 are the same as in Friedman-
Robertson-Walker (FRW) models. However, the limit of
(t ( T) when T~0 is a negative constant.

Obviously, for Ap=0 (that is, Dp=0), all the dynami-
cal functions reduce to their usual FRW expressions, in
accordance with what has been explained in Sec. III B.

B. Pure radiation universe with flat geometry

In a pure radiation universe with Hat geometry, Eq.
(38) becomes

(t) =4+—,'y ln
Qh (X —1)+1+Qb, pX

1++A,p

(44)

2

3Ho

Q(l b, )Y +b, —
—~o

(45)

For T=Tp (that is, X=Y=1), the last equation gi~es
the age of the Universe:

2 1

3Hp I+QZ '

In a pure matter universe (pz =0) with Bat geometry

(K =0), Eq. (38) becomes

H =H()X [b (X 1)+1], —

and Eqs. (39) and (40) lead to

H =H()X [hp(X —1)+1],
and Eqs. (39) and (40) give

Qb, (X —1)+I+QbpX/= &12@ln
1+QZ

Q(1 —bp)Y +4pt= Y
2(1—b, p)H()

~o

2H, (1—~,)'"

0
Xln

Q(1 —bp)Y +bp+Q(1 —bp)Y

(47)

(48)

(49)
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The age of a radiation universe is then

1
to + ln

2( 1 ~o)Ho 2Ho( 1 —b.o) I++I—a,

(50)

In the limit ho —&0, Eqs. (47)—(50) reduce again to the
FRW expressions.

Since a pure radiation universe is only a good approxi-
mation for high temperatures, Eq. (50) is not a realistic
evaluation of to. However, we also obtain younger
universes than in radiation FRW models.

V. NUMERICAL SOLUTIONS
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FIG. l. Expansion rate g=H/H" at T=10' K as a func-
tion of log, pkp for several values of /1 and p.

In order to obtain SGHM cosmological models where
the present values of the dynamical functions are compa-
tible with observations, we have taken these values as the
initial data for Eqs. (12)—(17), and we have performed
numerical integration backwards in time.

The qualitative behavior of SGHM models mainly de-
pends on Qo p, and /1, so that here we only show our re-
sults for h =

—,', To =2.735 K, and g &0
= 3 in order to

avoid an excessive number of free parameters.
Figure 1 displays the ratio g=H/H" at T =10' K

as a function of Qo (parametrized by b,o) for several
values of /3 and p. Since the ratio g is a measure of the
difference between the universe dynamics at a given tem-
perature as described by SGHM or FRW models, its
value is very close to unity for b,o~0 (and any /3 or p
values), but the expansion rate is always greater than in
the FRW case for a nonvanishing b,o. In particular, g, o
increases when p or Ao increase. However, the depen-
dence of g, o on P is qualitatively different. In fact, for
high b.o values (that is, b,o—+ I ), an increase of ~P~ implies
an increase of g, o and, in consequence, greater ~/3~ values

need smaller Ao values in order that SGHM theory
reduces to GR.

The dependence of g on temperature is shown in Fig. 2
for different values of ho, /3, and p. As we can see from
this figure, SGHM and FRW predictions are quite similar
over a certain temperature interval, but diverge at high
temperatures. The coincidence interval is larger for lower
b.o, P, and p values. Again, the behavior of g(T) with
respect to P is qualitatively different: for high P and T
values, g(T) becomes a constant greater than unity [see
Fig. 2(c)]. The curve for Do=10 ' has been included in
Fig. 2(c) in order to illustrate the dependence of g(T) on
b,o. However, we must note that these values of ho and /I

imply, according to Eq. (28), a deceleration parameter in-
compatible with observations.

Figure 3 shows the scalar field as a function of temper
ature for the same b,o, /3, and p values as in previous
figures. As can be seen from Figs. 3(a) and 3(b), P grows
very quickly with T until a temperature T, is reached,
and then the growth of P becomes considerably slower.
The value of T„and the slope of log, og vs log, oT for high
temperatures decrease when Ao increases. However, the
scalar field is greater for higher ho values. Also, for high
~/3~ values, the curves log, og vs log, oT reach the same
slope at high temperatures for any 60, but the growth in
the scalar field is smaller than in the /3=0 case (except for
very low b,o values) [see Fig. 3(c)].

The above-mentioned dependence of g and P on b,o and
T can be understood from Eqs. (43) and (44) or (47) and
(48) in the E =0 case. According to these equations,
both g and P are monotone increasing functions of T and
b, o. In particular, for a pure matter universe, Eq. (43) im-
plies that g is dominated by the unity term for small ho
and T values. As the temperature grows, the Ao(T/To)
term becomes more and more important and g separates
from unity. Obviously, higher Az values imply that
b,o( T/To ) dominates at lower temperatures. Moreover,
Eq. (44) implies a slow variation of P with T at high tem-
peratures as corresponds to a logarithmic behavior. The
P value at these temperatures is dominated by the big
multiplicative factor 4v'y/3. However, as T approaches
To, the scalar field quickly drops to zero. This behavior
is smoother as 60~0. Similar features are found from
Eqs. (47) and (48).

Another important output of our numerical integration
is the age of the Universe, taken as the time elapsed since
the e +e annihilation at T = 5 X 10 K up to now. Fig-
ure 4 shows the dependence of Ho to on Ao for different
values of P and p. Note that SGHM cosmological mod-
els are always younger than standard models, in accor-
dance with Eqs. (46) and (50) for K=0. The age of the
Universe decreases when b, o, p, or ~P~ increase, and tends
to tpFR when Do~0 (for any /3 and p). Since to must be
greater than the age of globular clusters (1.4—1.9X 10'
yr [11]),we can obtain upper limits on b,o for given values
of /3 and p. Obviously, the least restrictive bound on b,o
is found when P=p=O (and h =

—,
' ). For these values of

/3, p, and h, Fig. 4 implies that b,o must be smaller than
10 . This is not a very strong bound on SGHM cosmo-
logical models because, from Figs. 1 —3, the predicted
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