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An exhaustive study of homogeneous and isotropic cosmological models in the Schmidt-Greiner-
Heinz-Miiller (SGHM) theory of gravitation is performed, where present values of dynamical functions
are consistent with astronomical observations and solar-system experiments. We find two types of
SGHM models: a first class which is exactly equal to the standard general relativistic (GR) cosmological
models, and a second class which never reduces to GR. Some analytical and numerical solutions for the
second type of SGHM models are then obtained. The age of the Universe predicted by these models is
compatible with the age of old globular clusters except for weak bounds on the A, parameter defined in

this paper.

PACS number(s): 98.80.Hw, 04.50.+h

I. INTRODUCTION

The Schmidt-Greiner-Heinz-Miiller (SGHM) theory of
gravitation was proposed in order to prevent the collapse
of massive dense objects [1]. In this theory, the gravita-
tional constant depends on a scalar field ¢ which couples
to the surrounding masses via the curvature scalar 7.
This coupling is such that the gravitational interaction
decreases with the strength of the scalar field. In princi-
ple, if ¢ increases when matter density decreases, the col-
lapse of a massive object could be stopped by the whole
system reaching a new stable configuration. However,
Schmidt et al. [1] have shown that the purpose of their
theory was inviable because, even when the coupling con-
stant between scalar and gravitational fields varies within
the whole allowed range, the effective gravitational con-
stant only varies within a narrow interval.

Nevertheless, this theory has cosmological interest be-
cause, although its predictions at the present time are
very close to those of general relativity (GR), the cosmic
evolution during earlier epochs can be different from the
standard one, giving rise also to different conditions in
the early Universe. Banerjee and Santos [2] have ob-
tained some analytical Robertson-Walker models in the
framework of the SGHM theory by assuming a particular
relationship between the scalar field and the scale factor
R. In a class of these models (with negative curvature),
the Universe oscillates between finite limits, avoiding a
point singularity.

In this work we present a detailed study of SGHM
cosmological models, consistent with astronomical obser-
vations and solar-system experiments, which does not as-
sume a particular form for any dynamical function of this
theory. The aim of this study is to analyze whether these
kind of models are able to predict an evolution of the
Universe different from that obtained in the standard GR
models.

The paper is arranged as follows. We begin outlining
the SGHM theory (Sec. II) and then show how to build
up homogeneous and isotropic cosmological models in its
framework (Sec. III). Some analytical (Sec. IV) and nu-
merical (Sec. V) solutions of SGHM field equations are

47

then obtained. Finally, conclusions and a summary of
our results are given in Sec. VI.

II. THE SGHM THEORY

The starting point of the SGHM theory is the confor-
mally invariant equation for a massless scalar field [3],
which is generalized by adding a mass term and allowing
for an arbitrary coupling constant 3 between ¢ and the
scalar curvature 7:

(O+1BR+u*)p=0, (1)

where p has dimensions of sec ™! because it includes a
factor c2/h, h being the Planck constant.

Equation (1) can be obtained from the action integral
I=1;+1I,,, with I,, as in general relativity, but with

I6= [(1¢ ¢+ —L1p2d> — LBH*R
+yR—2y AV —g d*x , )

where

6‘2

~ 167G

is half of the inverse gravitational constant, A is the
cosmological constant, and g =det(q,,), g,, being the
metric tensor.

From the action integral (2), one deduces that the
effective inverse gravitational coupling constant is

Yer=V — 5B . 4)

That is, the gravitational constant, as measured, e.g.,
by a Cavendish scale, depends on ¢ and is then a function
of space-time coordinates. Note that S has to be negative
in order that y .4 decreases when ¢ increases.

From (2) we also deduce that the effective mass of the
scalar field is now

Peg= 2+ 1RV, (5)

Y (3)

and the effective cosmological constant
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Ag=A+u*p*/4y . (6)

The variation of Eq. (2) with respect to ¢ and g, leads
to the field equations

(¥ — 5B#NR ,,,— 18,,R)

= — %T[J.V —¢’”¢,V——%g”v(¢’a¢,a__“2¢2)

+ 5B1(8%),0 8 (93] (7)

O+ {BRe+u’¢=0, (8)
which satisfy the usual conservation law

T4 =0, 9)

where TH"" is the energy-momentum tensor.
III. COSMOLOGICAL MODELS IN SGHM THEORY

A. Cosmological equations

In order to build up cosmological models, we consider
a homogeneous and isotropic universe. The line element
]
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then has a Robertson-Walker form,

2
ds?*=—dr*+R*(1) ——d—r——2+r2d02] , (10)
r

and the energy-momentum tensor corresponds to a per-
fect fluid:

TW=(p+P/c*)u,u,+Pg,, ; (11
where K =0, x1; R(t) is the scale factor; p and P are the
energy-mass density and pressure, respectively; and u,, is
the four-velocity of the gas.

By defining
H=R/R , (12)
D=¢, (13)

where a dot means a time derivative, the homogeneous
and isotropic field equations become

. — 2

H=— 3 |P+1(3-20)D*+ 13— 282+ LBSDH + (1207 + 2y ) S5 + (2B + 6y H? | , (14)
B¢+ 12y R

S — 3B 2 c’K 2 3 2,2 2 2

p=—3B% _ |pir1G3-2pD2—2y K 2y B |- (2522 + 12y DDH — (155> +4 :
[))2¢2+12’;/eﬂ~ 6( B) Veff Rz Y et B2¢2+127/eff{ 3B ¢ Yeﬂ‘) (zﬁ¢ 7/eﬂ‘)¢:u' ]

together with the algebraic equation

2

K
K =pet— 6yl + LD~ i+ BODH . 116

The dynamical evolution of the temperature T can be
obtained from Eq. (9) and the standard state equation [4]:

ar _ 3H(p+P,/c?)

17
dt dp,/dt ’ an

where p,=p,+p,, P,=P,+P,, and subscripts e and y
refer to electron-positron and photon, respectively.

Equations (12)~(15) and (17) constitute the basic set of
equations to build up cosmological models in SGHM
theory. In these equations, we have considered as in-
dependent functions the scalar field ¢, the Hubble param-
eter H,D Ed;, and the photon temperature 7. The alge-
braic equation (16) gives, at any time, c2K /R ? as a func-
tion of ¢, H, D, and T.

B. Initial conditions

In order to obtain cosmological models compatible
with astronomical observations, we take as initial condi-
tions the present values of the dynamical functions (¢,
H,, Dy, c’K /R%,T,) and we integrate the field equations
backwards in time (for fixed values of the 8 and p param-
eters). By present values we mean their current observa-

(15)

—

tional values or their limits from observational data.
Some of these initial data can be expressed in terms of the
others, or can be directly known from observations. In
fact, since the gravitational constant is well known from
experiments such as, e.g., the Cavendish scale, the
present value of y 4 must be equal to the general relativis-
tic ¥ value. Therefore, if we impose y .=y at the
present time, Eq. (4) implies

$o=0 .

Furthermore, if Q=p/p_, where p,. is the critical den-
sity needed to close the Universe, Eq. (16) can be written
as

(18)

pc’/Q=6y gH>*—1D>+1)*¢>—BoDH , (19)

which is a second-order algebraic equation in D with
solutions
] l 172

(20)

pe’

D=—p¢H+ R

BZH2¢2+2

2
6y et >+ £~ 47—

Notice that there exist two types of SGHM cosmologi-
cal models.

(i) If we impose the condition that SGHM theory
reduces to GR in the limit 8= =0, then Eq. (20) implies
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2
Q=—P—6 CHZ =QFRW @1
¥

(FRW refers to the Friedmann-Robertson-Walker model)
and, from Egs. (18) and (15), we obtain

Dy,=0,

Dy=0.

(22)

As a consequence, =0 for every time, and Egs.
(14)—(16) become the usual GR field equations. That is,
these types of models are exactly the standard ones.

(i) If we consider Q, as a free parameter ((,
#QERY=pc?/6yH}), the SGHM theory never reduces
to GR, and we find

Do=—V 12yHZ(1—QF*Y/Q,) , (23)

where we have taken the negative solution for D because
¢ must grow with p [1]. In order to have a real D, Q,
must be greater than QFRV:

Q> QFRY (24)

Since these models only reduce to GR when
—QFRY we can always find, for any 8 or y, a value of Q,
close enough to QF®Y to imply cosmological models
compatible with observations. Consequently, no bounds
on 3 and u can be obtained from observations.

We must also note from Eq. (23) that flat or closed
universes are possible even for QFRY <<1, that is, even
for small p, values.

The difference between type (i) and type (ii) models can
be parametrized by A,=1—Q5%Y /Q,. Only models with
Ay70 will be considered in this paper.

C. Observational limits on the initial data

Since the post-Newtonian parameters of the SGHM
theory are [1]

B
24y o0 ’

Yeen—1, Bppn=1+ a;=§5;=§6=0, (25)
the condition (18) implies that these parameters reduce to
the standard ones and, consequently, this theory is com-
patible with solar-system experiments for any (3. Also,
Eqgs. (4) and (18) imply a vanishing present value of y 4
(even for D;70) and, hence, we cannot use the experi-
mental bounds on G to obtain a constraint on 8 or ¢.
Moreover, we cannot set bounds on u from the present
value of A4 because, from Egs. (6) and (18), it reduces to
the standard cosmological constant.

In conclusion, there does not exist any observational
limit on the SGHM parameters 3 and u. This is con-
sistent with the fact that SGHM theory reduces to GR
for Q,=QFRY even if B and u are nonvanishing.

The observational bounds on the remaining initial data
are as follows.

The Hubble constant is usually taken as [5]

H,=100h kmsec ! Mpc™! (1<h<1). (26)
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The spectrum of cosmic microwave background can be
fitted by a blackbody at [6]

T,=2.735£0.017 K . (27)

The values obtained for Q, from several dynamical
methods increase with scale, from (0.0016£0.0008)4 ! in
the solar-system neighborhood to as large as unity on
scales of > 1004 ~! Mpc [7].

In order to obtain an observational bound on the
SGHM parameter A, we can use the deceleration param-
eter g=—RR /R? to eliminate H in Eq. (14). By com-
bining this result with Eq. (16) and evaluating at ¢,, we
obtain

FRW
Q

= +
90 2 3H

477'GpR0
>— (2=, (28)
0

where PR, is the present value of the relativistic energy
density.

The determination of g, through a Hubble diagram is
not accurate because of the galaxy photometric evolution
[8]. Itis usual to take

0=gy,=2, (29)
which implies
L[, O 4nGpr,
A= - 2— 7 3H? . (30)

IV. ANALYTICAL SOLUTIONS

The only analytical solutions to the SGHM cosmologi-
cal equations which can be found in the literature are
those obtained by Banerjee and Santos [2] assuming
¢=¢o(Ry/R )" and then allowing for a difference between
the present value of y. and the general relativistic ¥
value.

Here we present a different analytical solution which
does not assume a particular form for any dynamical
function and which is compatible with the boundary con-
ditions quoted in Sec. III B. This solution is valid when
B=p=0 and is exact for pure matter or pure radiation
universes with flat geometries. For a mixed gas and
nonflat spaces, we can also obtain exact expressions for
D(T), H(T), and R(T), but only semianalytical expres-
sions for ¢(T') and ¢(T).

By using T as the independent variable in Eqgs.
(12)—(17), and taking 3=p =0, we obtain

2
D'=3D, (32)
¢'=—D/H , (33)
r'=1/H , (34)
R'=—R , (35)

where primes denote differentiation with respect to
X=In(T/Ty).
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The solutions of Egs. (32) and (35) are straightforward:
D/Dy,=(T/T,)?, (36)
R/R,=T,/T . (37

Substituted into Eq. (31), these lead to
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— Y3dY
t=v'6
2 V —DY*+CY?’+BY+ 4
where X=T/Ty=1/Y,A=D}/2, B szocZ, c=p,,0c2,
and D=6yc?K /R3.
The integrals in Egs. (39) and (40) are elliptic. In par-
ticular, the integral in Eq. (39) has the same mathemati-

, (40)

T 2| p2 T 14 PR c? T 12 cal form as that appearing in the function #(R) of stan-
H*= |— —% = 0 e dard FRW models with a nonvanishing cosmological
Ty 12y | To 6y T, constant. Consequently, the solution of Eq. (39) is simi-
lar, but with different definitions of constants and vari-
p,,oc2 T K ables than those obtained by Edwards [9] for tTRY(R) in
| (38) terms of Jacobian elliptic functions.
6y T Rj The integration of Eq. (40) between O and 1 gives us the
age of the Universe. A semianalytical expression for ¢,
and Egs. (33) and (34) become can be obtained by developing the integrand of Eq. (40) in
a series of A4 (a similar procedure to evaluate ¢, was used
¢=—VeyD, [ X dx , (39) by Agnese et al. [10] in FRW models with A#0). We
V AX*+BX*+CX—D obtain
J
to= i (2n —DM A)nB—(n+1/2)f1y1-2n(l_uY)A(n+1/2)(1__.vY)—(n+1/2)dY
n=0 2"n! 0
= i an DL A)"B VIR (2—2n,n +1,n +1,3-2n,u,0) , @1
< (2—2n)n! 2 2

where Fj is the hypergeometric function of two vari-
ables, and

u=—-L(c +V'C24+4BD),
2B
(42)

1
= ——_— _‘/ 2 .

Since these solutions are too complex to be used, we will
consider two limit cases where simple analytical expres-
sions for ¢(7) and t(T) can be found. The other cases
will be solved by numerical integration of Eqs. (12)-(17).

A. Pure matter universe with flat geometry

In a pure matter universe (pR0=0) with flat geometry
(K =0), Eq. (38) becomes

H*=H3X3[A(X3}—1)+1], (43)
and Egs. (39) and (40) lead to

V A(XP =1+ 1+ AX?

=41/1y1n — , (44)
¢ Y 1+V4,
(1—A) Y3+ A,—1V A,
f=—2 4 0 0= VA ) 45)
3H, 1—4,

For T=T, (that is, X =Y =1), the last equation gives
the age of the Universe:

2 1
to= ——,
° 3H, 1+v/4,

(46)

which implies that SGHM models are younger than the
standard ones.

We must note that the limits of H(T), t(T), and R (T)
for T-—>o0 or T—0 are the same as in Friedman-
Robertson-Walker (FRW) models. However, the limit of
¢(T) when T—0 is a negative constant.

Obviously, for Ay=0 (that is, D;=0), all the dynami-
cal functions reduce to their usual FRW expressions, in
accordance with what has been explained in Sec. III B.

B. Pure radiation universe with flat geometry

In a pure radiation universe with flat geometry, Eq.
(38) becomes

HY=HXX*[A(X*—1)+1], 47)
and Egs. (39) and (40) give

V A X2—1)+1+V AX?
0

=v12y In — , (48)
¢ 4 1+1V/A,
V(1—Ay) Y2+ A,
2(1—AyH,
A
+ 0
2H,(1—A4)"?
A
X1n VA .49

V (1=A) Y2+ A+ 1V (1—Ay)Y?
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The age of a radiation universe is then
VA

to= L Ao In ——
0 2H(1—A,)? 1+v1—A,

T 2(1—AH,

(50)

In the limit Ay—O0, Egs. (47)-(50) reduce again to the
FRW expressions.

Since a pure radiation universe is only a good approxi-
mation for high temperatures, Eq. (50) is not a realistic
evaluation of f7,. However, we also obtain younger
universes than in radiation FRW models.

V. NUMERICAL SOLUTIONS

In order to obtain SGHM cosmological models where
the present values of the dynamical functions are compa-
tible with observations, we have taken these values as the
initial data for Egs. (12)-(17), and we have performed
numerical integration backwards in time.

The qualitative behavior of SGHM models mainly de-
pends on €, u, and 3, so that here we only show our re-
sults for h=1, T;=2.735 K, and 7,,=3 in order to
avoid an excessive number of free parameters.

Figure 1 displays the ratio E=H /H™Y at T=10K
as a function of €, (parametrized by A;) for several
values of B and u. Since the ratio £ is a measure of the
difference between the universe dynamics at a given tem-
perature as described by SGHM or FRW models, its
value is very close to unity for A;—0 (and any 8 or u
values), but the expansion rate is always greater than in
the FRW case for a nonvanishing A,. In particular, &,
increases when u or A, increase. However, the depen-
dence of &5 on B is qualitatively different. In fact, for
high A, values (that is, A;— 1), an increase of |B| implies
an increase of £,, and, in consequence, greater |3| values

T
=

10
10"
10°
10°
107
10°
€10 145
10*
10°?
10*?
10

U BBRILALLL B 11 L AL L R AL L

o vl vl v oot vvd ool cooed oo oo oo JT

1 Ero v r g bvv v e b v de sy g a g g lia g

—-50 —40 —30 —20 -10

og )
1 1O(A)

FIG. 1. Expansion rate £=H /H™®Y at T=10'"K as a func-
tion of log oA, for several values of 8 and p.

need smaller A, values in order that SGHM theory
reduces to GR.

The dependence of & on temperature is shown in Fig. 2
for different values of A, 3, and u. As we can see from
this figure, SGHM and FRW predictions are quite similar
over a certain temperature interval, but diverge at high
temperatures. The coincidence interval is larger for lower
Ay, B, and p values. Again, the behavior of &£(T) with
respect to S is qualitatively different: for high 8 and T
values, £(T) becomes a constant greater than unity [see
Fig. 2(c)]. The curve for A;=10""! has been included in
Fig. 2(c) in order to illustrate the dependence of £(7T) on
A,. However, we must note that these values of Ay and f3
imply, according to Eq. (28), a deceleration parameter in-
compatible with observations.

Figure 3 shows the scalar field as a function of temper-
ature for the same A, B, and p values as in previous
figures. As can be seen from Figs. 3(a) and 3(b), ¢ grows
very quickly with T until a temperature T, is reached,
and then the growth of ¢ becomes considerably slower.
The value of T, and the slope of log,y¢ vs log,,T for high
temperatures decrease when A, increases. However, the
scalar field is greater for higher A, values. Also, for high
|B| values, the curves log;q¢ vs log;,T reach the same
slope at high temperatures for any A, but the growth in
the scalar field is smaller than in the =0 case (except for
very low A, values) [see Fig. 3(c)].

The above-mentioned dependence of £ and ¢ on A, and
T can be understood from Egs. (43) and (44) or (47) and
(48) in the K =0 case. According to these equations,
both £ and ¢ are monotone increasing functions of T and
Ay. In particular, for a pure matter universe, Eq. (43) im-
plies that &% is dominated by the unity term for small A,
and T values. As the temperature grows, the Ay(T/T,)*
term becomes more and more important and &2 separates
from unity. Obviously, higher A, values imply that
Ao(T/T,)* dominates at lower temperatures. Moreover,
Eq. (44) implies a slow variation of ¢ with T at high tem-
peratures as corresponds to a logarithmic behavior. The
¢ value at these temperatures is dominated by the big
multiplicative factor 4V'y /3. However, as T approaches
Ty, the scalar field quickly drops to zero. This behavior
is smoother as Ay—0. Similar features are found from
Eqgs. (47) and (48).

Another important output of our numerical integration
is the age of the Universe, taken as the time elapsed since
the e e ™ annihilation at T~5X10° K up to now. Fig-
ure 4 shows the dependence of Hyt, on A, for different
values of B and u. Note that SGHM cosmological mod-
els are always younger than standard models, in accor-
dance with Egs. (46) and (50) for K =0. The age of the
Universe decreases when A, u, or | Bl increase, and tends
to t§®W when Ay—O (for any B and u). Since ¢, must be
greater than the age of globular clusters (1.4—1.9X10!°
yr [11]), we can obtain upper limits on A, for given values
of B and u. Obviously, the least restrictive bound on A,
is found when B=u=0 (and A =1). For these values of
B, u, and h, Fig. 4 implies that Ay must be smaller than
1072, This is not a very strong bound on SGHM cosmo-
logical models because, from Figs. 1-3, the predicted
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FIG. 4. The age of the Universe as a function of A, for (a)
B=0 and different values of u, and (b) £ =0 and different values
of B.

evolution of a universe with A;=10"2 is very different
from a standard behavior (with A;=0). For example, the
expansion rate of the Universe when A,=10"2 is much
faster than in a FRW model. In particular, when
T =10'"° K, Fig. 1 implies that H/HXW ~10'°, Conse-
quently, there exist SGHM cosmological models which
are able to predict a matter-dominated evolution different
from the standard behavior and which are compatible
with the age of globular clusters and the present values of
dynamical functions.
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VI. SUMMARY AND CONCLUSIONS

An exhaustive study of cosmological models in SGHM
theory, consistent with astronomical observations and
solar-system experiments, has been performed.

We have found two types of SGHM models: those
which reduce to GR in the limit S=pu=0, and those
which do not tend to GR in this limit.

In the first type of model, we find that Q,=QfR*%, and
solutions are exactly the standard FRW ones at any tem-
perature. Therefore, this kind of model cannot be con-
sidered as an alternative to GR.

In the second type of SGHM model, the density pa-
rameter €}, depends on the present value of ¢ and is
therefore an additional free parameter due to the pres-
ence of the scalar field. This kind of model only reduces
to GR when Q,— QFfRY (for any B and pu). Consequent-
ly, it is not possible to obtain observational bounds on 8
and u, because we can always find a € close enough to
QFRY to imply cosmological models compatible with ob-
servations. The difference between SGHM and FRW
models can be then parametrized by A,=1—QF*V/Q,,
and only the observational bounds on A, can be used to
restrict possible deviations from GR.

The extra degree of freedom introduced by the scalar
field allows for flat or closed universes even with small p,
(or QFRY) values. That is, SGHM models with K =0 can
be compatible even with the measurements of the mass-
luminosity relation at small scales.

We have obtained analytical solutions valid for flat
universes with S=p =0 and a pure matter or radiation
cosmic gas. These solutions allow us to understand the
dynamics of SGHM models. More general cases require
numerical integration. This has been carried out for
different values of A,, B, and u. The following features
have been found. SGHM and FRW models are quite
similar over a certain temperature range whose length de-
pends on A,, 3, and u. However, at high temperatures,
the expansion rate of the Universe is always faster than in
the FRW case and, consequently, SGHM models are
younger than the standard ones. The age of globular
clusters does not imply a very strong bound on A,
(A= 1072 in the most favorable case when 3 =p=0 and

=1). Therefore, it is possible to find SGHM models
that yield present values of their dynamical functions and
a predicted age of the Universe which are compatible
with observations, but which predict a cosmological evo-
lution considerably different from that obtained in FRW
models.
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