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Self-consistent improvement of the finite-temperature effective potential
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We present a self-consistent calculation of the finite-temperature effective potential for A,P theory, us-

ing the composite operator effective potential in which an infinite series of the leading diagrams is
summed up. Our calculation establishes the proper form of the leading correction to the perturbative
one-loop effective potential.
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I. INTRODUCTION

Temperature-induced symmetry-changing phase tran-
sitions in quantum field theory are important ingredients
in cosmological scenarios. The existence of the high-
temperature phase transitions was suggested by Kirzhnits
and Linde [1] and was shown quantitatively by Dolan
and Jackiw [2], Weinberg [3], and Kirzhnits and Linde
[4]. The approximate critical temperature of a given
phase transition can be obtained by calculating the one-
loop finite-temperature effective potential. However,
cosmological scenarios often rely on the detailed nature
of the phase transition, namely, whether it is of first or
second order. A more precise determination of the criti-
cal temperature and the nature of the phase transition re-
quires an analysis of higher-loop contributions even when
the coupling constants in the theory are very small.
Weinberg has argued, by using power counting, that the
leading contributions at very high temperatures come
from all those loops with a superficial degree of diver-
gence D ) 1. This implies that in order to obtain more
accurate information one must study infinite series of cer-
tain classes of multiloop diagrams in perturbation theory.
For example, in k@ scalar theory the leading contribu-
tions come from the multiloop graphs shown in Fig. 1,
which are called daisy and superdaisy. For this reason,
Dolan and Jackiw, in their early paper, studied the effect
of these graphs on the temperature-dependent effective
mass.

Recently, there has been much interest in the nature of
the electroweak phase transition due to the idea that the
baryon asymmetry may be generated at the electroweak
scale if the transition is of first order [5]. Several authors
have calculated the high-temperature effective potential
in the standard model and in the kN" theory, taking into
account leading (and subleading) contributions from mul-
tiloop diagrams, in order to obtain a correct form of the
high-temperature effective potential [6—14]. Some of the
authors have calculated an "improved" one-loop effective
potential in which the free-level propagators are replaced
by temperature-dependent effective propagators, which
were obtained by summing the dominant high-
temperature contributions from infinite series of certain
classes of self-energy graphs in perturbation theory.
When one considers only the leading corrections to the

effective propagators all results are in agreement with
each other. However, there have been various disagree-
ments when the subleading corrections to the effective
propagators are included. On the other hand, the sub-
leading contributions could be important in determining
the nature of the phase transition.

We find that in the improved one-loop calculations the
difficulties arise because of the fact that the naive substi-
tution of improved propagators in the one-loop effective
potential is an ad hoc approximation. One needs a self-
consistent loop expansion of the effective potential in
terms of the full propagator. Such a technique was
developed some time ago by Cornwall, Jackiw, and Tom-
boulis (CJT) in their effective action formalism for com-
posite operators [15]. One considers a generalization
I (P, G) of the usual effective action I (P), which depends
not only on P(x), a possible expectation value of the
quantum field @(x),but also on G (x,y), a possible expec-
tation value of the time-ordered product T@(x)@(y).
The physical solutions satisfy stationary requirements:

5I ($, G)
5$(x)

51"(P, G)
5G(x,y)

(1.2)

In this formalism it is possible to sum a large class of
ordinary perturbation-series diagrams that contribute to
the effective action I (P), and the gap equation which
determines the form of the propagator is obtained by a
variational technique, as in (1.2).

For translationally invariant solutions, we set

(b)

FIG. 1. Examples of {a)daisy and {b) superdaisy graphs.

The conventional effective action I (P) is given by
I (P, G) at the solution Go(P) of (1.2):

(1.3)
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/=const, take 6(x,y) to be a function of only (x —y),
and obtain the effective potential for the full propagator:

6) I (y 6)trans inv f d4 (1.4)

The purpose of this paper is to understand the struc-
ture of the leading corrections to the perturbative one-
loop finite-temperature effective potential for A,N theory
using CJT formalism in imaginary (Euclidean) time. We
obtain a finite-temperature effective potential, which is
exact up to the order that includes all contributions from
daisy and superdaisy graphs. Instead of dropping various
finite and divergent terms, as has been done often in the
recent literature, we carry out renormalization and then
perform a high-temperature expansion. We show explic-
itly that the effective potential must be calculated up to
two loops in order to generate all daisy and superdaisy
graphs which appear in perturbation theory [16). More-
over, we find subtle cancellations of leading corrections
between the improved one- and two-loop contributions.
If it is indeed possible to determine the order of the elec-
troweak phase transition by calculating the improved
high-temperature effective potential, our result implies
that the improved two-loop contribution could play a
crucial role. We plan to present our calculations in gauge
theories in a future publication.

I( tI&)= f d x d y N(x)Do '(x —y)@(y)

+ d4xL, ,„, x

where Do(x —y) is the free propagator,

Do '(x —y)= —
( +m )5 (x —y),

(2.2b)

(2.2c)

5 W~( J,IC)

5J(x)
5 Wp( J,E)
5IC (x,y)

=P(x),

= —[G (x,y)+P(x)P(y)],
1

(2.3)

and eliminate J and K in favor of P and G:

1 &(P, G) = W&(J,K) —f d x P(x)J(x)

,' f d—x—dy P(x)IC(x,y)P(y)

—
—,
' f d x d y 6(x,y)K(y, x) .

It follows that

(2.4)

and the interaction Lagrangian L;„, is at least cubic in @.
The efFective action I &($,6) is obtained by a double

Legendre transformation of W&(P, G)—:InZ&($, 6), which
is analogous to the free energy. We define

II. CJT COMPOSITE OPERATOR
EFFECTIVE POTKNTIAI.

51 (P, G) =J(x)—f d y K(x,y)P(y), (2.5)

In this section we shall review brieAy the CJT formal-
ism following Ref. [15]. To describe field theory at finite
temperature T, we shall use Euclidean time ~, which is
restricted to the interval 0 ~ r ~p= 1/T. The Feynman
rules are the same as those at zero temperature, except
that the momentum-space integral over the time com-
ponent k4 is replaced by a sum over discrete frequencies
k4 =2rrn /P:

51 (P, G) 1= ——K(x,y) .
5G(x,y) 2

(2.6)

Since the physical processes correspond to vanishing
sources J and Ir:, Eqs. (2.5) and (2.6) provide the station-
ary requirement of (1.1) and (1.2). 1 p(Q, G) obtained in
this way is the generating functional in P for two-
particle-irreducible Green's functions expressed in terms
of the full propagator G.

In order to obtain a series expansion of I &(P, 6), we in-
troduce the functional operator D '(ttl;x, y):

(2m) P „(2m) (2.1) 5 I(P)
5$(x )5$(y )

(2.7)

where n is even (odd) for bosons (fermions).
We introduce a partition function Z&(J,It: ) in the pres-

ence of the sources J and K defined by

Zp(J, K)

The required series obtained by CJT is then

1 p(P, G) =I, (Pi)+ —,'Tr lnDOG

+—'Tr[D '6 —1]+I p '(P, G), (2.8)

—:fD@exp —I(@)+f d x @(x)J(x)

+ —,
' f d x d y Cs(x)K(x,y)N(y)

'

(2.2a)

(We have set c =Pi= 1.) The res integration is functional,
and @ satisfies the periodic boundary conditions
@(p/2, x) =Ct( p/2, x). I(C&) is th—e classical Euclidean
action, which may be written as

where the P-independent terms are chosen so that the
overall normalization is consistent with the conventional
effective action I &(P) according to (1.3). The quantity
I &'(P) is computed as follows. In the classical action
I(N), shift the field tIs by p. Then I(@+/) contains
terms cubic and higher in 4 that define I;„t(rtp;@) where
the vertices depend on P. I & '(P) is given by all the two-
particle-irreducible (2PI) vacuum graphs in the theory
with vertices given by I;„t(P;@)and propagators set equal
to G(x,y).

From the stationary requirement (1.2), we obtain the
gap equation for G:
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i~1 ~('(y, 6)6 '(x,y) =D '(x,y) —2 56 x,y
6 '(x,y)=D '(x,y)+ —6(x,x)5 (x —y) . (3.6)

When one is interested in translationally invariant
solutions, the generalized effective potential Vp(P, G) can
be obtained using (1.4) and (2.8).

III. A,N THEORY

A. EfFective potential V&($, G)

I = —(a C)(a~a)+ —m'e'+ —e'.
2 2 4!

(3.1)

In this section we calculate the finite-temperature
effective potential for the single scalar field with A,@ in-
teraction. The Euclidean Lagrangian density is given by

It is straightforward to show by iteration that Eq. (3.6)
generates all daisy and superdaisy graphs that contribute
to the full propagator in ordinary perturbation theory.
[Equations (3.5) and (3.6) have the same structure as
those in the leading large-X approximation since in both
cases n-point functions are expressed in terms of one- and
two-point functions. However, as discussed in Ref. [15],
in the large-N approximation those daisy and superdaisy
diagrams which are of O(l/ItI) are dropped and there-
fore the coefficients of A, in (3.5) and (3.6) become smaller
by a factor of 3.]

In order to obtain the effective potential Vp($, 6) for
translation-invariant field configurations, we define the
Fourier-transformed propagators

The propagator defined in (2.7) is

D '(P;x,y)= — +m +—P 6 (x —y),

and the vertices of the shifted theory are given by

(3.3)

D (k) =I ~ D(x —y)e'"'d k

(2m )

1

k +m + (A, /2)P

G (k) = G (x —y)e'"~"d k
(2'�)

(3.7)

(3.8)
k +M

In Fig. 2 the diagrams contributing to I
& '($, 6) are

shown up to three loops: Each line represents the propa-
gator 6 (x,y), and there are two kinds of vertices.

In order to determine how to truncate the loop expan-
sion so that all daisy and superdaisy graphs of perturba-
tion theory are included, we first observe that upon drop-
ping I &

' altogether, the gap equation (2.9) gives

where we have taken an ansatz for 6 (k) using an
effective mass M. Since the correction to the gap equa-
tion in this approximation is given by A.G(x, x)/2, M
can be taken to be momentum independent. The effective
potential is then

d4k
V(P, M)= —m P + + j ln[k +M ]4t 2 (2'�)'

G '(x,y) =D '(x,y), (3.4)

and I (P,D) is simply the ordinary one-loop effective po-
tential. Therefore a nontrivial 6 can be obtained only if
we retain some of the graphs in I &

'. Next we observe
that among the graphs in Fig. 2 only the two-loop graph
of O(A, ) will include contributions from daisy and super-
daisy graphs of ordinary perturbation theory. Therefore
we shall truncate the series at 0 (A, ). This is known as the
Hartree-Fock [17] approximation. The efFective action is
then

I &($,6)=I,&(P)+ —,'Tr lnDoG '+ —,'Tr[D 'G —1]

M —m ——
P G(x x)1 2 2 X 2

2 2

+—6(x,x)6(x,x) .

From (3.9) the stationary requirements are

av, (y, M)
m +—P +—6(x,x) =0,

t)P 6 2

rsvp(Q, M) 1 BG(x,x)
2 /~2 2

M —m

(3.9)

(3.10)

+ k Id —x G(x, x)G(x,x) .
4t

(3.5)

By stationarizing I & with respect to 6, we obtain the gap
equation in the Hartree-Pock approximation:

——6(x,x) =0 .
2

(3.11)

The conventional effective potential is obtained by
evaluating V&(P, M) at the solution M(P) of (3.11). It is
composed of three terms —the classical ( V ), one-loop
( V ), and two-loop ( V ) contributions:

Vp(Q, M($) ) = V + V'+ V", (3.12a)

FIG. 2. Two- and three-loop graphs contributing to
1]i '(P, G). They are two-particle irreducible, and their lines

represent the full propagator G.

v'= —m'y'+ —y',1

2 4t

4
P'I l I 2+~2

(2~)

(3.12b)

(3.12c)
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V"= ——6 (x,x)G(x,x),II

where

(3.12d)
cutoff independent in terms of mR and A,R:

XR AsR
M (P)=+m~+ P + 6(M(f))

2
(3.16)

M (P) =m +—P +—6(x,x),
2 2

and now G (x,x) is given by

d4k
G(x,x)=

(2') k +M (P)

(3.12e)

(3.12f) —2 2 R 2m (P)= —m~+ (3.17)

(In this paper we shall choose the negative sign which al-
lows spontaneous symmetry breaking. ) It is convenient
for our later discussions to define the tree-level effective
mass m (P):

B. Renormalizing the effective potential

2
mR+
~R

2m + 1 I
2

(3.13a)

1 1 1=—+—I~(p),
~R A. 2

where I
& 2 are divergent integrals,

d k 1 AI,:— = lim
(2~)' 2111 A-- 8~' '

(3.13b)

(3.13c)

d k 1
2 3

1 A= lim ln
~ 16~ p

1

2( l pl 2++2) 1/2

(3.13d)

p is the renormalization scale, and A is the ultraviolet
momentum cutoff. (The same renormalization prescrip-
tion has been used also in the large N approximation
[18].)

When the sum on n in k4 is carried out as in Ref. [2],
6(x,x) becomes

p dk 1 1 dk
(2~) 2cok P (2~) cok(exp[Pcok ] 1 )

=G(M($))+I, —M (P)I&(p), (3.14)

where cok =—[lkl +M (P)]' and G(M($)) is the finite
part of 6 (x,x ), given by

6(M(P)) = ln
16m p

d k+ (3.15)
p (2~)3 cok(exp[pcok ]—1)

In the limit T =0, the first term in G(M($) ) survives, but
the second term vanishes.

It is straightforward to see that M (P) is finite and

The expression of V&(P, M(P)) in (3.12) contains diver-
gent integrals. Moreover, because our approximation is
nonperturbatively self-consistent, reflecting the non-
linearity of the full theory, M(P), the argument of V&, is
not well defined because of the infinities in 6(x,x).
Therefore we shaH first obtain a well-defined finite expres-
sion for M(P) by a renormalization. [In the rest of this
paper M refers to the solution of (3.12e).] We define re-
normalized parameters mR and kR as

At T =0 the first term of V survives and provides the
zero-temperature one-loop contribution, and the second
term vanishes. The last term is the divergence in V .

Divergences in the two-loop contribution V" come
from G(x, x) and its square. Finiteness of V&(P,M(P))
can be shown by first combining V and V using the un-
renormalized form of the gap equation. When the com-
bined expression is written in terms of renormalized pa-
rameters, the remaining divergent integral is canceled by
that of V in (3.18). This is another indication that the
two-loop contribution must be included for a finite self-
consistent approximation. The resulting finite expression
for V&(P, M(P)) is

Vp(P, M(P))=( V + V")+V', (3.19a)

V + V"= ——M G(M)—
2XR 2 12

(3.19b)

M M 1 1 d kV'=
2

ln
2

——+—
3

ln 1 —exp cok
p 2 P (2m)

(3.19c)

[A constant term m /(2A, ) has been adjusted to obtain
(3.19) from (3.12).] However, in order to compare the
high-temperature effective potential with and without the
two-loop contribution in our later discussion, we still
have to extract V" from (3.19b). Observing that V must
be a function of P only and that in our approximation V"
does not depend on P explicitly [since the graph of O(A, )

in Fig. 2 does not involve any vertices which depend on
P], we obtain, by using the renorinalized gap equation,

With this finite M, we are ready to discuss the diver-
gences in V&(P,M). First, carrying out the sum on n in
V', we obtain the familiar one-loop finite-temperature
formula of Ref. [2], where the tree-level effective mass
m (P) is replaced by M(P):

V'(M) =—f co„+—J ln(1 —exp[Pen„])
1 dk 1 dk
2 (2~) P (2ir )

M M 1
ln

64m p
1 d k M"

+
3

ln 1 —exp cok — I2 p4

(3.18)
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125

100

50

(We have chosen our renormalization scale p to be m~. )
Then the high-temperature gap equation takes the form

~R 2 ~R
M =m (P)+ T —MT+0(A~M lnT) . (3.23)

24 8m

From the solution of this equation, one finds that, for a
small coupling kR &(1, the condition M /T &(1 is con-
sistent with

25
m '(P)/T' « I, (3.24)

10

-25

FIG. 3. V&(Q, M(P))/ms as a function of P/ms at T=O.
V& illustrated in the figure corresponds to k& =0.05 and
In(A /ms ) =16vr V& bec.omes imaginary for small Plm~.

y0+ yii IR
$2

~R

8
G(M)G(M) . (3.20)

A
ln &1,

3277 p
(3.21)

in order to have A, )0, and all momenta, temperature,
and any other physical mass scale must be much smaller
than A.

As shown in Fig. 3, the zero-temperature phase struc-
ture of the effective theory with finite A is similar to that
of perturbation theory: There exists a minimum at a
nonzero value of P [19]. We shall consider such an
effective theory and take our temperature to be T « A.

C. High-temperature effective potential

Our main interest is in the form of the high-
temperature effective potential. We first find the high-
temperature gap equation by expanding the integral ex-
pression of G(M), i.e., the second term in (3.15) at high
temperature. Since the basic mass scale in the problem is
M, we consider an expansion in M /T «1:

G(M)=T 1

12
(3.22)

M+0 lnT
4m. T T2

Clearly, the last term in (3.20) is the two-loop contribu-
tion. The quantity in the brackets is the classical contri-
bution after renormalization is carried out. It is cutoff
dependent because of the term —

A,P /12, which did not
get renormalized because of the structure of the gap
equation. But the renormalization prescription (3.13)
tells us that if kR is held fixed as A~ ~, A, approaches
0 . (A necessary condition in a renormalized A,P theory
is A, (0.) As shown in the large-N studies [18], such
theory is intrinsically unstable. On the other hand, hold-
ing A, )0 implies XR ~0 as A~ ~. For k) 0 a sensible
theory can be obtained for a fixed small A,R )0 as an
effective low-energy theory, if A is kept fixed at a large
but finite value. Such a theory requires

which is exactly the required condition for high-
temperature expansion of the perturbative calculation in
Ref. [2].

Now we return to Eqs. (3.19) and (3.20). The high-
temperature expansion of the effective potential can be
obtained using the high-temperature expansion of G (M)
and also the high-temperature expansion of the perturba-
tive one-loop effective potential of Ref. [2] by replacing
the tree-level effective mass m (P) by M:

Vp(P, M(P)) = V + V'+ V",
m,'

VP R
~P 2

R

8
4

(3.25a)

(3.25b)

MT 3f T M
127K T2

y II ~R

8

T4

144
M M M
24~ "T2

(3.25d)

IV. DISCUSSION AND CONCLUSIONS

In order to understand the structure of the effective po-
tential in our approximation, we shall first consider the
nonlinear aspects of the gap equation (3.6), which in the
high-temperature limit can be expressed as

~R 2 ~R
M (P)=m ((())+ T TM(P) . —

24 8a

Consequently, M (P) can be expanded for small A.~ as

(4.1)

T
M(p) =Ml (p) 1—

16vrML

T+0
16~MI (p)

'2

(4.2a)

where

~R
ML((())—:m (p)+ T

1/2

(4.2b)

solves the linearized high-temperature gap equation, i.e.,
(4.1), without the last term.

When the one-loop contribution V in (3.25c) is rewrit-
ten using the gap equation, we obtain
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V'(P)= — T +
90 24

~R
Mt(P)T

M (P)T +0 lnT
12m 64m

(4.3)

We observe that the term linear in M, namely, the
third term on the right-hand side of Eq. (4.3), arises from
the nonlinearity of the gap equation, i.e., from the last
term in (4.1). If we were to use the linearized gap equa-
tion without this term, the first nontrivial correction to
the perturbative one-loop effective potential would be
given by the term cubic in M(P). However, at high tem-
peratures the leading nonlinear correction is of the same
order as the term cubic in M(P) in (4.3); in fact, from
(4.1) we have

~R

192~
M((b)T M ($)T 288

12m 192
(4.4)

for T »P, and such a term could alter the nature of the
phase transition. When we include the two-loop contri-
bution given in (3.25d), the MT term disappears and the
high-temperature effective potential in our approximation
is (neglecting P-independent contributions)

V(P)= V (P)

T2+ ML(p) Mt (—p) [1+0(A~ )]
24 12m.

+0
~

lnT
64m

(4.5)

In Fig. 4 the effective potential of Eq. (4.5) is shown as a
function of P for five difFerent temperatures close to the
critical temperature. It is evident that there is a tempera-
ture such that there are two degenerate minima.

The above analysis of our consistent approximation
shows that improving the perturbative one-loop effective
potential using the nonlinear gap equation clearly leads
to an erroneous result [20]. Therefore one must use a
self-consistent method which relates the effective poten-
tial and the gap equation. On the other hand, we also see
that because of the cancellation of the leading nonlinear
effect, one can in fact obtain a consistently improved

-0.1 ~

-0.2 ~

-0.3 ~

FIG. 4. High-temperature effective potential in our approxi-
mation [Eq. (4.5)] for five different temperatures close to the
critical temperature. [Here we have chosen A,R =0.05 and
ln(A /rn„)=16m .] In order to compare the shapes between
different temperatures, we shifted the Vs's by P-independent
amounts so that V& =0 for P/rnz =0. From the figure it is evi-
dent that at a certain temperature there are two degenerate
minima.

effective potential by improving the perturbative one-loop
effective potential using an efFective mass ML (P), which
is the solution of the linearized gap equation. Such im-
proved perturbation theory, using the effective mass
squared shifted by a P-independent amount proportional
to T, was first suggested by Weinberg [3] and later fur-
ther studied by others [21]. If the cancellation of the
leading nonlinear effects in our approximation is a gen-
eral feature, occurring even in gauge theories, the one-
loop improved effective potential in the standard model
calculated by Carrington [8] would be a consistent ap-
proximation. We plan to clarify this in a future publica-
tion.
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