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In a scalar field theory, when the tree-level potential admits broken-symmetry ground states, the quan-
tum corrections to the static effective potential are complex. {The imaginary part is a consequence of an
instability towards phase separation and the static effective potential is not a relevant quantity for under-
standing the dynamics. ) Instead, we study here the equations of motion obtained from the one-loop
effective action for slow rollover out of equilibrium. We consider the case in which a scalar field theory
undergoes a rapid phase transition from T; ) T, to Tf & T, . We find that, for slow-rollover initial condi-
tions (the field near the maximum of the tree-level potential), the process of phase separation controlled
by unstable long-wavelength fluctuations introduces dramatic corrections to the dynamical evolution of
the field. We find that these effects slow the rollover even further, thus delaying the phase transition, and
increasing the time that the field spends near the "false vacuum. " Moreover, when the initial value of
the field is very close to zero, the dynamics becomes nonperturbatiue.

PACS number(s): 98.80.Cq, 11.10.Ef, 98.80.Bp

I. INTRODUCTION AND MOTIVATION

InAationary cosmological models provide very appeal-
ing scenarios to describe the early evolution of our
Universe [1]. Since the original model proposed by Guth
[2], several alterative scenarios have been proposed to
overcome some of the difficulties with the original propo-
sal.

Among them, the new inflationary model [3—6] is
perhaps one of the most attractive. The essential in-
gredient in the new inAationary model is a scalar field
that undergoes a second-order phase transition from a
high-temperature symmetric phase to a low-temperature
broken-symmetry phase. The expectation value (or
thermal average) of the scalar field P serves as the order
parameter. Initially, at high temperatures, the scalar
field is assumed to be in thermal equilibrium and /=0.
The usual field-theoretic tool to study the phase transi-
tion is the effective potential [7—9]. At high tempera-
tures, the global minimum of the effective potential is at
/=0, whereas at low temperatures there are two degen-
erate minima.

The behavior of the phase transition in the new
inAationary model is the following: As the Universe
cools down, the expectation value of the scalar field
remains close to zero until the temperature becomes
smaller than the critical temperature. Below the critical
temperature, when the effective potential develops degen-
erate minima away from the origin, the scalar field begins
to "roll down the potential hill. " In the new inAationary
scenario, the effective potential below the critical temper-
ature is extremely Aat near the maximum, and the scalar
field remains near the origin —i.e., the false vacuum —for
a very long time and eventually rolls down the hill very

slowly. This scenario thus receives the name of "slow
rollover. " During the slow-rollover stage, the energy
density of the Universe is dominated by the constant vac-
uum energy density V,s(/=0), and the Universe evolves
rapidly into a de Sitter space (see, for example, the re-
views by Kolb and Turner [10], Linde [11],and Branden-
berger [12]). Perhaps the most remarkable consequence
of the new inAationary scenario and the slow-rollover
transition is that they provide a calculational framework
for the prediction of density fiuctuations [13]. The cou-
pling constant in the typical zero-temperature potentials
must be fine-tuned to a very small value to reproduce the
observed limits on density fiuctuations [10,11].

This picture of the slow-rollover scenario is based on
the static effective potential. The use of the static
effective potential to describe a time-dependent situation
has been critized by Mazenko, Unruh, and Wald [14].
These authors argued that the dynamics of the cooling
down process is very similar to the process of phase sepa-
ration in statistical mechanics. They argued that the sys-
tem will form domains and that the scalar field will relax
to the values at the minima of the potential very quickly.

Guth and Pi [15] performed a thorough analysis of the
effects of quantum Auctuations on the time evolution.
These authors analyzed the situation below the critical
temperature by treating the potential near the origin as
an inverted harmonic oscillator. They recognized that the
instabilities associated with these upside-down oscillators
lead to an exponential growth of the quantum Auctua-
tions at long times and to a classical description of the
probability distribution function. Guth and Pi also
recognized that the static effective potential is not ap-
propriate to describe the dynamics, which must be treat-
ed as a time-dependent process.
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Subsequently, Weinberg, and Wu [16] have studied the
effective potential, particularly in the situation when the
tree-level potential allows for broken-symmetry ground
states. These authors carefully analyzed the contribu-
tions to the effective potential and showed that the imagi-
nary part of the one-loop effective potential is the result
of an analytic continuation of the unstable modes (invert-
ed oscillators) studied by Guth and Pi. That the effective
potential develops an imaginary part was realized in the
early treatments by Dolan and Jackiw [8]. This imagi-
nary part in fact conceals the growth of these unstable
modes and a time-dependent situation that cannot be de-
scribed by equilibrium statistical mechanics. The imagi-
nary part of the effective potential was related to the life-
time of a particular initial quantum state.

There have been several attempts to study the time
evolution of the scalar field either in Aat spacetime or de
Sitter space [17—21], but to our knowledge the influence
of the instabilities that are responsible for domain growth
and phase separation on the dynamics of the scalar field
has not yet been elucidated.

In this article we study the quantum dynamics of the
scalar field by analyzing the situation in which the system
originally in equilibrium at a temperature higher than the
critical temperature evolves out of equilibrium at a tem-
perature below the critical temperature. We provide a
detailed description of the dynamics out of equilibrium,
concentrating on the instabilities that drive the phase
transition and phase separation, which is the unstable
growth of long-wavelength fluctuations. Our approach
consists in obtaining the nonequilibrium evolution equa-
tion obtained from the one-loop effective action. These
equations turn out to be nonlocal and nonintegrable [22].
We provide a qualitative discussion and a consistent nu-
merical analysis of these evolution equations for a wide
variety of initial conditions.

The results of our analysis show that the instabilities
that trigger the growth of long-wavelength Auctuations
dramatically enhance the quantum corrections and result
in a further slow down of the scalar field.

For slow-rollover initial conditions, we show that even
for very weak coupling (consistent with the bounds on
density fluctuations), the quantum corrections become
very important and slow the dynamics dramatically, and
in particular for some initial conditions, in which the sca-
lar field is very close to the "false vacuum, " the quantum
corrections must be treated beyond perturbation theory.

This paper is organized as follows. In the next section
we review the effective potential and its shortcomings to
describe the dynamics.

In Sec. III we describe the nonequilibrium formalism
and our approach to obtain the equations of motion out
of equilibrium for the spatial average of the scalar field.
In this section, we provide an analysis of the renormaliza-
tion aspects of the effective equations of motion.

In Sec. IV we study the dynamics and provide an ana-
lytic as well as numerical analysis of the evolution equa-
tions for a wide range of initial conditions, emphasizing
the consequences of the unstable growth of long-
wavelength Auctuations.

We conclude the paper with an analysis of the poten-

tial implications of our results on cosmological phase
transitions and inflationary models.

II. COMPLEX EFFECTIVE POTENTIAL

N(x) =y+g(x),

x'4x, d x x —0=1
A n 0

(2.2)

II(x)=—+~(x),P

P= f d xII(x), f d x~(x)=O,

[II(x),4(y)] = —iA'5 (x —y), [P,y] = ih . —

(2.3)

(2.4)

We have kept (fi) in the above commutators to clarify
the quantum corrections.

Using the fact that vr, itt do not have a zero-momentum
component, the Hamiltonian becomes

p2H= +AV(y)+ f d x I —,'7r (x)+—,'[Vg(x)]

+ —,
' V"((p)g (x)+

(2.5)

where the ellipsis stands for higher-order terms.
To this order the Hamiltonian for the field g(x) is

quadratic, with a mass term that depends on y. In the
representation with creation and annihilation operators
for the harmonic oscillators, the Hamiltonain finally be-
comes (in the discrete momentum representation)

H = +QV(y)+ g (ai, ai, +—')A'co(k, y),2Q k k (2.6)

co(k, y)=[k + V"((p)]' (2.7)

When all the oscillators are in their ground state, the

It is already well known that when the tree-level poten-
tial allows for broken-symmetry ground states, the one-
loop effective potential becomes complex in a region of
field configurations. This unacceptable complex part of
the effective potential has been deemed an artifact of the
loop expansion, and for the most part ignored in most
treatments of the effective potential.

However, as was clearly shown by Weinberg and Wu
[16], the imaginary part of the effective potential has a
very physical meaning, and is a consequence of the insta-
bilities that drive phase separation.

A rather clear understanding of the imaginary part and
the physics associated with it is obtained by a derivation
of the effective potential within the Hamiltonian frame-
work. The Hamiltonian for a scalar Geld theory quan-
tized in a volume 0 is

H = f d'x [-,'11'(x)+-,'[Ve(x)]'+ V(e)] . (2. 1)

Since the effective potential is a function of the zero-
momentum component of the field, we separate the con-
stant part (zero momentum) (cp) of the field and its canon-
ical momentum;
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zero-point energy for the oscillators is then recognized as
the first-order quantum correction to the effective poten-
tial. Taking the large volume limit, the effective potential
to this order is then

~0V(V»=,'~os'+
4,

V'. (2.9)

Then for all values of y such that V"(y) &0, the effective
potential acquires an imaginary part given by

max
lmV„(q )=+ ", f '"

I '[~V"(q)~ —k']'"dk, (2.10)4~'

(k..„)'=
I

v"(~) I
. (2.11)

This imaginary part is finite (independent of renormal-
ization), and arises because for these values of y the
modes for which k &(k,„) are unstable and the fre-
quencies of the oscillators in (2.6) are imaginary. For
these modes the potential is that of an inverted oscillator.

These inverted oscillators for which co (k, y) &0 do not
have stationary-state solutions and the imaginary part of
the zero-point energy arises from the anaIytic continua-
tion of harmonic-oscillator wave functions from positive
to negative m . The sign of the imaginary part depends
on the analytic continuation. The quantum mechanics of
these inverted harmonic oscillators has been thoroughly
studied by Guth and Pi [15]and Weinberg and Wu [16].

There being no stationary states associated with these
inverted oscillators, an initial state must be specified. If,
for example, a Gaussian wave packet is prepared initially
centered at the origin of these inverted oscillators, it will
spread and the width of the packet wiH increase exponen-
tially in time [15,16]. This exponential growth is mani-
fest in the equal-time two-point function [15,16]

(g„(t)P „(t))-e" '"

This is the two-point Green s function computed in this
Gaussian state and measures the Auctuations of the
operator g. In particular, the growth of these unstable
modes is precisely the mechanism that Mazenko, Unruh,
and Wald [14] suggest.

The importance of the scalar field Auctuations in the
initial stages of cosmological phase transitions was point-
ed out by Linde [11].

One notes, however, that the two-point Green's func-
tion calculated in the analytically continued state is time
independent and given by

(q/, (t)q /, (t)) = 1

2' k, tp
(2.12)

This result is purely imaginary, but again this imaginary
part is obtained after the analytic continuation of these
Gaussian states, and is actually concealing a time-
dependent situation.

Another critical observation is that it is this two-point

d k
V,tr(p)= V(y)+ —f [k + V"(y)]'~ . (2.8)

2 (27r)

As usual, renormalization is carried out in the standard
manner. From now on, we set A= 1. Consider for simpli-
city the case in which

function evaluated in these Gaussian states that gives the
one-loop correction to the effective potential. Thus it be-
comes clear that the imaginary part, resulting from an
analytic continuation of the unstable modes, is in fact
hiding an unstable time evolution. At finite temperature,
the imaginary part is signaling a nonequilibrium situa-
tion.

This situation is well understood in statistical mechan-
ics; perhaps the earliest example is the van der Walls
equation of state and its unphysical isotherms. In the un-
physical region, the situation must be studied out of equi-
librium. In this region there is coexistence of different
phases that may not be studied within equilibrium statist-
ical mechanics with a free energy for homogeneous field
configurations. An ad hoc remedy in this situation is the
Maxwell construction that replaces the unphysical region
of the isotherms by a straight line. Its physical interpre-
tation is that the nonequilibrium state may be found, in
the coexistence region, as a mixture of phases with arbi-
trary concentrations of each phase. This situation is also
typical of binary mixtures in statistical mechanics [23,24].
The Maxwell constructed efFective potential or free ener-

gy is irrelevant for the dynamical nonequilibrium descrip-
tion of the system.

The exponential growth of the unstable modes (invert-
ed oscillators) signals the growth of domains and the on-
set of the process that triggers the phase transition, i.e.,
phase separation. This is very similar to the process of
spinodal decomposition in statistical mechanics [23,24].
An attempt to describe spinodal decomposition within
the context of field theory has been described by Calzetta
[27).

Clearly the approximation of inverted oscillators is
crude as it neglects nonlinear effects. The growth of
these unstable modes will eventually slow down when the
nonlinearities become important; this is the process of
coarsening. As we will show later, a clear understanding
of the physics of coarsening in the regime where the non-
linearities become important may require departing from
perturbative treatments.

Usually, in order to understand the dynamics of the
scalar field in this type of situation, the static effective po-
tential is used in the equations of motion, resulting in a
typical evolution equation (in fiat spacetime)

d2q) d V,s'(V )+ =0.
dt

(2.13)

III. NONEQUILIBRIUM TIME EVOLUTION

As explained in the previous section, one must depart
from the usual description in terms of the static efFective

After the arguments presented above, it becomes clear
that this equation is inappropriate for the study of the
dynamical evolution. The imaginary part of V,tt(y) sig-
nals an unstability and the static effective potential is not
a suitable quantity to study the dynamics. That is, one
must consider the effective action for time-dependent
fields and not merely the effective potential which holds
for constant fields.

We turn to this study in the next section.
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potential, and treat the dynamics with the full time evolu-
tion. The time evolution of the system will be determined
once the evolution Hamiltonian and the initiah state are
prescribed.

In order to understand the dynamics of the phase tran-
sition and the physics of the instabilities mentioned
above, let us consider the situation in which for time t &0
the system is in equilibrium at an initial temperature
T; & T„where T, is the critical temperature. At time
t =0 the system is rapidly "quenched" to a final tempera-
ture below the critical temperature Tf & T, and evolves
thereafter out of equilibrium.

What we have in mind in this situation is a cosmologi-
cal scenario with a period of rapid inflation in which the
temperature drops very fast compared to typical relaxa-
tion times of the scalar field. In particular this situation
should correspond to the case h »~ ', with h Hubble' s
constant and ~ a typical relaxation time. At high temper-
atures and weakly coupled theories we would expect

'=A, T Q, is the couphng). When T=T, ~A, '~ re-
laxation times become very large and the dynamics of the
long-wavelength modes (the only relevant modes for the
phase transition) becomes critically slowed down. Pre-
cisely because of this critical slowing down, we conjecture
that an inflationary period at temperatures near the criti-
cal temperature may be described in this "quenched" ap-
proximation. Another situation that may be described by
this approximation is that of a scalar field again at
T; & T, suddenly coupled to a "heat bath" at a much
lower temperature (below the transition temperature) and
evolving out of equilibrium. The heat bath may be other
fields at a different temperature. The influence of a heat
bath in an inflationary universe has been studied in the
linearized approximation by Cornwall and Bruinsma [26].

One then would expect that a "quenching out-of-
equilibrium scenario" may be an appropriate description
near the critical temperature for these situations. Cer-
tainly this is only a plausibility argument; a deeper under-
standing of the initial conditions must be pursued to ob-
tain a more precise knowledge of the cooling down pro-
cess.

We do not envisage in this article to study the case of
an inflationary cosmology or the detailed dynamics of the
mechanism that produces the "quenching" below the
critical temperature and departure from equilibrium. We
expect to report on these investigations in forthcoming
articles.

Here we just assume that such a mechanism takes
place and simplify the situation by introducing a Hamil-
tonian with a time-dependent mass term to describe this
situation:

T, , and the system is described by the density matrix
—13.H.

p, =e j g

H, =H(t &0) .

(3.3)

(3.4)

In the Schrodinger picture, the density matrix evolves in
time as

(3.5)

with U(t) the time evolution operator.
An alternative and equally valid interpretation (and the

one that we like best) is that the initial condition being
considered here is that of a system in equilibrium in the
symmetric phase, and evolved in time with a Hamiltonian
that allows for broken-symmetry ground states, i.e., the
Hamiltonian (3.1) and (3.2) for t )0.

The expectation value of any operator is thus

(8)(t)=Tre ' ' U '(t)8U(t)/Tre (3.6)

The numerator of the above expression has a simple
meaning: Start at time T &0, evolve to time t, insert the
operator 8, and evolve backwards in time from t to T & 0
and along the negative imaginary axis from T to T i p, —
This operation is depicted in Fig. 1(a). The denominator
just evolves along the negative imaginary axis from T to
T ip, T—he co.ntour in the numerator may be extended
to an arbitrary large positive time T by inserting
U(t, T')U(T', t)=1 to the left of 8 in (3.7), thus becom-
ing

J+

J

This expression may be written in a more illuminating
form by choosing an arbitrary time T &0 for which
U(T) =exp[ iTH, —] Then .we may write

exp[ P, H, ]=—exp[ —iH, (T iP;——T)]=U(T —iP;, T) .

Inserting in the trace U '(T)U(T)=1, commuting
U (T) with p;, and using the composition property of
the evolution operator, we may write (3.6) as

(8)(t)=TrU(T iP;t)OU—(t, T)/TrU(T —iP;, T) .

(3.7)

H(r)= I d'x —,'11'(x)+,'[Ve(x)]'

+ —,'m (t)N (x)+—4&"(x), (3.1)4

(3.2)

where both m and p are positive. We assume that for
all times t & 0 there is thermal equilibrium at temperature

(b)

FICr. 1. (a) Contour of evolution in complex time plane; the
cross denotes insertion of an operator. (b) Final contour of evo-

lution, eventually T' —+ ~,T~ —Do.
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(6)(t)=TrU(T i—p, , T) U(T, T')U(T', t)

X GU(t, T)/Tr U( T —iP;, T) . (3.g)

The numerator now represents the process of evolving
from T &0 to t, inserting the operator 8, evolving fur-
ther to T', and backwards from T' to T, and down the
negative imaginary axis to T i—P, This process is de-
picted in the contour of Fig. 1(b). Eventually we take
T~ —~, T'~ ~. It is straightforward to generalize to
real-time correlation functions of Heisenberg picture
operators.

This formalism allows us also to study the general case
in which both the mass and the coupling depend on time,
and furthermore, by taking the zero-temperature limit,
we can study the situation in which a particular state is
prepared at time t =0 and evolved in time.

For example, by switching off the coupling for t (0
one is preparing a Gaussian density matrix at t =0 or, in
the zero-temperature limit, a Gaussian wave functional.
This density matrix or Gaussian functional will then be
evolved in time, and in this time-evolved state (or density
matrix) we compute expectation values of operators, or
correlation functions. We then see that the above formal-
ism permits us to study these situations in great generali-
ty.

As mentioned before, another point of view that one
may take on the "quenching" below the critical tempera-

I

ture is that a definite state or density matrix describing
the symmetric phase is prepared as an initial condition
for t (0 and evolved in time with the Hamiltonian that
allows for broken-symmetry states. One then studies the
dynamics of the phase transition, and how the system
evolves in time from the initially symmetric state towards
the asymmetric states.

As usual, the insertion of an operator may be achieved
by inserting sources in the time evolution operators,
defining the generating functionals and eventually taking
functional derivatives with respect to these sources. Note
that we have three evolution operators, from T to T',
from T', back to T (inverse operator), and from T to
T i p—, Si.nce each of these operators has interactions
and we want to use perturbation theory and generate the
diagrammatics from the generating functionals, we use
three diferent sources: a source J+ for the evolution
T~T',J for the branch T'~T, and finally J~ for
T~T —ip, . The denominator may be obtained from the
numerator by setting J+ =J =0. Finally the generating
functional

Z [J+,J,J~]=TrU(T —iP, , T;J~)U(T, T', J )

X U(T', T;J+)
may be written in term of path integrals as (here we
neglect the spatial arguments to avoid cluttering of nota-
tion)

Z[J+,J,Jt]= f DND+, Dd&z f 2)@+2M& 2)@~exp i f [%[AD+,J+]—X[&,J ]I
T

T—iP,.
Xexp i

'
@~,J~ (3.9)

T

with the boundary conditions @+(T)=N~(T ip;)=—@, &0+(T')=&0 (T')=4&2, 0& (T)=N~(T)=N, . As usual, the
path integrals over the quadratic forms may be done and one obtains the final result for the partition function:

T' T —iP,.

Z[J+,J,J~]=exp i f dt[X;„,( —i5/6J+) X;„,(i5/—6J )] exp i f

dt's;„,

( —i5/5J~)
T

Xexp —' f dt, f dt2J, (t, )J, (t2)G, (ti, t, )
2 G c

(3.10)

where J, are the currents defined on the contour of Fig. 1(b), J+—
,J~ [25], and G, is the Green's function on the contour

(see below), and again the spatial arguments have been suppressed.
In the two contour integrals (on t„t2) in (3.10) there are altogether nine terms, corresponding to the combination of

currents in each of the three branches. However, in the limit T~ —~, the contributions arising from the terms in
which one current is on the (+) or ( —) branch and another on the imaginary time segment (from T to T —ip;) go to
zero when computing correlation functions in which the external legs are at finite real time. For this real-time correla-
tion functt'on there is no contribution from the J~ terms that cancel between numerator and denominator, and the infor-
mation on finite temperature is encoded in the boundary conditions on the Green's functions (see below). Then for the
calculation of finite real time correlation f-unctions the generating functional simplifies to [27,28]

Z[J,J ]=exp i f dt[X;„,( i5/6J+—) X;„,(i5/—5J )] .exp —f dt, f dt2J, ( &)Jb(t2)G,b(t&, t2) . ,
T T

L

(3.11)

with a, b =+,—.
This formulation in terms of time evolution along a

contour in complex time has been used many times in
nonequilibrium statistical mechanics. To our knowledge
the first to use this formulation were Schwinger [29] and

l

Keldysh [30] (see also Mills [31]). There are many arti-
cles in the literature using these techniques to study
time-dependent problems. Some of the more clear arti-
cles are by Niemi and Semenoff [25], Landsman and van
Weert [32], Semenoff and Weiss [33], Jordan [34], Kobes
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and Kowalski [35], Calzetta and Hu [28], and Paz [36]
and references therein.

At first sight one seems to have complicated the situa-
tion enormously by doubling the number of fields. How-
ever, this doubling is a natural consequence of dealing
with a time evolution of a density matrix and in general
with probabilities, instead of amplitudes. Rather than
computing in-out amplitudes, we are here computing ex-
pectation values or correlation functions in the time-
evolved in state or density matrix [29,34].

The Green's functions that enter in the integrals along
the contours in (3.10) and (3.11) are given by (see above
references)

G (t, , t, )=G'(t„t, )O(t, t, }—

which the determinant (in the logdet) incorporates the
boundary condition of equilibrium at time t (0 at the ini-
tial temperature.

To one loop we find the equation of motion,

d t +m '(t)P(t)+ —P'(t)
dt'

d k+—P(t) I (
—i)G„(t,t)=0,

(2~)'
(3.18)

where Gk(t, t)=Gk (t, t)=Gk (t, t) is the spatial Fourier
transform of the equal-time Green's function.

At this point, we would like to remind the reader that

—iG„(t, t) = (+„+(t)++,(t) )

+G '(t„t,}S(t, t, ), —

G (t„t2)=G (t„t2)O(t2 —t, )

+G '(t„t, )S(t, —t, ),
G+ (t„t,)= —6'(t„t, ),
G +(t„t,)= —6'(t, , t, )= —G'(t„t, ),
6 '(T, t, ) =G '(T iP, , t, )—.

(3.12)

(3.13)

(3.14)

(3.15)

(3.16) d2 +k +M (t) 'Qk =0,
dt

(3.19)

is a positiue defini-te quantity (because the field 4 is real)
and as we argued before (and will be seen explicitly short-
ly) this Green s function grows in time because of the in-

stabilities associated with the phase transition and
domain growth [15,16].

These Green's functions are constructed out of the
homogeneous solutions to the operator of quadratic Auc-

tuations,

As usual G, G are homogeneous solutions of the
quadratic form with appropriate boundary conditions.
We will construct them explicitly later. The condition
(3.16) is recognized as the periodicity condition in imagi-
nary time [Kubo-Martin-Sch winger (KMS) condition]
[37]. It is straightforward to show, using the above
Green's functions, that Z [J,J]= 1, as it must.

Although most of the details presented above on the
nonequilibrium formalism are available in the literature,
we included them here for self-consistency and with the
intention to clarify some issues that are usually glossed
over in most treatments.

We are now in condition to obtain the evolution equa-
tions for the average of the scalar field in the case when
the potential is suddenly changed, to account for a sud-
den change in temperature from above to below the criti-
cal temperature as described by the model Hamiltonian
(3.1) with (3.2). For this purpose we use the tadpole
method [9],and write

0&+—(x, t) =P(t)+ 0 +—(x, t), (3.17)

where, again, the + refers to the branches for forward
and backward time propagation. The reason for shifting
both (+) fields by the same classical configuration is that
P enters in the time evolution operator as a background
c-number variable, and time evolution, both forward and
backwards, is now considered in this background.

The evolution equations are obtained with the tadpole
method by expanding the Lagrangian around P(t) and
considering the linear, cubic, quartic, and higher-order
terms in '0—as perturbations and requiring that

(e+-(x, t) ) =0 .

It is a straightforward exercise to see that this is
equivalent to extremizing the one-loop effective action in

M'(t)= m'+ —P,
' S( t)+ —p'+ ——P'(t) O(t) .

2 ' 2

(3.20)

The boundary conditions on the homogeneous solu-
tions are

ilk (t &0)=e

co((k)= k +m +—P,
2 X 2

1/2

(3.21)

(3.22)

where P; is the value of the classical field at time t (0
and is the initial boundary condition on the equation of
motion. Truly speaking, starting in a fully symmetric
phase will force P; =0, and the time evolution will main-
tain this value; therefore, we admit a small explicit
symmetry-breaking field in the initial density matrix to
allow for a small P;. The introduction of this initial con-
dition seems artificial since we are studying this situation
of cooling down from the symmetric phase.

However, we recognize that the phase transition from
the symmetric phase occurs via formation of domains (in
the case of a discrete symmetry), inside which the order
parameter acquires nonzero values. The domains will
have the same probability for either value of the field and
the volume average of the field will remain zero. These
domains will grow in time; this is the phenomenon of the
phase separation and spinodal decomposition familiar in
condensed matter physics. Our evolution equations
presumably will apply to the coarse-grained average of
the scalar field inside each of these domains. This aver-
age will only depend on time. Thus we interpret cp; as
corresponding to the coarse-grained average of the field
in each of these domains. The question of initial condi-
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X [ ilk (t)Vlk (t')+e ' ' 8'k (t) ilk (t')],

G& (t, t')=G (t', t) .

(3.23)

(3.24)

Summarizing, the effective equations of motion to one
loop that determine the time evolution of the scalar field
are

d +m '(t)p(t)+ —p'(t)

ek (t)nJ, (t) p;Co (k)+—P( t)
3

coth
2 (2~)3 2'( k 2

(3.25)

tions on the scalar field is also present (but usually over
looked) in the slow-rollover scenarios, but as we will see
later, it plays a fundamental role in the description of the
evolution.

The identification of the initial value y; with the aver-
age of the field in each domain is certainly a plausibility
argument to justify an initially small asymmetry in the
scalar field which is necessary for the further evolution of
the field, and is consistent with the usual assumption
within the slow-rollover scenario.

%'e are currently studying the dynamics of the phase
transition from the symmetric phase by looking at the
composite operator @ (x, t) which measures the fluctua-
tions, and will report on our studies in a forthcoming ar-
ticle [38]. An alternative approach using this composite
operator has also been proposed by Lawrie [39].

The boundary conditions on the mode functions Vlk (t)
correspond to "vacuum" boundary conditions of positive
and negative frequency modes (particles and antiparti-
cles) for t &0.

Finite temperature enters through the periodicity con-
ditions (3.16) and the Green's functions are

G' l 1

2', (k) 1

(k,„) =p, —( A. I2 )P; are unstable
In particular, for early times (t )0), when P,. =0, these

unstable modes behave approximately as

'i4 (t)= Ake ' +Bke

'll~ (t)=[ ilk+(t)]*,

ci) ((k)
1 —i Bk 2 ~ & k k

k

1/2

p2 $2 k22 A, 2 2

(3.27)

(3.28)

(3.29)

(3.30)

Then the early time behavior of iGk—(t, t) is given by

1iGk(t—, t) =
2co( k

1 p+m

X [cosh(2W'kt) —1]

Xcoth[P, co (k)/2] . (3.31)

This early time behavior coincides with the Green s func-
tion of Guth and Pi [15] and Weinberg and Wu [16] for
the inverted harmonic oscillators when our initial state
(density matrix) is taken into account.

Our evolution equations, however, permit us to go
beyond the early time behavior and to incorporate the
nonlinearities that will eventually shut off the instabili-
ties.

These early-stage instabilities and subsequent growth
of fIuctuations and correlations are the hallmark of the
process of phase separation and precisely the instabilities
that trigger the phase transition.

It is clear from the above equations of evolution that
the description in terms of inverted oscillators will only
be valid at very early times.

At early times, the stable modes for which k )(k,„)
are obtained from (3.27), (3.28), and (3.29) by the analytic
continuation

d2
+k +M (t) ilk =0,

dt2
(3.26)

JYk —+ ice) (k—) = k —p +—P,
2 2 A, 2

1/2

with (3.20) and (3.21).
This set of equations is too complicated to attempt an

analytic solution; we will study this system numerically
shortly.

However, before studying numerically these equations,
one recognizes that there are several features of this set of
equations that reveal the basic physical aspects of the dy-
namics of the scalar field.

(i) The effective evolution equations are real. The
mode functions 'Mk(t) are a complex conjugate of each
other as may be seen from the time-reversal symmetry of
the equations and the boundary conditions (3.21). This
situation must be contrasted with the expression for the
effective potential for the analytically continued modes.

(ii) Consider the situation in which the initial
configuration of the classical field is near the origin
P; =0; for t )0, the modes for which k & (k,„),

For t &O, Vlk (t) ll~ (t)=l, and one obtains the usual
result for the evolution equation,

d 2y(t) d V,ft(p)

dt

with V,tt(P) the finite-temperature effective potential, but
for t (0 there are no unstable modes.

It becomes clear, however, that for t & 0 there are no
static solutions to the evolution equations for P(t)%0

(iii) Coarsening: As the classical expectation value P(t)
"rolls down" the potential hill, P (t) increases and

[k,„(t)] =p — P(t)—2 2 A 2

decreases, and only the very long-wavelength modes
remain unstable, until, for a particular time t„
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2 d
e +I+e M (t) 6'k(t)=0,

dt2
(3.32)

with the boundary conditions (3.21). Let us define the
functions Vk (t) as the two linearly independent solutions
for t )0 to Eq. (3.32) with the boundary conditions
Vi, (0+ ) = 1. The mode functions Vlk (t) solutions to
(3.32) with the boundary conditions (3.21) are written as

[k,„(t,)] =0. This occurs when P (t, )=2iu /A, ; this is
the inAexion point of the tree-level potential. In statisti-
cal mechanics this point is known as the "classical spino-
dal point" and t, as the "spinodal time" [23,24]. When
the classical field reaches the spinodal point, all instabili-
ties shut off. From this point on, the dynamics is oscilla-
tory and this period is identified with the "reheating"
stage in cosmological scenarios [11,12].

It is clear from the above equations of evolution that
the description in terms of inverted oscillators will only
be valid at small positive times, as eventually the unstable
growth will shut off.

The value of the spinodal time depends on the initial
conditions of i'(t). If the initial value P, is very near the
classical spinoda1 point, t, will be relatively small and
there will not be enough time for the unstable modes to
grow too much. In this case, the one-loop corrections for
small coupling constant will remain perturbatively small.
On the other hand, however, if i)), =0, and the initial ve-
locity is small, it will take a very long time to reach the
classical spinodal point. In this case the unstable modes
may grow dramatically, making the one-loop corrections
non negligi-ble even for small coupling The.se initial con-
ditions of small initial field and velocity are precisely the
"slow-rollover" conditions that are of interest in cosmo-
logical scenarios of "new inflation. "

(iv) Renormalization: As argued above, for t )0, there
are no static solutions to the equation of motion for the
scalar field. The mode functions Vlk (t) depend implicitly
on the field i'(t). As in the usual situation, one expects
ultraviolet divergences in the one-loop correction. It is
not clear from the equation of motion for the scalar field
whether these divergences may be absorbed in a
redefinition of the mass and coupling constant, or can-
celed by local counterterms. Since we want to study the
time evolution and be able to extract meaningful informa-
tion, we must first understand the renormalization as-
pects of the effective equation of motion.

The ultraviolet divergences must be absorbed in m (t)
and A, , whose coeKcients in the equation of motion are
P(t) and i' (t), respectively, i.e., time dependent Since, as.
mentioned previously, for t (0 the situation corresponds
to the usual case of the static effective potential, renor-
malization proceeds in the standard manner. However,
for t )0 the situation is different and to understand it we
need the large k behavior of the mode functions. We
study the short-wavelength behavior by a WKB-type
analysis: We define @=1/k and divide the equation for
the mode functions by k, thus obtaining the equation

The coeKcients ck, dk are obtained from the matching
conditions at t =0. We propose a WKB ansatz for the
mode functions Vk (t):

V+(t) is —(i)ie~ +
(3.35)

S+(t—)= g e"S„+(t)—.
n=0

(3.36)

Inserting this ansatz in (3.32) and comparing powers of e
we find the asymptotic behavior for large k to be

Vk(t)=exp +i kt+ I M (t')dt'
2k o

X 1 — [M'(t) —M'(0+)] +
4k

(3.37)

The leading behavior for large k of the coefficients is
found to be

1 cv ((k)
ck =—1+

k+M (0+)/2k

1 cv, (k)
2 k+M (0+)/2k

+ ~ ~ ~

+ ~ ~ ~

(3.38)

(3.39)

Inserting these results for the large k behavior in the
one-loop contribution, it is straightforward to find that
the divergent terms are independent of temperature and
we obtain

8'k (t)Vlk (t) /3;tv&(k)
coth2'�( k 2

1 2 1

Sm 8~
—p +—P (t) ln —+finite,A

2 K

(3.40)

IV. ANALYSIS OF THK EVOLUTION

where A is an upper momentum cutoff, K a renormaliza-
tion scale, and the finite part is time, temperature, and K

dependent.
It is clear that these divergences may be canceled by lo-

cal counterterms of the usual form, where the mass coun-
terterm depends (locally) on time and changes suddenly
at t =0. The coupling constant is renormalized in the
usual manner.

It is important to point out that the integral for the
one-loop correction may be split into the contribution
from the unstable modes k ([k,„(t)] and that of the
stable modes k ) [k,„(t)] . It is only the latter that re-
quires renormalization and where the divergences reside.
The contribution from the unstable modes is finite and
does not require renormalizations. The renormalization
of the effective action has been done in an alternative
manner using dimensional regularization by Avan and de
Vega [41].

Vlk (t)=ci, Vk (t)+d„Vk (t),
Vli, (t) =[V/„+(t)]* .

(3.33)

(3.34)

As mentioned previously within the context of coarsen-
ing, when the initial value of the scalar field P; =0, and
the initial temporal derivative is small, the scalar field
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(4.1)

(4.2)

and to account for the change from the initial tempera-
ture to the final temperature (T, )T„TI( T, ) we
parametrize [40]

(4.3)

(4 4)

where the subscript R stands for renormalized quantities,—pz (0) is the renormalized zero-temperature "negative
mass squared, " and T, =24p~(0)/A, z. Furthermore, be-
cause [k,„(t)] (pz and T; ) T„for the unstable modes
T, ))[k,„(t)] and we .can take the high-temperature
limit coth[P;co&(k)/2] =2T; /co&(k). Finally, the
effective equations of evolution for t )0, keeping in the
one-loop contribution only the unstable modes as ex-
plained above (q & [q,„(r)] ), become, after using
co =pR(q +L ),

d2
ri(r) —rl(r)+ri (r)

, Vl+(r)Vl, (r)f+grt(r) q dq =0,
0 q +L (4.5)

slowly rolls down the potential hill. But during the time
while the scalar field remains smaller than the "spinodal"
value, the unstable modes grow and the one-loop contri-
bution grows consequently. For a "slow-rollover" condi-
tion, the field remains very small [P (t) &(2p /1, ] for a
long time, and during this time the unstable modes grow
exponentially. The stable modes, on the other hand, give
an oscillatory contribution which is bound in time, and
for weak coupling remains perturbatively small at all
times.

Then, for a "slow-rollover" situation and for weak cou-
pling, only the unstable modes will yield to an important
contribution to the one-loop correction. Thus, in the
evolution equation for the scalar field, we will keep only
the integral over the unstable modes in the one-loop
correction.

Phenomenologically, the coupling constant in these
models is bound by the spectrum of density fluctuations
to be within the range A,z = 10 ' —10 ' [l l]. The
stable modes will always give a perturbative contribution,
whereas the unstable modes grow exponentially in time,
thus raising the possibility of giving a non-negligible con-
tribution.

With the purpose of numerical analysis of the effective
equations of motion, it proves convenient to introduce
the following dimensionless variables:

+q —[q,„(t)] Vl—(r) =0, (4.6)

[q,„(r)] =1—3g (r), (4.7)

(4.8)

For T, )T, and T&(&T, the coupling (4.8) is bound
within the range g =10 —10 . The dependence of the
coupling with the temperature rejects the fact that at
higher temperatures the fluctuations are enhanced. It is
then clear that the contribution from the stable modes is
always perturbatively smaO, and only the unstable modes
may introduce important corrections if they are allowed
to grow for a long time.

From (4.5) we see that the quantum corrections act as a
positive dynamical renormalization of the "negative mass"
term that drives the rolling down dynamics. It is then
clear that the quantum corrections tend to slow down the
evolution.

In particular, if the initial value ri(0) is very small, the
unstable modes grow for a long time before g(r) reaches
the spinodal point g(r, )=1/&3, at which point the in-
stabilities shut off. If this is the case, the quantum
corrections introduce substantial modifications to the
classical equations of motion, thus becoming nonpertur-
bative. If g(0) is closer to the classical spinodal point,
the unstable modes do not have time to grow dramatical-
ly and the quantum corrections are perturbatively small.

Thus we conclude that the initial conditions on the
field determine whether or not the quantum corrections
are perturbatively small.

Although the system of equations (4.5) and (4.6) are
coupled, nonlinear, and integro-differential, they may be
integrated numerically. Figures 2, 3, and 4 depict (a) the
solutions for the classical [42] (solid lines) and quantum
(dashed lines) evolution; (b) the quantum correction, i.e.,
the fourth term in (4.5) including the coupling g; (c),(d)
the classical (solid lines) and quantum (dashed lines) ve-
locities dr)(r)/dr and [q,„(r)) . For the numerical in-
tegration, we have chosen L =1; the results are only
weakly dependent on L, and taking g =10, we have
varied the initial condition g(0) but used
[dq(r)/dr], 0=0.

We recall from a previous discussion that g(r) should
be identified with the average of the field within a
domain. We are considering the situation in which this
average is very small, according to the usual slow-
rollover hypothesis, and for which the instabilities are
stronger.

In Fig. 2(a), q(0)=2. 3X10 . We begin to see that
the quantum corrections become important at t = 10/pR
and slow down the dynamics. By the time that the classi-
cal evolution reaches the minimum of the classical poten-
tial at g=1, the quantum evolution has just reached the
classical spinodal q= I/&3. We see in Fig. 2(b) that the
quantum correction becomes large enough to change the
sign of the "mass term. " The field continues its evolution
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towards larger values, however, because the velocity is
different from zero, attaining a maximum [Fig. 2(c)]
around the time when the quantum correction attains its
maximum. As g gets closer to the classical spinodal
point, the unstability shuts off as is clearly seen in Fig.
2(d) and the quantum correction arising from the unsta-
ble modes becomes perturbatively small. From the spino-
dal point onwards, the field evolves towards the
minimum and begins to oscillate around it; the quantum
correction will be perturbatively small, as all the instabili-
ties had shut off. Higher-order corrections will introduce
a damping term as quanta may decay in elementary exci-
tations of the true vacuum.

Figures 3(a)—3(d) show a more marked behavior for
rI(0) =2.27X10, de(0)/dr=0; note that the classical
evolution of the field has reached beyond the minimum of
the potential at the time when the quantum evolution has

just reached the classical spinodal point. Figure 3(b)
shows that the quantum correction becomes larger than
1, and dramatically slows down the evolution; again be-
cause the velocity is different from zero [Fig. 3(c)] the
field continues to grow. The velocity reaches a maximum
and begins to drop. Once the field reaches the spinodal
again the instabilities shut off [Figs. 3(b) and 3(d)] and
from this point the field will continue to evolve towards
the minimum of the potential, but the quantum correc-
tions will be perturbatively small.

Figures 4(a)-4(d) show a dramatic behavior for
rj(0)=2.258 X 10, drI(0)/dr=0. The unstable modes
have enough time to grow so dramatically that the quan-
tum correction [Fig. 4(b)] becomes extremely large )) 1

[Fig. 4(b)], overwhelming the "negative mass" term near
the origin. The dynamical time-dependent potential now
becomes a minimum at the origin and the quantum evo-
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lution begins to osciOate near g=O. The contribution of
the unstable modes has become nonperturbative, and cer-
tainly our one-loop approximation breaks down.

As the initial value of the field gets closer to zero, the
unstable modes grow for a very long time. At this point,
we realize, however, that this picture cannot be complete.
To see this more clearly, consider the case in which the
initial state or density matrix corresponds exactly to the
symmetric case. g=O is necessarily, by symmetry, a fixed
point of the equations of motion. Beginning from the
symmetric state, the field will always remain at the origin,
and though there will be strong quantum and thermal
fluctuations, these are symmetric and will sample field
configurations with opposite values of the field with equal
probability.

In this situation, and according to the picture present-
ed above, one would then expect that the unstable modes
will grow indefinitely because the scalar field does not roll
down and will never reach the classical spinodal point,
thus shutting off the instabilities. What is missing in this

picture and the resulting equations of motion is a self-
consistent treatment of the unstable Auctuations, which
must necessarily go beyond one loop. A more sophisti-
cated and clearly nonperturbative scheme must be in-
voked that will incorporate coarsening, that is, the shift
with time of the unstable modes towards longer wave-
length and the eventual shutting off of the instabilities.
We are currently [38] exploring a Hartree approximation
that will incorporate self-consistently these features.
Another possible approach would be a variational treat-
ment as advocated in Refs. [18,19] or as proposed by
Lawrie [39].

V. CONCLUSIONS

We have studied the effective equations of motion for
the spatially independent average of a scalar field evolv-
ing out of equilibrium after a second-order phase transi-
tion. After pointing out the severe shortcomings in the
usual description in terms of the effective potential, we
considered the situation in which a scalar field theory is
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suddenly cooled below the critical temperature from an
initia s a e a1 t t at a temperature higher than t e critica tem-
perature. e use e~ W the tools of statistical mechanics ou o

~ ~ ~

equilibrium o'1'b ' t study the real-time dynamics uring a
"slow-rollover stage.t " The effective nonequilibrium
equations o mo ionf tion are studied both analytically and nu-

ablemerically to one- oop eve ~-1 op level. We find that the unsta e
growth of long-wavelength fluctuations that trigger t e

f h separation is responsible for a very
marked behavior in the time evolution of the scalar e
Even for very weak couplings, consistent with the boun s
from density fluctuations, for the case of "slow-ro over"
initial conditions, ed' '

the time evolution is dramatically
rowthslowe own as al d d a consequence of this unstable growt

h si nals the onset of the phase transition. W en e
scalar field is very close to the ongtn (at the local max-
imum of the potential) the unstable modes can grow for a
long time and the effect of the quantum (and therma )

corrections become very large and eventually nonpertur-
b

'
~ W ive a qualitative and quantitative escriptionbative. e give

of the coarsening process and the evenentual shut off of the
instabilities.

n under-We argue ae that a comprehensive treatment an un er-
standing of the late-stage dynamics of the phase transi-

and time evolution of the scalar field, involves a non-tion, an im
pertu rba ti Ue treatment out of equilibrium. is r
must incorporate no on yt t only the growth but also the coar-
sening features w en eh th initial state is symmetric and the
initial value of the scalar field is zero, thus remaining zero
during the time evolution.

This is the next step in a consistent ana ysis h dy-sis of the dy-
namics; wor on is pk th' problem is currently underway.

the case ofClearly, all this must be extended to the case o
inflationary cosmology; in particu a 'par a descri tion of the
dynamics out o equi i riuf 1'brium in a de Sitter background is

willthe next stage. nI this case the physics of coarsening wi
be complicate y e red b th dshift of wave vectors and more

er under-modes enter the unstable regime; clearly a deeper un er-
standing of these instabilities is necessary.

However, we e ieve ab 1 th t the results presented in this
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article provide a novel insight into the long-standing
problem of the dynamics of a phase transition and the en™
suing evolution out of equilibrium when quantum and
thermal

fluctuations
are taken into account. It also

points out that this problem must be studied as a fully
time-dependent process and that one must abandon the
usual treatment in terms of the eQ'ective potential.

The potential consequences for inAationary scenarios
are obvious; the instabilities and growth of long-
wavelength fluctuations enhance the quantum and
thermal corrections that become large. As a conse-
quence, the "slow-rollover'* stage is delayed; the scalar
field remains near the "false vacuum" for a longer period
of time, giving rise to a longer inflationary stage and a de-
layed completion of the phase transition.
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