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We systematically analyze the decay of metastable topological defects that arise from the spontaneous
breakdown of gauge or global symmetries. Quantum-mechanical tunneling rates are estimated for a
variety of decay processes. The decay rate for a global string, vortex, domain wall, or kink is typically
suppressed compared to the decay rate for its gauged counterpart. We also discuss the decay of global
texture, and of semilocal and electroweak strings.
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I. INTRODUCTION

Topological defects arise as stable solutions of classical
field equations in a variety of models with spontaneously
broken symmetries. The higher symmetry usually
characterizes the high-temperature phase of the model,
and the symmetry breaking corresponds to a phase tran-
sition. The type of defects formed at a phase transition
depends on the topology of the vacuum manifold,
M =6/H, where G and H are, respectively, the symme-
try groups before and after the symmetry breaking [1—4].

Linear defects, or strings, are formed if the first homo-
topy group is nontrivial, tr, (M)WI; point defects, or
monopoles, are formed if vr2(M)WI; and sheetlike defects,
or domain walls, are formed if mo(M)WI. These defects
are stable in the sense that "unwinding" the topological
knots associated with the defects would require going
over an infinitely high potential barrier. The physical
properties of defects crucially depend on whether the
broken symmetry is gauge or global. For example, the
mass of a global monopole and the mass per unit length
of a global string are infrared divergent, while the corre-
sponding quantities for gauge defects are finite.

The purpose of this paper is to give a systematic ac-
count of the decay of metastable defects in relativistic
Geld theories. A metastable defect is a stable solution to
the classical field equations, stable in the sense that small
vibrations about the solution have nonnegative frequency
squared. But a metastable defect can be unwound by go-
ing over a Pnite potential barrier; hence, it can decay
quantum mechanically. In the limit of small A, the decay
rate approaches zero like e ". We will describe how
the "tunneling action" B can be calculated for various
types of metastable defects.

One type of metastable defect can arise in models with
a sequence of phase transitions:
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G~Z2~I, (1.2)

with mo(G) =xi(G)=I. Since vr&(G/Z2) =Z2 and
m.o(Z2 ) =Z2, the first phase transition gives rise to strings
and the second to domain walls. However, it can be
shown [5,6] that strings formed at the first phase transi-
tion become boundaries of the walls formed at the second
phase transition. Closed and infinite walls without boun-
daries can also be formed, but they are not topologically
stable: an infinite planar wall decays by spontaneous nu-
cleation of circular holes bounded by strings. Quite simi-
larly, the sequence

G ~U(1)~I, (1.3)

with vr2(G)=n&(G)=I leads to formation of monopoles
which get connected by strings. The strings formed at
the second phase transition are metastable and decay by
nucleation of monopole-antimonopole pairs.

These observations are not new. Indeed, the decay rate
of a metastable string was estimated in Ref. [7], and the
decay rate of a metastable wall was estimated in Ref. [5],
assuming that the thickness of the defects can be neglect-
ed. Our intent is to discuss such tunneling phenomena in
a fairly comprehensive way. In various cases, we describe
the instanton (or "bounce" ) corresponding to the decay,
and estimate the tunneling action. While some of our
calculations merely rederive familiar results, we also
present a number of new results. We consider defects in
D =1, 2, and 3 spatial dimensions, and discuss the con-
nection between tunneling phenomena in different dimen-
sions. (Some of these lower-dimensional defects may
have applications to condensed matter physics. ) We em-

G —+H)~H2 .

Defects will be formed if the manifolds M& =G/H& and
M2 =H, /H2 have nontrivial homotopy groups. Howev-
er, these defects will not be topologically stable if
M=G/H2 has trivial topology. Consider, for example,
the sequence
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phasize in particular the differences between defects aris-
ing from gauge and global symmetries. Because global
defects have long-range interactions mediated by massless
Nambu-Goldstone bosons, the decay of a global defect is
typically suppressed compared to the decay of its gauged
counterpart.

There are also other types of metastable defects that
are not associated with a hierarchy of symmetry break-
down of the form Eq. (1.1). One interesting example is
global texture [2], and we discuss the decay of metastable
texture in various dimensions. Another interesting case
is the electroweak string [8] (or vortex), which might
occur in realistic extensions of the standard model; we
analyze its decay as well.

%'e outline a general classification of metastable defects
in Sec. II, and then proceed in the remainder of the paper
to discuss various special cases in more detail. Sec. III
concerns defects that arise from a hierarchy of gauge
symmetry breaking —monopoles, strings, domain walls,
and their lower-dimensional analogues. Section IV ana-
lyzes the consequences of a hierarchy of global symmetry
breaking. Metastable defects arising from the intrinsic
breaking of a spontaneously broken global symmetry by a
small perturbation (such as axion domain walls) are dis-
cussed in Sec. V. We consider in Sec. VI heavy metasta-
ble defects that decay to light stable defects. The decay
of global texture is treated in Sec. VII. Electroweak and
"semilocal" defects are discussed in Sec. VIII. Section
IX contains our conclusions, including some remarks
about the cosmological implications of metastable de-
fects.

II. GENERAL THEORY

A. Hierarchy of symmetry breakdown

Let us first consider models with a sequence of phase
transitions:

6~Hi ~Hz . (2.1)

Here G is a finite-dimensional compact I.ie group that we
may take to be connected. It may be either a global sym-
metry group or a gauge group. (The distinction between
global and gauge symmetry will be discussed later )The.
G symmetry breaks to the subgroup H i at the mass scale
q&, and then breaks further to Hz CH, at the much lower
mass scale gz. We wish to address whether topological

In this section, we formulate the general theory of
metastable topological defects. This theory will be il-
luminated later by various examples.

The metastable defects that we will discuss fall into
three broad categories. Those in the first category are as-
sociated with a hierarchy of (gauge or global) symmetry
breakdown. Those in the second category with the in-
trinsic breaking of a global symmetry by a small pertur-
bation. Those in the third category do not fit into either
of the first two categories —they are classically stable but
are not prevented from decaying by any topological con-
servation law. (Examples include global texture and elec-
troweak vortices. )

defects associated with the second stage of symmetry
breakdown remain topologically stable when H, is em-
bedded in 6, and also the closely related but somewhat
different question whether topological defects produced
in the first stage survive when the second symmetry
breakdown occurs.

Codimension 1

By a codimension 1 defect we mean one of dimension
D —1 in D spatial dimensions —it is a domain wall, or, in
D =1, a particle or "kink. " Topologically stable codi-
mension 1 defects exist if the vacuum manifold ls discon-
nected. Thus, if the symmetry group Hi breaks to Hz
(and assuming no accidental degeneracy), these defects
are classified by the homotopy group m.o(H, /Hz ). But if
H, is actually embedded in a larger symmetry group G
that breaks at a much larger mass scale, then this defect
may not be absolutely stable (although it is very long-
lived). The domain wall separates two regions in which
the order parameter takes values in two distinct connect-
ed components of H, /Hz. If these components are con-
nected in the larger manifold G/Hz, then the domain
wall is metastable. Mathematically, since Hi/Hz is in-
cluded in G/Hz, there is a natural homomorphism

pro( H ) /H ~ )~pro( G /H ~ ) (2.2)

A codimension 2 defect is a "string", or, in D =2, a
particle or "vortex. " By reasoning analogous to that
above, metastable defects of codimension 2 are classified
by the nontrivial elements of the kernel of the homomor-
phism:

m, (H, /H~)~m. ,(G/H~) . (2.3)

Associated with each nontrivial element of the kernel,
there is a noncontractible closed loop in Hi that can be
deformed to a point in G. This deformation of the loop
defines a nontrivial element of

m~(G/H~ ) =sr, (H, )/vr, (G) . (2.4)

Associated with this element is a magnetic monopole that
arises when G breaks to H, . The physical interpretation
is that the metastable codimension 2 defect can end on a
codimension 3 defect [8a].

3. Codimension 3

A codimension 3 defect is a "monopole, " a particle in
D =3. In principle, metastable monopoles are classified

Metastable defects of codimension 1 are classified by the
nontrivial elements of the kernel of this homomorphism.

Associated with each nontrivial element of this kernel,
there is a path in G that begins at the identity and ends at
an element of H, that is not connected to the identity in
H&. This path defines a representative of a nontrivial ele-
ment homotopy class in m, (G/H, ). Associated with this
class there is a string or vortex that arises in the symme-
try breakdown G —+H&. The physical interpretation is
that the metastable codimension 1 defect can end on a
codimension 2 defect.

2. Codimension 2
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by the nontrivial elements of the kernel of the homomor-
phism:

n2(Hi /H2)~vr2, (G/H2) . (2.5)

However, this kernel is always trivial —metastable mono-
poles do not exist. Mathematically, this is because
~z(H, ) =I for any finite-dimensional compact Lie group
H, . [Note that metastable domain walls are associated
with nontrivial elements of 7ro(H, ), and metastable strings
are associated with nontrivial elements of m. , (H, ).]

We can express this result in more physical terms in
the case where G is a gauge symmetry. Then the magnet-
ic monopole that arises when H, breaks to H2 carries a
conserved magnetic charge, which can be detected by
measuring the long-range H2 magnetic field of the mono-
pole. Embedding H& in G does not extinguish that long-
range field, or destroy the conservation law —the mono-
pole remains absolutely stable. (Although quantum
effects, specifically color confinement, may cause the
magnetic field to be screened, these effects do not prevent
the charge from being detected at long range, and do not
destroy the conservation law [9,10].)

B. Comments

1. Bianehi identity

We could also consider a more intricate symmetry
breaking hierarchy of the form

G~H) ~H2~H3 . (2.6)

One might then wonder if it is possible for a monopole to
arise when G breaks to H& such that the monopole be-
comes attached to a string when H& breaks to H2, and
the string in turn becomes attached to a wall when Hz
breaks to H3. It is easy to see that this is not possible.
This conclusion is probably best understood as a conse-
quence of the Bianchi identity —"the boundary of a
boundary is zero. " If a string is the boundary of a
domain wall, then the string cannot end (on a monopole).
In terms of the above homotopy classification, we saw
that there are two types of strings that can arise when H,
breaks to H2. A string that ends on a monopole is associ-
ated with a noncontractible closed path in H&, while a
string that bounds a domain wall is associated with an
open path in H& that begins at the identity and ends at an
element of Hz that is not connected to the identity in H2.

Another observation is closely related to the above: It
is impossible for a string that ends on a monopole to have
nontrivial Aharonov-Bohm interactions that can detect
the "quantum hair" [11] of charged particles. Strings
that detect quantum hair carry a magnetic Aux that does
not lie in the connected component of the unbroken
group Hz,' they are the kind of strings that can bound
domain walls, not the kind that can end on monopoles
[12,13]. This is not to say that the Aharonov-Bohm in-
teractions of strings that end on monopoles must be com-
pletely trivial; rather, the group element that character-
izes the Aux trapped in the core of the string must be con-
nected to the identity in H2. An example of a string that

ends on a monopole, yet has nontrivial Aharonov-Bohm
interactions, is the electroweak string that we will discuss
in Sec. VIII [8,14].

2. Bundles

The analysis in Sec. II A above can be reexpressed in
the language of fiber bundles. When the symmetry-
breaking pattern (2.1) occurs, we may view the vacuum
manifold 6/H2 as the total space of a bundle with base
space G /H &, fiber H, /Hz, and structure group H &.

Then the topological defects arising in the first stage of
the symmetry breakdown are determined by the topology
of the base space, and the defects arising in the second
stage are determined by the topology of the fiber. Our
criterion for a codimension n + 1 defect to be metastable,
then, is that a mapping that represents a nontrivial ele-
ment of ~„of the fiber is topologically trivial in the total
space of the bundle.

3. Survival

We may also ask a slightly different question than that
formulated in Sec. II A above. If a defect arises when G
breaks to H&, will that defect "survive" if the symmetry
breaks further, to H2? Before, we found the criterion for
a monopole to become attached to a single string, or for a
string to become attached to a single wall. Now we are
asking a more general question, because it is also possible
for a monopole to become attached to more than one
string, or for a string to become attached to more than
one wall.

The criterion for a defect to survive is most simply
stated in the fiber bundle language. A codimension n +1
topological defect that arises when 6 breaks to H, is as-
sociated with a nontrivial element of ~„ofthe base space
of the bundle. The defect survives if this element can be
"lifted" to ~„of the total space of the bundle. That is,
the bundle comes equipped with a projection map P:
6/H2~6/H&, and the defect is characterized by a to-
pologically nontrivial map f: S" +G/H&. T—he defect
survives if there is a continuous map f: S"~G/H2 such
that f=go f.

Domain walls always survive, but strings and mono-
poles need not. Note that it is possible for a monopole to
be attached to two (or more) strings where one string is
heavy and the other is light. In D =2, then, the mono-
pole mediates the decay of a heavy vortex to a light vor-
tex (or several light vortices). If two degenerate strings
end on a monopole [15], then in D =2 the monopole is an
instanton that allows two degenerate vortices to mix
quantum mechanically. Similarly, a string could be at-
tached to a heavy wall and a light wall. Then, in D =1,
the vortex mediates the decay of a heavy kink to a light
kink. If two degenerate walls end on a string, then in
D = 1 the vortex allows degenerate kinks to mix.

C. Intrinsic symmetry breaking

Another type of metastable defect can arise when an
approximate global symmetry is spontaneously broken.
Consider the pattern
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6approx Happrox

U U (2.7)

D. Other cases

There are a few interesting classes of metastable defects
that do not arise due to a hierarchy of symmetry break-
down, or because of intrinsic symmetry breaking. These
defects are classically stable, but are not forbidden to de-
cay quantum mechanically.

1. Global texture

If a global symmetry 6 is spontaneously broken to H,
then a global texture (or "Skyrmion") is a field
configuration that takes values in (or near) the vacuum
manifold G/H everywhere. (There is no "restoration" of
the spontaneously broken symmetry in its core. ) Such
configurations, if they have finite energy, are classified in
D spatial dimensions by ~D(G/H) [2]. A texture has
only gradient energy, and for D ~ 3, the gradient energy
makes it want to collapse. But it can be stabilized if suit-
able higher derivatives terms [19] are introduced into the
action (or if a subgroup of G is gauged [20]).

For D = 1, its gradient energy makes a texture want to
spread out. It can be stabilized if space is compactified to

exact exact

That is, G,pp„, is spontaneously broken to H pp, and is
also intrinsically broken by a small perturbation to G„„,.
(Thus G, „„must be a global symmetry group; gauge
symmetries are always exact. ) The unbroken exact sym-
metry is H,x„„the intersection of 6,„„,and H,pp„, .

If we ignore the intrinsic symmetry breaking, then to-
pological defects of codimension n +1 are classified by
~„(G,»„„/H,»„„). We may ask if such a defect can
"survive" when the intrinsic symmetry breakdown is tak-
en into account. The criterion for survival can be ex-
pressed in the following way. The defect is associated
with a topologically nontrivial map from S" to the ap-
proximate vacuum manifold G

pp /H pp
The defect

survives if this mapping can be continuously deformed to
one that takes values in the exact vacuum manifold

exact /Hexact '

If a G, „„/H, „„domain wall does not survive, then
the energy densities on the two sides of the wall are un-
equal, and a resulting pressure pushes the wall away. If a
G,»„„/H,»„„string does not survive, then it becomes
attached to one or more walls; if the number of walls is
exactly 1, then there is a metastable wall that can end on
a loop of string. If a G,»„„/H,», „(global) monopole
does not survive, then it becomes attached to one or more
strings; if the number of strings is exactly 1, there is a
metastable string that can break by nucleating a mono-
pole pair.

The most familiar example of this phenomenon is the
axion string, which becomes attached to N axion domain
walls [16—18]. Thus, if N= 1, an axion domain wall is
metastable and can decay by nucleating a loop of axion
string. In D =1, the axion vortex mediates the decay of
an axion kink.

a circle of finite circumference.
Unlike a kink in one dimension, a (gauge) vortex in two

dimensions, or a (gauge) monopole in three dimensions, a
global texture in D dimensions is not separated from the
vacuum by an infinite energy barrier. Thus, even if it is
classically stable, there is no topological conservation law
that prevents it from decaying quantum mechanically.

Indeed, in any model that contains a D-dimensional
global texture, there is also a "global instanton" that
mediates the decay of the texture. This instanton is also
classified by nD(G/. H); it is a pointlike defect in (D +1)-
dimensional Euclidean spacetime, with the world line of a
texture ending on the instanton. We will discuss texture
decay in more detail in Sec. VII.

U U (2.8)

Here 6, is the gauge group and G2 is a global symmetry
group. H, is the unbroken gauge group, the intersection
of 6, and H. In this scheme, for D =2, there is a topo-
logically, conserved magnetic flux that is classified by
~,(G, /H, ), and a natural homomorphism

m, (G, /H, )~~,([G, XGi]/H) . (2.9)

If this homomorphism has a nontrivial kernel (which is
possible only if G, and G2 mix [14]), then there are field
configurations that carry nontrivial G, /H, magnetic
flux, where the order parameter takes values in the vacu-
um manifold [G, X G2]/H everywhere.

When such configurations exist, it becomes a dynami-
cal question whether the energy in a given magnetic flux
sector is minimized by a localized vortex or by a
configuration in which the magnetic flux is spread out
over an arbitrarily 1arge area. The answer depends on the
details of the Higgs potential.

In some models, there may be vortices that are classi-
cally stable, but are kinematically allowed to decay to
configurations in which the magnetic flux is spread out.
Then the decay is mediated by a global monopole
[22,20, 14], as we will describe in more detail in Sec. VIII.
Similarly, for D =3, there may be string that can decay
via the nucleation of a global monopole pair.

The simplest example of the semilocal phenomenon is
the case Gi =U(1), G2=SU(2), and H=U(l), which
may be regarded as the minimal standard electroweak
model in the limit sin 0~= 1.

It is also interesting to consider a semilocal model in
which the vortex is stable, and ask what would happen if

2. Semilocal and electromeak strings

"Semilocal" strings [21] (or vortices) can arise in mod-
els that have both gauge and global symmetries that are
spontaneously broken, but only if the symmetries "mix;"
that is, there must be unbroken global symmetry genera-
tors that are nontrivial linear combinations of spontane-
ously broken gauge symmetry generators and global sym-
metry generators.

Consider the pattern

G, XG2 H
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Hence, the initial separation of the monopole-
antimonopole pair is 2m/p, as we anticipated, and the
nucleation probability is I' ~ exp( —mm /p), in agree-
ment with [7].

The thin-defect approximation is justified if

m/p»5, . (3.7)

2. D=2

In two spatial dimensions, models such as (1.3) give
rise to metastable vortices. The vortex can tunnel to a
configuration of the same energy, and about the same
core size. This configuration has a nonzero magnetic
field, but its total magnetic Aux is trivial. Thus, there is
nothing to prevent the configuration from subsequently
relaxing to the vacuum.

The instanton in this case is a monopole-antimonopole
pair in unstable equilibrium in three Euclidean dimen-
sions. The Coulombic attraction between the monopole
and antimonopole is balanced by the tension of the
strings pulling in opposite directions (see Fig. 2). The
theory must have a solution of this form, since we know
that models of the type (1.3) give monopoles connected
by strings in three dimensions. The midsection of the in-
stanton (surface X in Fig. 2) gives the field configuration
of the decaying vortex right after the tunneling.

The bounce action can be roughly estimated as

This condition is typically satisfied if the symmetry
breaking scale of monopoles is much greater than that of
the strings, qi )&g2. Exceptions to this rule can occur if
Higgs or gauge couplings of the model are very small.
For R ~ 6„ the bounce action depends on the details of
the model, and no simple estimate can be given in the
general case.

tionary for R -e 'p ' -6„where 5, is the string
thickness. Equation (3.8) is only a rough estimate be-
cause R is comparable to the thickness of the string;
therefore, the Coulomb interaction between the mono-
poles is significantly distorted by the string. The last two
terms in (3.8) are both of the order e 'p' and are negli-
gible compared to the first term if the symmetry breaking
scale of the monopoles is much greater than that of
strings. Hence,

B=2m . (3.9)

B. Codimension 1

Recall that the "mass" of the monopole actually has
the dimensions of action in D =2 (in units with c = 1). In
order of magnitude it is m -4~g&/e, where g& is the ex-
pectation value of a scalar field; q, has the dimensions of
(energy) ', and e ' has the dimensions of
(energy)' (length), in two spatial dimensions.

For g, ))g2, the effects on the vortex of the physics at
energy scale gi can be conveniently incorporated into an
effective Lagrangian [12]. Were we to ignore the heavy
magnetic monopole, the low-energy effective theory
would have an exact topological conservation law that
would ensure that the vortex is absolutely stable. But
when the monopole instantons are integrated out, opera-
tors are induced in the effective Lagrangian that violate
this conservation law. Specifically, an operator appears
that annihilates (or creates) a vortex, with a coefficient
that is proportional to e . Calculating with this
effective Lagrangian, we again find a vortex decay rate of
ordel e

18 -2m — —pR,
e R

(3.8)
1. D=3

where m is the monopole mass, the second term is the
Coulombic energy of the pair, and the last term is the en-
ergy of the missing piece of string. This expression is sta-

The decay of metastable domain walls can be analyzed
in a similar way. If the wall can herniate by nucleating a
loop of string, then there will be a nonzero decay proba-
bility per unit time and area [5]. A planar wall will tun-
nel to a configuration of the same energy, with a circular
hole in the wall bounded by the string loop. The radius
of the hole is chosen so that the energy cost of the string
loop matches the energy saved due to the missing wall.
The string loop appears at rest, and then expands, con-
suming the wall.

Again, we compute the tunneling action using the Eu-
clidean path-integral method. In the thin-defect approxi-
mation, the action is

MONOPOLE S=pfdS, +o fdS, , (3.10)

(-voRTEx

FIG. 2. Instanton for the decay of a metastable vortex is a
monopole-antimonopole pair in unstable equilibrium inside a
string. The magnetic field pattern in a plane containing the
monopoles is shown. Shading indicates the area containing
most of the magnetic Aux in the string cross section.

4m.
&=4mR p — R o,

3
(3.11)

where p and o. are string and wall tensions, respectively.
In the instanton solution, the wall world membrane is a
three-dimensional hyperplane with a spherical hole
bounded by the string world sheet. The bounce action is
then
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which is stationary with respect to R for [5]

(3.12)

16'
3cT

(3.13)

2. D=2

In two spatial dimensions, models such as (1.2) give
rise to metastable linear defects which decay by nu-
cleation of vortex-antivortex pairs. The decay is de-
scribed by Eqs. (3.3)—(3.6), where now m stands for the
vortex mass and p for the tension of the linear defects.

In one spatial dimension, the domain wall becomes a
particle, or "kink. " Were it not for the existence of vor-
tices, the kink would carry a conserved topological quan-
tum number, and would be stable. But the vortices en-
able the kink to decay.

The instanton describing the kink decay is a vortex-
antivortex pair, in two Euclidean dimensions, in which
the attraction between the vortex and antivortex is bal-
anced by the tension of linear defects ("walls" ) attached
to the vortices. An argument similar to the one that led
to Eq. (3.9) gives

A. Codimension 1

A simple example of a model with metastable domain
walls or kinks is

& =l~„Vi~'+I~„V»I' —«Vi ez»
where y, and y2 are complex scalar fields and

I'(%1 I'2) =~i( ~v'l~ 'ill) +~2( ~v'z~ '92)

11291(V 1V 2+H'c' )

(4.1)

(4.2)

This model, for r), )&zlz, realizes Eq. (1.2) as a hierarchy
of global symmetry breaking, with 6 =U(1).

Without the last term in the potential, the model
would have a U(1) XU(l) symmetry and V(y) would be
minimized by

iO)
%1 tie

i 02
0'2='92e (4.3)

with arbitrary 0, and 02. But the last term breaks the
symmetry to U(1), and fixes the value of 8i+28z. To sim-
plify the analysis, we shall assume that A, ,2 is sufficiently
small that it does not affect the magnitudes of the expec-
tation values (4.3). (Specifically, one needs A, &z)& ))A, &zz)z,

Xzilz))k, zq, .) Then the effective Lagrangian for the an-
gular variables Oi and 02 is

Lg ——nzl(BP81)z+nzz(ap82)2+2k, lznzinzzcos(81+282) .

8 2p (3.14) (4.4)

for the case when the first symmetry breaking scale is
much greater than the second. Here p is the vortex ac-
tion and is given by the same expression as the string ten-
sion in the corresponding (3+ 1)-dimensional theory.

The kink decays to what might be called a gauge tex-
ture, a configuration that matches the asymptotic behav-
ior of the kink, but in which the Higgs field is a pure
gauge that has a nontrivial winding around G/H&. This
configuration has a different [(I+ 1)-dimensional]
"Chem-Simons number" than the kink. The change in
the Chem-Simons number is provided by the vortex in-
stanton.

Again, the violation of the topological conservation
law can be incorporated into an effective Lagrangian. In-
tegrating out vortices induces an operator that destroys
(or creates) a kink, with a coefficient proportional to e

Then, to leading order in g, /q2 we have 0&+20&=202
and

&g=ili(8~8, ) +zlz(B„8z) + —,'m zlzcos28z, (4.6)

where rn =4k, &2g&. The field 0& is a massless Nambu-
Goldstone field resulting from the breaking of the global
symmetry 0&~0&+2o.', 0&~02—a, while the field Oz is
described by a sine-Gordon Lagrangian. The potential
for 8z is minimized when 8z=n~ (n =integer), and the
kink solution that interpolates between, say, 0&=0 and
02=~ is

We can diagonalize this Lagrangian by introducing the
new variables Oi and 02..

2

(4.5)

IV. GLOBAL HIERARCHY 8z(x) =2 arctan exp(mx) .

The energy of the kink (or tension in the wall) is

(4.7)

In the case of global symmetry breaking, the instantons
still represent unstable equilibrium configurations of
higher-dimensional defects, but there is an important
di6'erence. Global defects have long-range interactions
mediated by massless Nambu-Goldstone bosons. This
leads to an increase in the height of the potential barrier
and to a strong suppression of the decay. Moreover,
since the dominant part of the energy of global defects is
located outside the core, the thin-defect approximation
can no longer be used, and the field configuration of the
instanton has to be studied in some more detail.

g =4gzm . (4.8)

1. D=l

In estimating the decay rates, we will start with the
case of the kink in one dimension, and then work our way
up to D =3.

In the kink solution, Oz rotates with 0, held fixed. The
kink can tunnel to a configuration with the same asymp-
totic behavior and the same energy, in which 02 and 0&
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rotate together. This configuration has gradient energy,
but no potential energy, so nothing prevents it from
spreading, and relaxing to a configuration in which Oi
and O2 are nearly constant.

If, after tunneling, the region in which Oi twists is of
length I„then the gradient energy is of order g1/L. This
configuration will be degenerate with the kink for
L -gi/o. .

To analyze the tunneling more precisely, and compute
the tunneling action, we use the Euclidean. path-integral
method. The instanton describing the kink decay is an
unstable defect configuration in two Euclidean dimen-
sions. The two-dimensional theory with the Lagrangian
(4.1), (4.2) has vortex solutions in which the phase 8I
changes by 2m around the vortex. The potential in (4.4) is
minimized by setting Oz= —9, /2, but then the change of
O2 around the vortex is only m, and thus the vortex
should be attached to a linear defect (a "wall" ). The
cross section of the "wall" is identical to the kink (4.7)
and its tension is given by (4.8). The instanton describing
the kink decay consists of a vortex-antivortex pair held
apart by two "walls. " Outside the "walls, " O, is well ap-
proximated by HI=/I+f2, where p, and p2 are azimu-
thal angles defined in Fig. 3. The corresponding pattern
for O2 near the "walls" and on the midsection X is
sketched in Fig. 4. The action for this instanton is

VORTEX

:::::::.:::~KINK

FIG. 4. Instanton for the decay of a global kink. The direc-
tions of arrows indicate the value of 02.

3g1/2
B=4vrg21ln

91 1 =2~g, ln (4.12)

Note that with q, ))g2, R is much greater than the
"wall" thickness, 5 -m '. This justifies the thin-wall
approximation in (4.9).

B =4vrg, ln(R /5, ) —o' R (4.9)
2. D=2

here the first term is twice the energy p of a vortex:

p, =TI& 1 (Vg&) 2mr dr =2m'&ln(R/5, ), (4.10)

5, -A,
1

'
qi

' is the size of the vortex core and R is the
vortex-antivortex separation. Since the R dependence of
p is only logarithmic, the result is not sensitive to wheth-
er we choose R or, say, R/2 as a cutoff' in (4.10). The
second term in (4.9) is the energy of the missing "wall. "
Eq. (4.9) is stationary for

B =2mR2vrrIIln(R /5, ) vrR o— (4.13)

which is stationary for

oR =2m TI, ln( R /5, ), (4.14)

In two spatial dimensions, the model (4.1), (4.2) gives
rise to metastable linear defects. The instanton describ-
ing their decay consists of a planar "wall" with a circular
hole bounded by a global string in three Euclidean di-
mensions. Assuming that R ))6, the bounce action can
be written as

and

R =4mg1/o (4.11)

4m-3r]4,B= ln
3g1/2

91 1

(4.15)

VORTEX

We note that (4.15) can be obtained from the thin-defect
result [see Eq. (3.6)j using the "renormalized" global
string tension (4.10).

3. 8=3

FIG. 3. Instanton for the decay of a global kink. The angles

P, and $2 are defined as shown, with branch cuts at the centers
of the "walls. " The shaded region is the interior of the kink,
where 02= 02+ 0, /2 is substantially different from 0 or m.

Finally, we consider metastable global defects in three
dimensions. The model (4.1), (4.2) has metastable domain
walls which decay by nucleation of circular loops of
string. By the same argument as before, the correspond-
ing tunneling action is given by the thin-defect equations
(3.12), (3.13) with cr from (4.8) and p from (4.10):
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91 3 1114
' a 4

ln 4 ~

12 92 ~1212
(4.16)

B. Codimension 2

As a simple example of a model that contains metasta-
ble global strings or vortices, consider a model with spon-
taneously broken SU(2) global symmetry, which has a
scalar triplet y1 interacting with a doublet cp2, via the po-
tential 8 =4vrrI, R 2~r—I~R ln(R/6, ) . (4.20)

consists of a monopole-antimonopole pair held apart by
the string tension. The energy of this configuration
diverges not only due to the infinite length of strings, but
also because the energy per unit length of a global string
is logarithmically divergent. However, the bounce action
(3.2) can still be expected to be finite, since the monopoles
do not significantly affect the field of the string at dis-
tances much greater than the monopole separation, R.
Assuming that R is much larger than the thickness of the
string core 6„we can write the bounce action as

I'(q i V ~) =~i(mi —ni)'+4(V ~~&
—nP'

~12'91%'1V'2~ V'2 ~ (4.17)

The first term in (4.20) is the monopole energy, and the
second is the energy of the missing part of the string.

Equation (4.20) is stationary for
For rl, &&gz, the symmetry breaking is that of Eq. (1.3)
with 6=SU(2).

1. D=2

In two spatial dimensions, the model (4.17) contains a
metastable vortex. In the vortex solution, y, is essential-
ly a constant, which we may take to be and

R
4~F1 =2~g2 ln + 1

6,

2@1
R =6,exp

n2

(4.21)

(4.22)

0
0 (4.18)

27/18 =2~q~5, exp (4.23)

and y2 has the asymptotic behavior

(4.19)

(for A. ,~ & 0).
When we consider the decay of this object, there is a

subtlety, namely that the energy of an isolated vortex is
divergent in an infinite volume. We should therefore im-

agine that the vortex is actually a member of a distantly
separated vortex-antivortex pair (or that a suitable in-

frared cuto6' has been imposed in some other way). The
"mass" of the vortex is of order 2~gzln(R, „„tr/5, ), where

R,„„&is the infrared cutoff and 5, is the size of the vortex
core (of order m z ', where m2 is the mass of y2).

The vortex can tunnel to a configuration that has the
same asymptotic behavior, but has negligible potential
energy. In this configuration, y1 rotates inside a region
of radius R, and the scalar fields lie close to the vacuum
manifold everywhere. The gradient energy is then of or-
der rli+rlzln(R, „„&/R) (assuming that R,„„s»R), so
this configuration is degenerate with the vortex for
ln(R /5, ) —g, /g2.

If a vortex and antivortex are held at fixed positions,
the tunneling of one of the two is kinematically forbidden
unless the distance between them is truly enormous. If,
say, the antivortex tunnels, the fields will eventually relax
to a configuration that has a vortex core, but is trivial at
spatial infinity, a configuration with a gradient energy of
order g1.

We turn now to the computation of the tunneling ac-
tion. In a three-dimensional space the model (4.17) has
solutions describing global monopoles attached to global
strings, and the instanton describing the vortex decay

For g, ))g2 this action is exponentially large, and thus
the decay of global vortices is very strongly suppressed.
The value of the prefactor in front of the exponential
term in Eq. (4.23) should not be taken seriously; this pre-
factor is difficult to estimate because it is sensitive to
terms, subleading in R, that have been omitted from Eq.
(4.20). To determine the prefactor more accurately, one
would have to solve the field equations for the instanton.

We see that if a vortex and antivortex are held at fixed
positions, with separation R „„ the tunneling rate
remains finite as R „, approaches infinity (while the in-
teraction energy of the pair diverges). There is of course
a competing process, in which the vortex and antivortex
annihilate due to tunneling. This is the dominant tunnel-
ing process for R „,((R [with R as in Eq. (4.22)], but is
strongly suppressed foI R

p
))R.

2. D=3

Metastable global strings of the model (4.17) decay by
nucleation of monopole-antimonopole pairs. Again, the
energy per unit length of a global string is infrared diver-
gent, so we should consider a very long (but finite) string
loop, or impose an infrared cutoff in some other suitable
way.

A global monopole and antimonopole attract one
another with a force 4~F1 that is independent of their
separation. Thus, it is not so easy to pay back the energy
cost of nucleating the pair by pulling the monopole and
antimonopole apart. In fact, it is just the logarithmic in-
frared divergence in the tension of the global string that
makes the tunneling possible —the energy saved by re-
ducing the string length by L is enhanced by a factor of
ln L relative to the energy cost of producing a monopole
pair with separation L.
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The instanton in this case is a planar defect in four di-
mensions, with a circular hole bounded by a linear defect
(representing the monopole world line). The tunneling
action is

B =4vrrl&mR 2r—lr)zmR ln(R /6, ),
which is stationary with respect to R for

2 g]
R =5,exp

4q)B=~ q 5 exp
n2

(4.24)

(4.25)

(4.26)

With g&))qz, B is typically very large, and the strings
are essentially stable. [Again, the estimate of the prefac-
tor in front of the exponential term in Eq. (4.26) should
not be considered reliable. ]

If a finite string loop of radius R&„„ is held in a fixed
position, then, as in our discussion of vortex decay, there
is a competing process in which the loop annihilates in-
stead of breaking. But the action for this process is pro-
portional to R „, ; it is subdominant for R„, ))R [with
R given by Eq. (4.25)].

V. INTRINSIC SYMMETRY BREAKING

A. Codimension 1

Consider the case, in the notation of Eq. (2.7),
G,„„„=U(1)~H,~„„=I, G,„„,=Z~. Suppose that,
when we ignore the intrinsic symmetry breaking, the
U(1) symmetry is spontaneously broken by the condensa-
tion of a complex scalar field:

(q ) =ye" (5.1)

(where the phase 8 is arbitrary). This model contains a
global string, such that 0 advances by 2m on a large circle
that encloses the string core.

When we introduce the symmetry-breaking perturba-
tion; however, there are N degenerate vacuum states,
with

(y)=ale '" k=O 1 2 X —1 (5.2)

Hence, the string does not "survive. " On a circle sur-
rounding the string core, 0 will choose to stay close to the
vacuum manifold 8=2~k/N, except at isolated points
where 0 abruptly jumps from one vacuum value to the
next. Thus, the string becomes attached to N domain
walls [17]. (Conceivably, these walls will attract each

As noted in Sec. II C, a defect associated with a spon-
taneously broken global symmetry may fail to "survive"
when the symmetry is intrinsically broken by a small per-
turbation. When a defect of codimension n +1 does not
survive, it becomes attached to one or more defects of
codimension n. If the number of codimension n defects
attached to the codimension n+1 defect is exactly 1,
then the codimension n defect is metastable, and can de-
cay by nucleating a codimension n + 1 defect. In this sec-
tion, we illustrate this phenomenon with a few examples.

other, so that in the configuration of minimal energy 0
jumps by 2m. all in one step. Then the string is attached
to a single metastable wall. )

The walls have a thickness of order m, ', where m, is
the mass of the U(1) pseudo Goldstone boson (the "ax-
ion"). The string tension p and the wall tension cr are, in
order of magnitude,

p-2vrg In(1/m, 5, ), o —r) m, , (5.3)

1. D= 1

In one spatial dimension, this model has a metastable
axion "kink. " We can anticipate that this kink, with
width of order m, ', will decay by tunneling to an
"unwound" configuration of about the same size.

As in Sec. IVA1, the bounce solution is a vortex-
antivortex pair in unstable equilibrium, with the attrac-
tion between the pair balanced by the pull of the kink
world lines that are attached to the vortices. Unlike the
discussion in Sec. IVA1, though, the separation of the
pair is comparable to the wall thickness. Hence, it is
dificult to calculate the tunneling action accurately.

If we repeat our previous analysis (even though it is not
well justified here), we obtain the crude estimates

R -4~g /o. -m, '

for the vortex separation, and

B -4m') In(1/m, 6, ) —2p

for the bounce action.

(5.4)

(5.5)

2. D=23
In two spatial dimensions, an axion wall decays by nu-

cleating a pair of axion vortices, and in three spatial di-
mensions an axion wall decays by nucleating a loop of ax-
ion string. These decay processes may be analyzed just as
in Sec. III B, with p and o given by Eq. (5.3). However,
to justify the thin-defect approximation used there, we
must have

In(1/m, 5, ))) I . (5.6)

B. Codimension 2

Now consider the case G, „„=SO(3)~H,~~„„
=U(1), with G,„„,=I. If we ignore the intrinsic symme-

try breaking, then this model contains a texture in two
spatial dimensions, or a global monopole [28] in three
spatial dimensions. But when the symmetry-breaking
perturbation is introduced, the order parameter has a
unique vacuum value. Hence, the texture collapses to a

where 5, is the thickness of the string core.
Note that this precise pattern of symmetry breaking

occurs in models that solve the strong CP problem by the
Peccei-Quinn mechanism [26,27], where U(1) is the
Peccei-Quinn symmetry, and the intrinsic symmetry
breaking is due to QCD.

In the discussion below, we assume that N =1, so that
a single "axion domain wall" ends on the "axion string. "
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point singularity, and the long-range field of the mono-
pole collapses to a singular line.

If we introduce a short-distance cutoff, like a lattice
spacing, then the texture wants to twist in a region with
size of order the cutoff. But on that scale, there is really
no notion of topology that stabilizes the texture, and
there is no reason to expect a metastable defect.

To prevent the texture from shrinking indefinitely, let
us introduce into the action of the model a higher-
derivative "Skyrme term" [19]. Then there will be a clas-
sically stable defect whose decay we can analyze semiclas-
sically.

Roughly, the energy of a texture with radius R is

1E„„,„„-4~ +rj +a g m R; (5.7)
eskR

we find instead

1
R„„— —,k/e s„))1 .

e sk A'I)
(5.12)

4m'
A, /e s„((1,

~core 4~g
esk

(5.13)

is
The ratio of the texture size to the monopole core size

The mass of the monopole core, in order of magnitude, is

here, the first term is the Skyrme term [with the coupling
constant esz dined by Eq. (5.7)], the second term is the
conventional gradient term, and the third term is the po-
tential energy due to the intrinsic symmetry breaking
(where I is mass of the pseudo Goldstone boson, and o.
is a constant of order 1). By minimizing with respect to
R, we find the size of the texture:

R
—1

texture
eSkgm

(5.8)

Note that R„„t„„—+0 if we turn off the Skyrme term

(esz ~ ~ ), and that R„„,„„~~ if we turn off' the intrin-
sic breaking (m ~0). The mass of the texture is

2cxm
Ptexture 4~ l 1+

eSk'9
(5.9)

the second term can be neglected as the Skyrme term or
the intrinsic symmetry breaking turns off.

In Eq. (5.7) we have made the assumption that the or-
der parameter is close to the approximate vacuum mani-
fold G, „„/H, „„„.This assumption is reasonable only
if the energy density inside the texture is small compared
to the energy density of the "false vacuum" in which the
6 pp, symmetry is restored. The energy density of the
false vacuum can be expressed as A,g, where A, is a scalar
self-coupling; thus, Eqs. (5.8) and (5.9) hold for

2 4
Ptexture texture ~P ~

R texture

2R core

2
eSk

2
eSk

eSk'9

1/2

eSk'9
g/esk )) 1

(5.14)

1. D=2

In two spatial dimensions, the texture decays by tun-
neling to an unwound configuration of about the same
size. The bounce is a monopole-antimonopole pair in un-
stable equilibrium, with the attraction of the pair bal-
anced by the pull of the strings that are attached to the
monopoles. The typical separation of the pair is compa-
rable to the size of the texture, which makes it dificult to
calculate the tunneling action reliably.

Because R„„u„&)R„r„the action of the bounce will

be dominated by the interaction between the monopoles,
rather than by the core action. In order of magnitude,
we expect that

Comparing with the condition Eq. (5.10), we find that
R„„,„„»R„„.It is reasonable to expect a classically
stable texture to exist, and to treat the intrinsic symme-
try breaking as a small perturbation, only if the texture is
large compared to the monopole core. A monopole at-
tached to a "texture string" in three dimensions is illus-
trated in Fig. 5.

esk eSk 92

2am
e Sk'9

»1. (5.10)

MONOPO E
If this condition is not satisfied, there is no good reason
to expect a metastable texture to exist.

If we ignore the perturbations, then the global mono-
pole has a core size of order

1
core (5.11)

EXTURE

where A, is a scalar self coupling; this is the linear size of
the region in which the Higgs field departs significantly
from its vacuum value. But the Skyrme term may distort
the core significantly. If A, /elk »1, then the Skyrme
term dominates the gradient energy inside the core, and

FIG. 5. Global monopole attached to a "texture string. " The
direction of the Higgs triplet is shown by arrows. The field

configuration in the asymptotic region is trivial.
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PtextureR texture
—1/2

4m' am 2am
~sk ~sk'9

(5.15)

LIGHT WALL

2. D= 3

v 2
~P'string string

—14' am

Csk ~sk 92
i+ 2Am

(5.16)

with p„„„andR„„„given by Eqs. (5.8) and (5.9).

VI. DECAY OF HEAVY DEFECTS TO LIGHT DEFECTS

In three spatial dimensions, the texture becomes a
string, which can decay by nucleating a monopole pair.
The bounce solution is a planar string world sheet, punc-
tured by a hole of radius R that is bounded by the world
line of a monopole. However, R is comparable to the
thickness of the string, so we can not justify the approxi-
mation used in Sec. III A 1, where we neglected the string
thickness.

Very roughly, we can estimate the order of magnitude
of the bounce action as

—~VORTEX

/y

HEAVY WALL

FIG. 6. Cross section of a string attached to light and heavy
walls.

The symmetry breaking at scale g& gives rise to a string
that eventually becomes the boundary of both a heavy f
domain wall at scale g2, and a light g domain wall at
scale g3 (see Fig. 6). Since the global Z2 symmetry is
spontaneously broken, there is a stable domain wall in
this model, the y wall. There is also a stable string,
which carries twice the U(1) fiux of the minimal string
that bounds two walls.

1. D=1

We have seen that, in models with a hierarchy of sym-
metry breakdown, it is possible for a monopole (or string)
that arises at a short distance scale to become the bound-
ary of a string (or wall) that arises at a longer distance
scale. In this section, we will comment on another logical
possibility. A monopole might connect together two dis-
tinct types of string, or a string might connect together
two distinct types of wall. Thus, by nucleating a mono-
pole pair, a heavy string might decay to a light string.
And by nucleating string, a heavy wall might decay to a
light wall. We will illustrate these possibilities by discuss-
ing some particular examples. B 2p (6.5)

In one spatial dimension, this model contains a heavy
(g) kink and a light (y) kink. From the point of view of
an effective field theory that describes physics well below
the scale g„both kinks appear to carry conserved topo-
logical charges, and so should be stable. But in the un-
derlying theory, there is just a single topological conser-
vation law that does not forbid the decay of a P kink to a
g kink. The decay of the heavy kink is mediated by the
U(1) vortex. As in the discussion in Sec. IIIB3, the ac-
tion of the bounce is

A. A string bounding two walls

Consider the sequence of phase transitions

U(1) XZ~ ~Z2 X Z2 —+Z~ ~I, (6.1)

where p is the vortex action. (Integrating out the vortex
generates an operator that destroys a P kink and creates a
y kink, with a coefficient of order e ".)

2. D=2 3

&x='
and transform under Z2 as

(6.2)

where U(1) is a gauge symmetry and Z2 is a global sym-
metry. This pattern of symmetry breaking occurs in a
model with three complex scalar fields P, g, and y, which
carry U(1) charges

In two spatial dimensions, a heavy 1( wall decays to a
light y wall by nucleating a pair of vortices, and in three
dimensions a g wall decays to a y wall by nucleating a
loop of string. These decay processes can be analyzed as
in Sec. III B, except that the wall tension o. is replaced by
o&—az, the difference between the heavy and light ten-
sions.

Z2: (6.3)

In this model, P condenses at the scale g&, breaking U(1)
to Z2 such that

B. A monopole bounding two strings

Consider the sequence of phase transitions,

SU(3)~U( 1)XU(1)'~U( 1)~Z2, (6.6)

Z (6.4)

Then 1t condenses at q2((ri„breaking Zz. Finally y
condenses at g3 ((g2, breaking Z2. Q =diag=( —,', —

—,', 0), Q'=diag( —,', —,', —1), (6.7)

where U(1) XU(1)' is generated by the diagonal SU(3)
generators,
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and Z& is generated by e '~= e '~ . This pattern can
occur in a model with an SU(3) octet that condenses at
scale g„a triplet that condenses at gz « g„and another
octet that condenses at g3 « gp.

When SU(3) breaks to U(1) XU(1)', there are two con-
served magnetic charges, and so there will be two distinct
types of stable magnetic monopole. The magnetic
charges of the stable monopoles are expected to be the
minimal charges (g~ /2, g~ /2) and (g~ /2, —g~ /2),
where g~ and gz are the Dirac magnetic charges associ-
ated with U(1) and U(1)' respectively. [These charges
satisfy the Dirac quantization condition because U(1) and
U(1)' have a nontrivial element in common. ] The two
monopoles need not be degenerate, unless there is a
charge conjugation symmetry to enforce the degeneracy.
Monopole solutions with charges (g~, O) and (O, gn ) may
also exist, but they are likely to be unstable, since they
can decay to minimally charged monopoles, which have
lower Coulomb energy.

When the symmetry breaking proceeds further, both
monopoles eventually become attached to two strings —a
heavy U(1)' string at scale qz and a light U(1) string at
scale g3. The light string is a stable Zz string. The rnod-
el contains no stable magnetic monopole.

1. D=2

In two spatial dimensions, this model contains a heavy
vortex that carries U(1)' magnetic Aux, and a light vortex
that carries U(1} magnetic flux. If we integrate out the
monopoles, and ignore their exponentially small effects at
low energy, then there are two independent conserved
vortex numbers, each taking integer values.

The monopoles break these conservation laws and
mediate the decay of a heavy vortex to a light vortex.
The decay can be analyzed as in Sec. IIIB2, and the
bounce action is

B =2m,

where m is the monopole action. A heavy vortex can de-
cay to either a light vortex or a light antivortex', which
decay is favored depends on which of the two monopole
species is lighter.

Since the only exactly conserved vortex quantum num-
ber is a Z~ charge, a pair of light vortices (as opposed to
a vortex-antivortex pair) must be able to annihilate. The
annihilation process involves monopoles of both types,—pm&+m&)and has a cross section of order e ' ', where m, z
denotes the monopole action.

VII. TEXTURE

To be concrete, we consider a model of a single com-
plex scalar field y with Lagrangian

(7.1)

This model has a spontaneously broken U(1) global sym-
metry.

In one dimension, a global texture in this model wants
to spread out, but we can stabilize it by imposing an in-
frared cutoff. Suppose we take space to be a circle with
circumference L. Then a texture with topological charge
n has the form

277.inX /L
7 (7.2)

and has energy (2rrn ) /L. We may take the limit L ~ ca

with the number of twists per unit length n /L held fixed.
In this limit, the texture has a decay rate per unit time
and length that can be computed semiclassically.

Obviously, the texture with n twists will decay to a tex-
ture with n —1 twists, and we can anticipate that the tun-
neling will take place in a region with a size of order
/=—L/n, the length of a single twist. The instanton that
mediates the decay is the global vortex in two Euclidean
dimensions; we construct the bounce solution, and com-
pute the tunneling action, by finding a configuration with
a pair of vortices in unstable equilibrium, with boundary
conditions that fix the topological charge per unit length
at w=+ &.

This problem is actually identical to a problem in two-
dimensional electrodynamics, since the (long-range) in-
teraction between vortices is the same as the Coulomb in-
teraction. The boundary conditions place the vortex pair
in a constant background electric field. In the unstable
solution, the electric force exerted on the vortex by the
antivortex is precisely canceled by the background field.

If the separation between the vortices is R, then the ac-
tion is

B =4vrrl ln(R /5, }—2vrg (R /l) . (7.3)

The first term is the vortex-antivortex interaction term,
and the second term is due to the interaction of the vor-
tices with the background texture; here, 5, -k '

g
' is

the size of the vortex core, and h, again, is the length of a
single twist of the texture. Equation (7.3) is stationary for

(7.4)

As we noted in Sec. II D 1, global texture, even if clas-
sically stable, can always decay quantum mechanically.
We discuss a few examples in this section.

A. &=1

2. D=3

In three spatial dimensions, this model contains a
heavy string that can decay to a light string by nucleating
a monopole-antimonopole pair. The decay can be ana-
lyzed as in Sec. III B 1, but with p replaced by
p»„,„—p»s»„ the difference between the heavy and light
string tensions.

arid

B =4vrrl ln(l/5, ) . (7.5)

Equation (7.5) is valid for 1))5,.
(Note that we can do a related calculation for the case

of "gauge texture. " On a circle of finite length, the num-
ber of twists of the Higgs field is a topological invariant
with a gauge-invariant meaning, and coincides with the
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Chem-Simons number of the gauge field. But since these
configurations are pure gauge, the states with different
winding numbers are degenerate classical vacuum states,
analogous to the "n-vacua" of (3+1)-dimensional Yang-
Mills theory. The gauge vortex is the two-dimensional
instanton that causes these classical ground states to mix
[29]. The mixing splits the degeneracy, giving rise to "0-
vacuum" states. )

B.D=2

In two spatial dimensions, a global texture has an arbi-
trary size, and is marginally stable at the classical level.
Hence, we will not discuss its semiclassical decay. The
case where the texture is stabilized by suitable perturba-
tions has already been discussed in Sec. V B.

C. D=3

In a model in three spatial dimensions in which a glo-
bal 6 symmetry is broken to H, there will be global tex-
ture if m3(G/H) is nontrivial [2]. A global texture wants
to shrink, but it can be stabilized if a higher-derivative
term ("Skyrme term") is introduced into the action of the
theory [19]. As was recently pointed out by Hindmarsh
[20], the Skyrme term can be generated by gauge boson
exchange if an appropriate subgroup of G is gauged.

Crudely speaking, the energy of a texture with radius
R is of order

Etexture +qR
eskR

(7.6)

R texture ~sk 9& ~texture ~9 sk (7.7)

In a model that admits global texture, there is always
a "global instanton" that rnediates the decay of the tex-
ture. In four (or more) Euclidean dimensions, this instan-
ton is attached to a global line defect, which we may in-
terpret as the world line of the texture. Inside the core
of the instanton, the spontaneously broken global G sym-
metry is "restored. "

If we suppose that the size R„«of the instanton core
is small compared to R„„u«, then the action contained
inside a sphere of radius R „„„„centered on the core is,
in order of magnitude,

Sirlst 2&
I

n( R texture core )
~sk

+g (R „„,„„—R, „)+ A, rI4R 4~„. (7.8)

The first term is the Skyrme term, the second is the con-
ventional kinetic term, and the third term is the potential

Here, the first term is the Skyrme term, and elk is the di-
mensionless Skyrme coupling constant. (In the sort of
model considered by Hindmarsh [20], it is related to a
gauge coupling. ) The second term is the conventional
(two-derivative) kinetic term, and g is the expectation
value of the order parameter. Minimizing with respect to
R, we find the size and mass of the texture:

energy of the core; A, is a scalar self coupling that is
defined by Eq. (7.8). Inside a larger radius R ))R„„,„„„
the action is dominated by the linear defect, so we have

inst texture R '

Assuming that k/ez& ))1, we find that 5;„„ is mini-
mized for

2
4 ~sk 4
core g texture (7.9)

so that the assumption R„««R„„u« is justified, and
the instanton action (cut off'at R -R„„,„„)is

S;„„— ln(k/esk ) .
28 sk

(7.10)

When it decays, the texture tunnels to an "unwound"
configuration with core size of order Rtex««, which is
then free to dissipate. The bounce solution that describes
this decay is a pair of global instantons in unstable equi-
librium, with the pull of the texture balanced by the
instanton —anti-instanton attraction. The separation be-
tween the instantons in equilibrium is of order Rt
and, for A, /esk ))1, the action of the bounce is

B =2S,„„— In(A, /es„) .
~Sk

(7.11)

The decay is strongly suppressed in the limit esk~0,
where the texture becomes large. It is also suppressed,
much more weakly, as the "barrier height" A,g gets
large.

VIII. SEMILOCAL AND ELECTROWEAK STRINGS

Like the strings that we discussed in Secs. III and IV,
semilocal and electroweak strings can end on magnetic
monopoles, not because of a symmetry-breaking hierar-
chy, but for other reasons. Here we will estimate the tun-
neling action for the decay of semilocal and electroweak
vortices, in two dimensions, and for the breaking of semi-
local and electroweak strings, in three dimensions. The
analysis is similar in spirit to that described in Secs. III
and IV, but differs in detail. Actually, our estimates will
be very crude; to do a better job, one would need to study
the interactions of the monopoles in more detail.

A. Semilocal defects

Recall from the discussion in Sec. II D 2 that a semilo-
cal model has a "topologically conserved" magnetic flux
(in two dimensions), yet there are configurations of finite
energy in which the flux is spread out over an arbitrarily
large area. In these configurations, the Higgs field takes
values in the vacuum manifold everywhere, and there is
no Higgs-field potential energy. If the size R of the
configuration is very large, the Coulomb energy of the
magnetic flux can also be neglected; then the only contri-
bution to the energy is due to Higgs-field gradients. In
two dimensions, gradient energy is scale invariant, and so
remains finite and nonzero as R —+ ~. In the sector with
a single quantum of magnetic flux, let us denote the
minimum energy in the limit R —+ ~ by



JOHN PRESKILL AND ALEXANDER VILENKIN 47

E =a (8.1)

where g is the magnitude of the Higgs-field expectation
value. Here a is a numerical factor of order 1; it de-
pends on the geometry of the vacuum manifold, but not
on any coupling constants or parameters of the theory.

There are also "vortex" configurations, in which the
magnetic Aux is confined to a core of finite size. The
characteristic feature of the vortex is that the stability
group of the Higgs field is different at its center than in
the vacuum; thus, the vortex carries Higgs field potential
energy. Let us suppose that there is a vortex solution to
the classical field equations with energy

E, =a, g (8.2)

The structure of the core depends on the detailed dynam-
ics of the theory, so a, has a nontrivial dependence on
coupling constants.

Now, if a, )u, then the vortex is not stable. But it
may or may not be metastable. In fact, in the one model
that has been studied in detail (the minimal electroweak
model in the limit sin 8~=1), it turns out that the vortex
is either absolutely stable or classically unstable [22,30].
Nevertheless, we will ask what would happen if there is a
classically stable vortex with e, )a

To understand the decay of the semilocal strings and
vortices, it is important to recognize that a semilocal
string can end on a (global) monopole [22, 14]. In the no-
tation of Sec. II D 2, the defining property of a semilocal
model is that a closed path that is noncontractible in the
gauge orbit 6& /H& can be contracted in the full vacuum
manifold [GI X 62]/H. On a large sphere that surrounds
the monopole, a quantum of G& /H, magnetic Aux enters
through the core of a vortex at, say, the south pole. The
Higgs field configuration on the sphere excluding the
south pole is just a deformation of the nontrivial loop in
Gj /H& to a point; on each line of constant lattitude, the
Higgs field executes a closed path in the vacuum mani-
fold, which becomes a trivial path at the north pole.
Thus, a quantum of confined magnetic Aux is converted
in the core of the monopole to unconfined Aux that
spreads and returns to spatial infinity. The energy of the
monopole is infrared divergent, for the Higgs-field gra-
dient energy inside a sphere of radius R is of order
a g R (excluding the energy of the vortex).

To be concrete, let us suppose that the gauge group is
6, =U( 1 ), and is completely broken. We denote the
gauge coupling by g', in deference to the analogy with the
hypercharge coupling in the standard model.

1. D=2
A metastable semilocal vortex will tunnel to a

configuration with the same energy that does not have
significant Higgs-field potential energy stored in its core.
If this configuration has radius R, we can estimate its en-
ergy as o. g +4~/g' R, where the first term is due to
Higgs-field gradients and the second is due to the mag-
netic Aux. Equating with the vortex mass a, q, we find
R -'I/4'(a, —a„) '~ (g'rl)

To compute the tunneling action, we construct the
bounce. It consists of a monopole-antimonopole pair in

unstable equilibrium in three-dimensional Euclidean
space (see Fig. 7). If we assume that a, —a„«1, then
the pair will be widely separated, and the interaction "en-
ergy" can be well approximated by a linear plus Coulomb
potential. Thus, if R is the separation, the action is

B =2m —o, g R+e g R —4~/g' R (8.3)

the first term is the core action of the monopoles, the
second is the action of the missing string, the third is the
linear interaction of the monopoles, and the fourth is the
Coulomb term. (We have normalized the gauge coupling
so that 4'/g' is the magnetic Aux quantum. ) This ex-
pression is stationary for

4m

(a, —a„)g' g
(8.4)

as we anticipated. For a, —u small, the bounce action
is dominated by the core action of the monopoles:

B=2m„„. (8.&)

A metastable semilocal string will decay by nucleating
a monopole-antimonopole pair. If a, —a is small, then
the pair will be suSciently distantly separated right after
the tunneling that the Coulomb interaction between the
monopoles can be neglected. If the pair nucleates with
separation L, then the energy a, g L saved by removing
the string must balance the energy 2m„„+e g L of the
pair (where m„„ is the mass of the monopole core). We
conclude that L =2m„„/(a, —a )rI .

As in our previous calculations of string decay due to
monopole pair nucleation, the bounce solution is a planar
string world sheet with a circular hole of radius R, the
hole bounded by the world line of the monopole. If the
Coulomb interaction is neglected, we can calculate R and
the tunneling action using a minor modification of the

I

I I I

LNCONF~D FLUX

~ -- MONOPOLE

FLUX TUBE.

FIG. 7. Instanton for semilocal vortex decay. The magnetic
field pattern in a plane containing the monopoles is shown.

We expect m„„-4m'/g', for this is the magnetic self-
energy of a monopole with core size of order the vortex
width 5, —(g'g)

2. D=3



47 DECAY OF METASTABLE TOPOLOGICAL DEFECTS 2339

method in Sec. II A 1. The modification is that the string
tension p is replaced by (a, —a )g, the difference be-
tween the string tension and the coefBcient in the mono-
pole linear potential, and m is replaced by the core mass
m„„. Then, from Eq. (3.5) and (3.6), we find

and

~ coreR=
(a, —a )g

2&I g~reB=
(a, —a )g

(8.6)

(8.7)

B. Electroweak defects

Nz =4m sinO/g', (8.8)

and the quantity of A Aux emanating from the monopole
is

N~ =4~ sin8/g

(where tan8 =g '/g).

(8.9)

ELECTROMAGNET I C
FLUX

Now consider the case of a semilocal model with
e, &a, so that a vortex is stable. Let us ask what would
happen if we were to gauge the global 62 symmetry. To
be concrete, consider an interesting example —the stan-
dard electroweak model with gauge group
SU(2)L XU(l )r and a Higgs doublet. If we turn olf the
SU(2)I gauge coupling g, this becomes a semilocal model;
the gauge group U(1) r is broken, but a noncontractible
loop in the gauge orbit is contractible in the full vacuum
manifold. The vortex turns out to be stable, in this limit,
if the Higgs-boson mass is less than the Z mass [22,30].

For g%0, there is no longer a topological conservation
law, and the vortex is no longer absolutely stable. Only a
finite energy barrier separates a vortex with heavy Z
magnetic Aux from a configuration with massless A mag-
netic fiux that is free to spread out. Correspondingly (as
Nambu [31] observed long ago), a Z string can end on
an electromagnetic monopole (see Fig. 8). The quantity of
Z fiux trapped in the string is [31,14]

2 2~sin 0
Ecore +co ) core+, 2 (mz R core )

g

+ 2msin 0 R core

where the second term is due to the Z Aux and the third
term is due to the 3 Aux. By minimizing with respect to
R„„,we find

(8.10)

—2~ cos20 2m

Qg2/2 ~g2q2 (8.1 1)

(the second equality following from our assumption
g ((g ), and

E„„=+4ma„ (8.12)

1. D=2

In two dimensions, an electroweak vortex decays by
tunneling to a configuration in which its Z Aux has been
converted to 3 Aux. In the limit g «g' the Aux +z
given by Eq. (8.9) is much larger than @z. Therefore, A

fIux is energetically very costly; to be degenerate with the
vortex, the configuration after tunneling must be very
large.

The bounce solution is a monopole-antimonopole pair
in unstable equilibrium in three Euclidean dimensions,
with the Coulomb attraction of the pair compensated by
the tension in the electroweak strings. For typical values
of the parameters, the separation R of the pair will be
comparable to the size R„„ofthe monopole, which
makes it difficult to estimate the tunneling action reliably.
But if we assume that R ))R„„,then the action of the
configuration is

In the limit g ((g' (or sin0=1), the monopole has a
core size that is large compared to thickness of the string
5, -mz ' (where mz is the Z mass). Deep inside the
core, it resembles the semilocal monopole, with spreading
Z Aux. At a radius R„„,the Z Aux is converted to A
Aux. The core radius is determined by the competition
between the linearly divergent energy of the "global"
monopole and the magnetic self-energy. Roughly, the
core energy is

Z FLUX

B=2E, „—a, g R—2 4m sin 0

g R

which is stationary for

2 4m. sin 0 4m

A g 'g CX g 'g

(8.13)

(8.14)

(assuming sin 8= 1). Thus, our assumption R ))R, „is
justified under the (not very physical) condition

Z STRING

FIG. 8. Electroweak string terminating on an electroweak
monopole. The magnetic field pattern on a slice through the
string and monopole is shown. The monopole converts the
(confined) Z flux to (unconfined) electromagnetic flux.

a, /a «1 .

The tunneling action is

B =2E„„—+4vra, sin8 =2E, „;
g

(8.15)

(8.16)
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it is dominated by the core action for o., &&a

2. D=3

+4vra „
R =E„„ia,g =

CX g'g
(8.17)

(for sin 8—1), and the bounce action is

4 2 (g

~Ecore /s Icore s (8.18)

An electro weak string decays by nucleating a
monopole-antimonopole pair. Typically, the string will
tunnel to a configuration in which the separation of the
pair is comparable to the monopole core size, but if we
assume that a, «a, then the core is sufticiently small
that the analysis of Sec. IIIA1 applies, with m =E„„
and p=a, g . Thus, the monopole world line has radius

known to apply only to a very limited class of potentials
[32]. On the other hand, the thin-defect approximation
applies if the symmetry-breaking scales for the two types
of defects involved in the decay are substantially
different. This is a typical situation in elementary parti-
cle theories, and thus we expect our results to have a
reasonably wide range of validity.

C. "Embedded" defects

m -4~q)/e, (9.1)

Let us briefly consider the behavior of the decay rate
when the two symmetry-breaking scales are close togeth-
er. Though the thin-defect approximation does not apply
in this case, we can roughly estimate the tunneling action
by using our thin-defect formulas. For example, consider
the breaking of a string due to monopole nucleation. The
monopole mass can be crudely estimated as

So, of course, the decay is heavily suppressed as g ~0.

IX. CONCLUDING REMARKS

where g& is the higher symmetry-breaking scale and e is
the gauge coupling, and the string tension is roughly

P 27TY)2 (9.2)

A. Summary

In this paper, we have studied the decay of metastable
defects arising from symmetry breaking in relativistic
field theories. The decay occurs through quantum tun-
neling; for example, strings decay by nucleation of
monopole-antimonopole pairs, and domain walls decay
by nucleation of circular holes bounded by strings. We
also studied the decay of defects in one and two-
dimensional systems and the decay of nontopological de-
fects, such as global texture and semilocal and elec-
troweak strings.

The decay probability is determined by an instanton
which can be found by solving Euclidean field equations
with appropriate boundary conditions. The problem is
greatly simplified when the dimensions of the instanton
are much greater than the size of the defect core, so that
the thin defect approximation can be used. We assumed
the validity of this approximation in most of our calcula-
tions.

We have estimated the instanton action for the decay
of various defects in D =1, 2, or 3 spatial dimensions.
We found that the decay rate of defects arising from a
global symmetry breaking is strongly suppressed com-
pared to the decay rate in the corresponding gauge
theory. In particular, the instanton action for the decay
of a global string is exponentially large [see Eq. (4.26)].
But even in gauge theories, the tunneling action is large
and the decay rate is correspondingly small in the case
where two different symmetry-breaking scales are widely
separated.

In conclusion, we would like to comment on some pos-
sible applications and extensions of our results.

where g2 is the lower symmetry-breaking scale. Then the
tunneling action Eq. (3.6) becomes

2
8~8 =~m /p-
e '9

(9.3)

p 2''l7 )

and the wall tension to be

(9.4)

o.—2&%,g,', (9.5)

Naturally, the behavior of this expression as g& ap-
proaches gz (aside from the numerical factor 8~, which
should not be taken too seriously anyway), could be
determined by dimensional analysis, as e has the di-
mensions of A.

There is no guarantee that a classically stable string
solution will continue to exist as the two symmetry-
breaking scales approach each other. However, if the
Higgs potential obeys suitable conditions, one can argue
that there I's a static solution for q, =g2, although it may
be unstable. This is a special case of the "embedded"
string recently described by Vachaspati and Barriola [33].
Equation (9.3) suggests that, if an embedded string is clas-
sically stable, its quantum-mechanical decay rate is likely
to be small, in a weakly coupled theory. Of course, it is a
fact of life that our semiclassical (small fi) approximation
is reliable, then the tunneling action is large and the de-
cay rate is small.

We can do a similar estimate of the rate for the decay
of a domain wall due to nucleation of a string loop. Tak-
ing the string tension to be

B. Thin-defect approximation

The thin-defect approximation is similar to the thin-
wall approximation in the vacuum decay problem [24].
This latter approximation is in bad repute, since it is

where k is a scalar self-coupling, Eq. (3.13) becomes

16' p 3277 I1

3 ' 3A "l2
(9.6)
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If there is a classically stable "embedded" domain wall
for g, =g2, it will be long lived at weak coupling.

D. Cosmological applications

P = A p exp( arm /)M ),— (9.7)

where A is a dimensionless coefficient and we have used
(3.6) for the tunneling action. The strings stretching
across the horizon at cosmic time t have length of order t;
so the condition for approximately one pair per horizon
volume to nucleate on a given string by cosmic time t, is
Pt~ —1, or

t„—(Ap) ' exp(arm /2') .

With a grand-unification symmetry-breaking scale for
strings, p' —10' GeV, and assuming that A is not very
different from 1, this time is smaller that the present age
of the Universe if m /p 85.

At t -t, the strings are cut into pieces of length -t,
with monopoles at the ends. For large values of t, it may
take a long time to dissipate the string energy, and oscil-
lating string pieces may still be Aying somewhere in the
Universe. As they are pulled by the strings, the mono-
poles are accelerated to energies comparable to the ener-

The very small decay rates for metastable defects do
not necessarily mean that such decay processes are obser-
vationally irrelevant. Consider for example metastable
strings formed in the sequence of cosmological phase
transitions (1.3). The first phase transition gives rise to
monopoles and the second to strings which connect
monopole-antimonopole pairs. Even if we disregard the
breaking of the string due to the quantum-mechanical de-
cay process, such hybrid defects typically disappear long
before the present epoch [7]. The string energy is dissi-
pated by friction and by radiation of gauge quanta and of
gravitational waves. As the strings get shorter, the
monopoles are pulled close together; they eventually cap-
ture one another into Coulombic bound states and an-
nihilate. In this scenario, the demise of the monopole-
string system is so rapid that the slow monopole nu-
cleation process has very little e6'ect.

But the evolution can be quite different if there is a
period of inflation between the two phase transitions in
(1.3). In this case the monopoles can be diluted beyond
the present horizon, and the evolution of strings will ini-
tially be similar to that of topologically stable strings.
However, at some point the string decay by monopole
pair nucleation will become important. To estimate the
time t, when this happens, we write the nucleation prob-
ability per unit string length per unit time as

gy of the string, E-pt, . If t, is close to the present
time, then, for grand-unification strings this energy corre-
sponds to a mass of order 10' solar masses. A monopole
will move ultrarelativistically, with its gravitational field
concentrated in the transverse plane and the gravitational
force decreasing as r ' with the distance from the mono-
pole. Gravitational e6'ects of such supermassive relativis-
tic objects can be quite significant.

E. Nonzero temperatures

Our results can be easily extended to the case of defect
decay at a nonzero temperature T. The Euclidean path
integral in this case is taken over field configurations
periodic in imaginary time w with a period b ~= T ', and
the instanton solutions should have the same periodicity.
At sufficiently low temperatures, the finite-T instanton is
simply the zero-T instanton periodically repeated along
the r axis [34,35]. The effects of periodicity become im-
portant when T becomes comparable to the inverse size
of the instanton, R '. At still higher temperatures, the
decay of the defect tends to be dominated by thermal
fluctuations rather than quantum Auctuations. The in-
teresting and somewhat unexpected behavior of instan-
tons at higher temperatures will be discussed in a
separate paper [36].

F. Condensed matter applications

Condensed matter systems exhibit a fascinating variety
of defects, many of which are metastable, at least in prin-
ciple. For example, superfIuid He-8 contains domain
walls that can terminate on strings [37],and both nematic
liquid crystals [38] and He-A [39] contain strings that
can terminate on monopoles. In suitable materials, the
decay of walls due to string nucleation and of strings due
to monopole nucleation may occur at observable rates.
Also, liquid crystals and He can contain textures that
may decay either quantum mechanically or due to
thermal fluctuations.

In these cases, the simplifying assumptions of Lorentz
invariance and the thin-defect approximation may not
apply. But the instantons corresponding to the decay
processes have the same general structure as the instan-
tons that we have constructed, and the decay rates can be
estimated using the methods described here.
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