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We study regular and black hole solutions to the coupled classical Einstein —Yang-Mills —Higgs sys-
tem. It has long been thought that black hole solutions in the spontaneously broken phase of such a
theory could have no nontrivial field structure outside of the horizon. We first show that the standard
black hole no-hair theorem underlying this belief, although true in the Abelian setting, does not neces-
sarily extend to the non-Abelian case. This indicates the possibility of solutions with nontrivial gauge
and Higgs configurations decaying exponentially outside the horizon. We then find such solutions by nu-

merical integration of the classical equations for the case of SU(2) coupled to a Higgs doublet (the stan-
dard model less hypercharge). As a prelude to this work we also study regular and black hole solutions
to Einstein —non-Abelian —Proca theory and as a postscript we briefly discuss the important issue of sta-
bility.

PACS number(s): 97.60.Lf, 04.20.Jb, 11.15.Ex

I. INTRODUCTION

Some time ago it was proven that black hole solutions
in Einstein gravity coupled to the Abelian Proca model
or to a spontaneously broken Abelian gauge theory can-
not have any nontrivial field structure outside of the hor-
izon [1,2]. In conjunction with similar arguments applied
to a variety of field theories coupled to gravity [1—4], a
widely held belief has been that the only distinguishing
features of a black hole exterior to the horizon are
charges carried by massless gauge fields. ' These are
mass, angular momentum, and "electric" or "magnetic"
charges, where the latter refer to charges carried by some
possibly non-Abelian gauge group. This belief is often re-
ferred to as the black hole no-hair theorem (or more pre-
cisely, no-hair conjecture).

In elementary particle physics we are familiar with the
fact that non-aphelian symmetries often play a crucial
role. Based upon the Abelian case and more general pre-
judice, it has generally been accepted that the no-hair
statements ensure that no evidence of the broken classical
charges can be found outside a black hole horizon. In
particular, it has been thought that one cannot find sta-
tionary black hole solutions which are nonsingular at the
event horizon and have a nonvanishing massive vector
field that decays exponentially outside of the horizon (for
example, see [1,2,5 —7]. It is the intent of the present pa-
per to quantitatively investigate the veracity of this belief.

That is, we study black hole solutions in Einstein gravity
coupled to the non-Abelian Proca model and to a spon-
taneously broken gauge theory (with symmetry group
SU(2) in each case) in order to determine whether the
no-hair statements are affected by the non-Abelian struc-
ture. Our results indicate that, in fact, the non-Abelian
nature of the theory has a crucial impact giving rise to
classical solutions which violate the no-hair conjecture.

In particular, we numerically study spherically sym-
metric solutions to Einstein gravity coupled to SU(2)
gauge theory and a Higgs doublet, as in the standard
model (without hypercharge). We take the standard
model form for the symmetry-breaking Higgs potential
with only the lower real component of the Higgs field
having a nonzero vacuum expectation value. Integrating
via a two parameter shoot (associated with the initial
values of the gauge and Higgs field), we find black hole
solutions in which there are nontrivial gauge and Higgs
fields outside of the horizon (with no global charges asso-
ciated with the gauge or Higgs fields) that ultimately ex-
ponentially decay to their vacuum values. In fact, we
find two families of such solutions with each member dis-
tinguished by the number k of zero crossings of the single
free function in the gauge connection. The k =1 member
of one of these two families of solutions has a limit (the
dimensionless Higgs vacuum expectation value going to
zero) in which gravity becomes arbitrarily weak outside
of the horizon and the solution resembles the known flat
space sphaleron solution. So, at least this particular

In this paper our concern is with classical "hair" only. We do
not address the interesting but separate issue of quantum hair

References to sphaleron solutions in this paper denote the
standard SU(2) YM solution with a Higgs doublet (rather than
more general saddle points).
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solution might be characterized as being a black hole
with sphaleron hair. Our study indicates, however, that
the other solutions do not have a weak gravity limit and
hence do not have known Oat space counterparts.

We note that ours is not the first challenge to the no-
hair conjecture, but it is useful and important to em-
phasize the viewpoint espoused in [5]. As these authors
point out, one should distinguish primary hair from
secondary hair. The latter refers to black hole structures
which exist solely as the result of (well-known) primary
hair such as gauge charges and hence are not fundamen-
tally new characteristics. The existence of secondary
hair, therefore, is not really in conAict with the no-hair
conjecture. The charged dilaton black hole solutions
[8—13] in which there is nontrivial scalar field
configuration outside of the horizon provides an example
of this distinction. The dilaton configuration is nontrivial
because the electric charge (primary hair) acts as a source
and hence yields only secondary hair. Another interest-
ing solution which (among other things) provides a chal-
lenge to the no-hair theorems are the "black holes inside
magnetic monopoles" found in [14—16]. Again, howev-
er, the hair associated with the nontrivial field
configuration outside of the horizon is of the secondary
sort [5]. Two other challenges to the no-hair conjectures,
which are closer to having primary hair, are the works of
[17—19] (motivated by the paper by Bartnik and McKin-
non, [20]) and [21]. The work of [17—19] finds numerical
black hole solutions of Einstein gravity coupled to SU(2)
gauge theory in which the fields decay sufficiently quickly
so as to have vanishing global charges. The hair on these
solutions is still carried by massless gauge fields —the
novel feature is that the fields leave no imprint at infinity.
Unfortunately, these solutions have been shown to be un-
stable. In [21] some interesting numerical work also has
shown that black holes can exist with nontrivial Skyrme
fields in the Einstein-Skyrme model. Such solutions were
recently found to be at least linearly stable [25].

Our work on this subject was partly motivated by the
publication of [20] in which the authors found smooth
solutions to the coupled Einstein-SU(2) gauge theory clas-
sical equations. These smooth solutions were surprising
in that no-go theorems for classical glueball solutions to
non-Abelian gauge theory (without coupling to gravity)
were established in [27] while no-go theorems for smooth
solutions including gravity were proven for 2+1 dimen-
sions in [28]. Unfortunately, the (3+ 1)-dimensional solu-
tions of [20] were subsequently proven to be unstable
[29]. A natural question to ask is whether such smooth
solutions in 3+1 dimensions can be found in the physi-
cally relevant case of spontaneously broken non-Abelian
gauge theories and, if so, whether they might be stable.
In addition to our black hole solutions, we do in fact find

3The initial claim of linear instability in [22] for the lowest
mass solution was later refuted in [23]. The nonlinear stability
analysis of [24] finally settled this question.
~In [20] strong numerical evidence was given for the existence

of such solutions. Subsequently, the existence of these solutions
was rigorously established in [26].

and present such smooth solutions but have not as yet ex-
haustively analyzed their stability properties.

Stability is, in fact, an important unanswered question
about both our black hole and regular solutions. Howev-
er, we hasten to emphasize that the long held belief that
such black hole solutions do not exist is based on the no-
hair results which themselves have nothing to do with
stability. Rather, the no-hair results were based on the
careful examination of certain classical field theories cou-
pled to gravity which simply have a different character
from the non-Abelian vector theories studied here. How-
ever, as far as physical relevance is concerned, stability is
a crucial feature. General prejudice would certainly lean
towards suspecting that our solutions are unstable for
two main reasons. First, without a global charge leaving
an imprint at infinity, stability certainly seems less likely.
Second, as mentioned, there is a relation between our
solutions and Hat space sphalerons, the latter of which
are unstable. On the other hand, some of our solutions
seem to involve the trapping of gauge bosons in a region
of space where, due to the Higgs configuration, they are
less massive (relative to their asymptotic mass), and this,
potentially, may bode well for stability. It has been noted
that there might be a no-hair theorem if one only consid-
ers stable solutions [22]. We do not know, however, of
any definitive arguments supporting this natural sugges-
tion. We are presently studying the stability question for
both the smooth and black hole solutions discussed here
and will report on this elsewhere.

The organization of this paper is as follows. In Sec. II
we review the no-hair theorems and indicate why they do
not apply in the situation under study. This opens up the
possibility for the existence of black hole solutions with
non-Abelian gauge and Higgs hair. In Sec. III we em-
bark on the numerical construction of such solutions, be-
ginning with the simpler Einstein —non-Abelian —Proca
system for the case of SU(2). This system is interesting in
its own right as a first concrete illustration of how the
classical solitons in Abelian and non-Abelian Proca
theories differ substantially. It also is a useful prelude to
our discussion of the Einstein —Yang-Mills —Higgs system
in Sec. IV. In both Secs. III and IV we present spherical-
ly symmetric regular and black hole solutions. In Sec. V
we present some preliminary work on the stability and we
offer our conclusions.

II. LIMITATIONS ON NO-HAIR THEOREMS

Many of the no-hair proofs for classical field theories
utilize an elegant and powerful method first developed by
Bekenstein [1]. It is, in eff'ect, a repackaging of the gen-
erally covariant field equations into a statement about the
behavior of fields outside the event horizon. In this sec-
tion, we brieAy review Bekenstein's arguments and illus-
trate how non-Abelian gauge fields in general, and the
Einstein —non-Abelian —Proca (ENAP) and Einstein—
Yang-Mills —Higgs (EYMH) systems in particular, can
possess static black hole solutions with nontrivial exterior
structure.

Consider the action for a set of arbitrary local fields @i,
in a gravitational background:
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S=fd'xZ= f d'xV' —~ .

After multiplication by d x@i, and integration by parts,
the covariant Euler-Lagrange equations become

where i is the isospin index. A straightforward calcula-
tion of the right side of Eq. (2.1) for a metric with signa-
ture ( —1, + 1, + 1, + 1) gives

f d x V g 87' FYM
4m n

y f d'xa„e„
n " 8 &b), „

=g f d x 4k„+4k()L BX
(2.1)

~ (j) ~ (k) ]F(i)Pv1
IJk jtt V

where g is the gauge coupling:

(2.4)

(2.2)

If we assume that our system admits black hole solutions
and we choose our four-volume to be the black hole exte-
rior, then BQ consists of the horizon, spatial infinity, and
future and past timelike infinities. The behavior of b" at
spatial infinity is already determined for all nontrivial and
physically relevant fields by the field equations:
b"~1/r asymptotically for massless fields and b" van-
ishes exponentially for massive fields, so there is no con-
tribution at spatial infinity to the left side of (2.1). Since
dS„ is proportional to the normal n„of the hypersurface,
which can be chosen to satisfy n; =0 as t~ ~, dS„b"
also vanishes at tirnelike infinity when b =0. This condi-
tion on b is satisfied by static fields, and thus there are
no nonhorizon contributions to the surface integral in Eq.
(2.1). From the fact that the horizon is a null hypersur-
face (g; dS'dS~=O) and that g,. is positive semidefinite on
the horizon, it can easily be shown that dS„b" vanishes
on the horizon when b„b" is bounded there. Thus, for
static fields with finite b„b on the horizon, Eq. (2.1) im-
plies that the integral over the entire black hole exterior
of some nontrivial function of the fields and their deriva-
tives must vanish. The strategy for establishing no hair
becomes clear: if one can demonstrate that the integrand
in Eq. (2.1) is negative or positive definite, then the only
finite energy solutions satisfying (2.1) are those for which
the integrand vanishes. For most Lagrangians of physi-
cal interest, this implies that the fields must assume con-
stant values over the entire black hole exterior.

The Bekenstein approach has been used to establish
no-hair theorems for Klein-Gordon theory, Abelian Pro-
ca [1] and Higgs theories, and the Goldstone model [2],
among others. Here we provide a sketch of the right-
hand side of Eq. (2.1) for non-Abelian gauge fields which
demonstrates the possibility of the existence of
Einstein —Yang-Mills (EYM) black holes.

The Lagrangian for an SU(2) gauge theory may be
written

+EYM
1 1 2 1 1 ~~ -F"&")

4 4 4 4 P p

(2.3)

The left-hand side of this equation can be expressed as a
surface integral JsndS„b", where dS„ is an element of
the hypersurface bounding the volume Q over which we
integrate, and

If we consider only static fields, and for simplicity assume
Ao" =0, then ~F~ ~0. The second term in the integrand,
however, is not necessarily positive: its sign will depend
on the details of the solution in the black hole exterior Q,
so it is clear that the nonlinear terms can lead to a possi-
ble way of avoiding this no-hair argument.

To demonstrate this point more quantitatively, consid-
er the expression in (2.4). Let

arid

D(I) i g (j)g [k)
PV g~gk P V

Then to avoid the Bekenstein argument we require the
nonpositivity (somewhere) of

S—:(C+D) (C+D)+D (C+D)
where C.C =C„"C"", etc. With the gauge choice
A o

=0 and the assumption that in this gauge all fields
are time independent (no "electric fields" ), it follows that

(aC+PD ) (aC+PD ) ~ 0

for any real a, P. The relation

S =(C+2D) (C+D) &0

requires that C.D ~ 0, and gives

C.C+2D.D + —3C.D .

This may be rephrased as

2
'(C.C+D D) ——'(C —C DD)—

6

& —C D &
—,'(C C+D D), (2.5)

where the second inequality is just the positivity of
(C+D) (C+D).

Noting that D is the non-Abelian term we see that the
non-Abelian nature of the field is crucial in avoiding the
Bekenstein argument for no hair. The above relation also
shows that the value of C.D must lie in a very restricted
range for the nonpositivity of S: the cubic term in the
fields involving the structure constants is bounded both
above and below by the quadratic and quartic terms in
the gauge fields. [It is possible to make restricted gauge
transformations that preserve time independence of fields
and A o' =0. What we see is that (2.5) must hold in some
region in each such gauge. ]
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The left-hand side of Eq. (2.1) also presents complica-
tions. For a gauge field, b„b" is not a physical scalar and
need not be bounded on the horizon, so a practical appli-
cation of the Bekenstein approach requires the explicit
evaluation of

The second theory we investigate in this paper is
EYMH, whose Lagrangian is given by

+EYM+=&EYM [(Dp@) (D"@)+V(@)] ~

1
EYMH EYM

b p — p'(&)p&g (&)1

4~
(2.6)

1 1
ENAp= 4 4

IFI +

with
I
A

I
=g" A „"A '„' and p is the vector field mass. As

we stated above, this is obviously not a gauge-invariant
theory but provides a good first approximation for a mas-
sive non-Abelian gauge field. For the massive field, b "b„
is now a physical scalar bounded on the horizon, and the
Bekenstein integral (2.1) assumes the same form as in
(2.4), with XEvM replaced by XENAp' F«Ao 0, the
same arguments as above establish the possibility of hair
for massive vector black hole solutions.

(2.7)

on the horizon to make the sign considerations for Eq.
(2.4) relevant. By introducing the ansatz for the connec-
tion A used in [20] and [17], it can be shown that b„b" is
bounded on the horizon and that the second term in (2.4)
can be negative in the black hole exterior, so that a black
hole with nontrivial gauge field structure outside the hor-
izon is allowable (but not necessary) under the Bekenstein
analysis. In fact, the solutions of [17] are examples of
these "colored" black holes.

When this approach is applied to the ENAP theory
considered below, the results are similar. For our metric
convention, the Lagrangian is

where D„=0„+gv" A„ is the usual gauge-covariant
derivative expressed in the anti-Hermitian basis of su(2)
(r;= io—

, /2). The Higgs field && is taken to be a com-
plex doublet @=(P,P ) and V(@) to be a double-well
potential with degenerate vacua. Though we give further
details of our Higgs ansatz below, for now we assume N
possesses only one degree of freedom:

0
P(x) (2.9)

EYMH
'IF2+ '

4~ 4 2 2

+ —IayI'+ v(y)
2

(2.10)

where IapI =g~ a„Qa —$~0, and (gp/2) now plays the
role of the gauge field mass. The vector b" has an addi-
tional term

b~= [F"—'~.A'."+g~ (a.y)y],1 (2.1 1)

and the Bekenstein integral is

for P real and time independent. The Lagrangian (2.8)
then becomes

'2

2
1 f d'x& —g —IFI'+

I
A I'+ —[g~ A "'A'"']F"'"1 rA

4m n 2 2 2 ~jk P

' f d4x& g IayI'+-
4m n 2

2

I
A I'+ v'(y)y

with V'($)=dV(P)/dg. The separate integrals in this
expression correspond to the YM and Higgs surface in-

tegrals obtained from Eq. (2.11). The YM term is identi-
cal in form to the Proca case, so by the above arguments
YM hair is possible. In the Higgs term, the sign of
V'(P)P for a double-well V(P) obviously depends on the
details of a solution, so the second integrand need not be
positive definite either. Black hole solutions to EYMH
theory having both nontrivial YM and Higgs field struc-
ture are therefore not excluded by the Bekenstein
analysis.

5For another point of view on the existence of solutions, see
[3ol.

It is important to emphasize that these sign arguments
only demonstrate the possibility of solutions with hair.
An example for which all of the above reasoning is valid
but a no-hair proof has been found [2] is the pure Higgs
(Goldstone) theory, which corresponds to the Higgs con-
tribution to (2.12) with IAI =0. The Higgs-gauge field
coupling and the non-Abelian gauge interactions in
EYMH theory therefore play a critical role in the ex-
istence of black hole solutions for which /+const outside
the horizon. We should also mention that Price [4] has
employed somewhat different reasoning to argue for a
black hole no-hair theorem. His arguments, though, are
only valid in the domain of weak fields (in which the im-
portant nonlinear terms would lose their influence) and
hence do not directly apply to the present context. In the
following we shall show that the gap in the no-hair argu-
ments described is wide enough to allow for solutions
which have spontaneously broken gauge and Higgs hair.
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III. ENAP THEORY: REGULAR
AND BLACK HOLE SOLUTIONS

A. Metric and connection

The metric for a static, spherically symmetric space-
time can be written

anti-Hermitian su(2) basis expressed in the usual three-
dimensional (3D) (physical space) polar coordinate direc-
tions; e.g. , ~„=r r, and [r„rb ] =e,b, ~, with the indices
ranging over ( r, 8, &p). The four degrees of freedom
a, b, c,d are all functions of the 3D radius r and time t.
The connection (3.7) has a residual gauge freedom

ds = —T (r)dt +R (r)dr +r (d8 +sin dy ), (3.1) UgU —1+ U gU
—1 (3.8)

where R (r)—:(1 —2m/r) '~ and m (r) may be interpret-
ed as the total mass-energy within the radius r. An alter-
native form of the metric convenient for describing black
hole solutions follows from defining 5= —ln(R/T). In
terms of the functions (5(r), m (r)), the metric becomes

—1

Grds = — 1—2= 2m
e ~dt + 1 — m

+r (d8 +sin 8dy ) . (3.2)

For the metric (3.1), regularity at the origin requires
T(0) & oo and R'(r), T'(r) +0,—while asymptotic fiatness
requires R(r), T(r)~1. For the alternate form of the
metric, a regular event horizon at r = r& requires

m (rh ) =rh /2, 5(rh ) & oo (3.3)

and comparison with the asymptotics of Eq. (3.2) gives
5(r)~0 as r~ m. For static solutions, however, we can
rescale the time coordinates

dt: T'(0)dt-,
—

&(&/, )dt=e "dt
(3.4)

in order to simplify the initial data problem: for such a
rescaling,

T(0)=I, T( ~ ) = I /To 1/T(0), ——

5(rh ) =0, 5( ~ ) = —
5O —=—5(0) .

(3.5)

+[(I+c)re+dr ]sin8dyI, (3.7)

where a and b have dimensions [L] ', c and d are dimen-
sionless, g is the gauge coupling and (r„,re, r ) is the

I

Thus the correct initial values of g« for a given system
can be determined by integrating the Einstein equations
with the fully specified initial conditions

R (0)=1, T(0)=1,
(3.6)

m (r„)=rt, /2, 5(r„)=0
where in each of the last three equations, the top part
refers to regular solutions and the bottom part to black
hole solutions. We will use this parametrization below.

The most general spherically symmetric SU(2) connec-
tion [31]is

A = —Iar„dt+br„dr+ [dr& ( I+c)r+]d8—1

under unitary transformations of the form
U=exp[p(r, t)r„], where /3(r, t) is an arbitrary real func-
tion. Under such gauge transformations, which form an
Abelian subgroup of the full gauge group, the connection
functions transform as

U: c C

a —p
b —P'

c cosP —d sin/3

d cos/3+c sinP

(3.9)

1
A = —(1+w)[—r d8+r sin8dp],0 (3.10)

which was explored by 't Hooft in the context of magnet-
ic monopoles [32]. It differs from the ansatz of [20] by a
singular gauge transformation

U =exp(8r, )exp

and has the added virtue that
I
A

I
is invariant under spa-

tial rotations.

B. ENAP equations and boundary conditions

De6ning I' =dA +gA A A, we have
I

F= [ —r dr hd8+r sin8dr hdtv
g

0' 0

——(1—w )r„sin8d8hdy . (3.11)

The Proca equations D*F+p *2 =0 reduce to a single
equation:

I
1 — R

dr RT
+ ——p (1+w)—=0 . (3.12)2 T P T

The Einstein equations 6„=8~T„may be calculated
by varying with respect to g„ the action

We can use this freedom to impose the "polar gauge"
b =0. In th—e static case, P=O and a, c,d are functions of
r only. Following [20] and [17], we eliminate two of the
three remaining degrees of freedom by the ansatz a —=0
(no dyons, purely magnetic YM curvature) and d =—0.

After relabeling the remaining degree of freedom
w (r):—c(r), the connection assumes the form

J' d'xv' —g +&,N~p
= J d'x& —g(R —IFI' —2/'I&I'), (3.13)
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where R =R„g" is the gravitational curvature scalar and we have set G = 1. The energy-momentum tensor is

8vrT„=2F„rF r ,'—g„—„IFI+[2@ A„A —g„ I2 AI ],
and the (tt) and (rr) Einstein equations can be written as

2 2 2

1
2m w' +1(1—w) +p (1+ )2

g 2 g r g

(3.14)

(3.15)

2m T 2mr 1 1—
r T r

2 2 2w' l(1—w) p( )2
m

g 2 g r g r
(3.16)

in terms of the metric functions m (r) and T(r). While (3.16) is appropriate for obtaining regular solutions, the coordi-
nate singularity at the event horizon of a black hole solution leads us to replace it with

2(w')

g r
(3.17)

where 5 was introduced in (3.2) above. For either choice of metric functions, the two Einstein equations can be used to
express the Proca equation (3.12) in a form independent of T(r) or 5(r):

2 1
2m 2 2 2

w" + 2m — —2 (1+w) r w'+(1 —w )w —p, (1+w)r =0 . (3.18)

IFI'=g'IF(r ) I', I
& I'=

I
& (r ) I',

+ENAP g +ENAP( ~ r)I (3.20)

and the dimensionless ENAP equations assume the form
of (3.15)—(3.18) with g = 1 and (3.19) replacing the dimen-
sionful variables and parameters. Through scaling, we
may therefore obtain a solution to the ENAP equations
for any g )0 from a solution to the dimensionless equa-
tions:

wg(r) =w(gr),

Rg(r) = [1 2m (gr)/(gr) ]—
—1-

m (r)= —m(gr),
g

(3.21)

Tg(r) = T(gr), 5 (r) =5(gr) .
Solutions with g ) 1, for example, possess the same struc-
ture as g =1 solutions, but it occurs at radius r =r/g & r.
For the remainder of this section, we take g = 1 without
loss of generality.

We can anticipate from the field equations the general
characteristics of solutions. From the definition of 5, Eq.
(3.17) demonstrates that R/T increases monotonically
with radius. T can also be shown to satisfy the same
equation as in EYM theory [20]:

All of the above agrees with the corresponding EYM re-
sults [20,17] when we take @=0.

The presence of the additional parameter p in ENAP
theory motivates us to clarify the role of the gauge cou-
pling g in the field equations. A classical theory with
G =c =1 satisfies [L]= [ T]= [M], which for our theory
implies [g]= [p]= [L] '. lf we introduce the dimension-
less quantities

r =gr, m—(r ) =gm (gr), P=p/g, — (3.19)

then the theory scales as

d r 1

dr IR T
=2 1 — (w')—2m, 2R

r T

R
(1—w )

2 2

r T
(3.22)

A trivial m =0 solution occurs for w = —1, and cornpar-
ison with Eq. (3.15) reveals that w = —1 is the only ac-
ceptable asymptotic value for finite energy solutions.
Since the right-hand side of this equation is manifestly
positive for w ) 1, the only nontrivial solutions having
finite w and finite energy must satisfy w 1. The pre-
cise finite energy restrictions on the behavior of w come
from the nonderivative term in (3.23), and since w'=0
gives the relation

Rww" =
2 (1+w)w [w(w —I )+p2r2], (w'=0), (3.24)

so that T'(0 for w+1. From the boundary conditions
of the unrescaled metric [T (0))R (0)= 1, T( oo )
=R ( ~ ) = 1] and the definition of R, we then expect that
T )R ~ 1, R should possess at least one maximum, and T
should decrease monotonically for nontrivial regular
solutions. For black hole solutions, 5 should decrease
monotonically and R should decrease from its singular
value at the horizon, though it need not possess any local
extrema for rh &r & oo.

Following [20], we can learn about the behavior of the
vector field by rewriting the Proca equation in the form

1 d (w )' (w')
2 dr RT RT

+ [(w —1)w +p (1+w)wr ] .
R

r T

(3.23)
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this term also governs the oscillatory properties of finite
energy solutions. From (3.24), we see that w") 0 for
r ) 1/2p, so finite energy solutions must have their final
turning points before r =1/2p and satisfy w'&0 after
r = 1/2p. For r & 1/2p, on the other hand, Eq. (3.24) in-
dicates that ww" & 0 in the range

1 —Vl —(2pr ) 1+Pl —(2pr)
2

&w &
2

so solutions can exhibit nontrivial behavior for w & 0 and
still satisfy the boundary conditions at infinity. If

1++1 (2—pr )
CO)

2

however, w will increase beyond w =1, so this range is
forbidden for finite energy solutions. Since we have used
only the r~(x) boundary conditions and not mentioned
initial conditions on w or the metric in this discussion,
the results

lnT(r)-ln +1 M
TO I'

2@p"

5(r) ——|io+pc

(3.33)

(3.34)

w(r)- —1+ce (3.35)

where c is some positive constant and To and 5o refer to
unrescaled initial values introduced in Eqs. (3.5). Thus
the presence of the p terms in ENAP theory gives ex-
ponentially, rather than polynomially, decaying fields as
we expect.

C. Numerical regular solutions

We use a standard one-parameter "shooting" method
to find regular solutions to the ENAP equations. The
formal power series describing the boundary conditions
(3.26) —(3.28) at r =0 is

r &: —1&w & —[1++1—(2pr) ],1 1 2

2p 2

1r &: w'&0, w") 0
2p

(3.25)

2m(r)=4b r + —', (
—8b +3b p )r +O(r ),

lnT(r)= —2b r —,'(12b— 4b +—p b )r +O(r ),
(3.36)

(3.37)

describe both regular and black hole solutions.
The full boundary conditions may be determined from

Eqs. (3.15)—(3.18). For regular solutions, finite energy
density T«and regularity of T(r) at the origin [T'(0)=0]
give

2m(r)=O(r ),
lnT (r) =O(r ),
w(r)= —1+O(r ) .

(3.26)

(3.27)

(3.28)

m (r) =rh /2+m '(rI, )(r —
rI, )+O(r ri, )2, —

5(r) =0+o'(r& )(r rh )+O(r —r—
i, )

w(r) =w(rh )+w'(rz )(r rh )+O(—r rh)—(3.29)

(3.30)

(3.31)

where rh and w (ri, ) are to be chosen to yield a finite ener-

gy solution.
Since the only allowable vacuum value of the connec-

tion function for both regular and black hole solutions is
w = —1, the behavior of Eqs. (3.15)—(3.18) as r ~~ gives

m (r)-M —pc e (3.32)

It is significant that w = —1 is the only possible initial
value; in EYM theory the self-interaction term
(1 w) /r— in m ' provides the two possibilities
w+ =+1[20],but the vector field mass in our theory ex-
cludes w+ both at the origin and as r~~. The p term
also breaks the discrete symmetry w ~—w of the EYM
equations which give rise to degenerate mirror-image
solutions in [20] and [17]. These differences will play an
important role in the spectrum of solutions.

For black hole solutions, the field equations with
m (ri, ) =ri, /2 give m'(rh ), w'(rh ), and 5'(rh ) when p is
specified. Full use of the metric initial conditions allows
us to expand near the horizon:

w(r)= —1+br~+ —'(8b —3b +p b)r +O(r ), (3.38)

which depends only on b & 0 and p and conforms to the
EYM results [20] for p=0. We use these conditions eval-
uated at r =10 as initial data in a standard ordinary
differential equation solver with a global error tolerance
of 10 ', adjusting b for fixed p and integrating outward
in an attempt to meet the boundary conditions at infinity.
The bracketing condition for finite energy solutions is the
same as in [20]: for a small range of b in the vicinity of a
solution, w approaches its asymptotic value w ~—1 and
either crosses through w = —1 and rapidly goes to
w = —~, or experiences a turning point and rapidly goes
to w =+~. Though 2m (r)~r as ~w~ diverges, at a
discrete value of b in this range lies a finite energy regular
solution with the correct asymptotics. The existence of
such solutions has been proven rigorously only in the
p=0 case [26], but the qualitatively similar numerical be-
havior for p )0 lends strong support for our work.

As in EYM theory, finite energy solutions are charac-
terized by the oscillatory behavior anticipated above in
the near-field region r ) 1. Distinct solutions are
classified by k, the number of zeros of w, which increases
with increasing b but must be even for p )0 to conform
to the boundary conditions (3.35) and (3.38). A striking
difference between our non-Abelian Proca solutions and
the EYM solutions of [20] is that for p) 0, we find two
distinct classes of even-k solutions. We will now discuss
each class in turn.

One class possesses physical characteristics very simi-
lar to the even-k solutions of [20] for small p, reducing to
them in the limit p~0; the presence of the vector field
mass only slightly perturbs the gross behavior of the field.
Because it offers the best hope for dynamical stability, we
focus our attention on the k =2 solutions. In the range
0&p &4.454X10, the shooting parameter varies over
0.6517)b )0.5787, while the width of the single peak of
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ENAP k = 2 Regular
T

o

ENAP Quasi-k = I Regular
2 I I I I 1 I I

l

log (r)

w(r) increases as the mass increases: 0.9713 &M
&0.9949 [cf. Fig. 1(a)]. For p) 4.454X 10,w does not
approach its asymptotic value before an additional turn-
ing point occurs and w ~+ ~: the p term in the Proca
equation begins to dominate at a radius r —lip=20 be-
fore the non-Abelian self-interaction becomes negligible,
thereby making impossible k-node solutions for any value
of b. Another way to understand the occurrence of a
maximum p value is through Eq. (3.15); if the p term
dominates the energy density, the radius will always ap-
proach the Schwarzschild radius r =2m beyond some
value of p and solutions with smooth geometry will be
forbidden.

The second class of solutions resembles the (k —1)

odd-node solutions of [20] as @~0, with tc approaching
the forbidden asymptotic value w = + 1 until large
r &1/2p, where a turning point and then an additional
node occur before w~ —1 [Fig. 1(b)]. As the mass pa-
rameter increases toward p=4.454X10, this type of
solution begins to resemble the limiting case of the first
solution type, until eventually the two classes converge at
the maximum value of p: for 0&p&4.454X10, the
shooting parameter and total mass vary over
0.4537 & b & 0.5787 and 0.8286 & M &0.9949, respective-
ly. Thus solutions to ENAP theory bifurcate into two
branches, with the bifurcation point corresponding to the

p at which k-noded solutions no longer occur. In shoot-
ing parameter space, the bifurcation condition corre-
sponds to the shrinking of the interval over which k
nodes occurs from the maximal value of [20]
(0.4537 & b & 0.6517 for k =2) to zero, with finite-energy
solutions occurring at the endpoints.

The existence of a second class of solutions and the bi-
furcation phenomenon can be understood from a heuris-
tic argument of scales. In EYM theory, there is one
dimensional parameter g whose units are
[T][M] '~ [L] (where for the remainder of this
paragraph we do not set 6 = 1) which sets the scale of
the solutions to be on the order of G '

g '. By scale
here we refer to the approximate value of the radius
beyond which the fields in the theory exhibit no nontrivi-
al behavior and rapidly approach their asymptotic values.
In ENAP theory, on the other hand, we have two dimen-
sionful parameters [g] and [p], the latter of whose units
is [L] '. There are thus two distinct length scales:
G' g

' and p '. The former sets the scale for one class
of our solutions and the latter sets the scale for our
second class. Notice that the first scale is dependent on
gravitational interactions while the second is not. As
I/p, ~~, the last node of a k-node solution in the second
family is pushed o6' to infinity and the solution ap-
proaches an odd-node solution of the EYM system with
its scale being set by the only remaining parameter,
G '

g '. These quasi-odd-k solutions therefore have
the scale of their inner structure set by gravity while the
scale of their asymptotic structure is set by the Proca
mass.

D. Numerical black hole solutions

To find numerical black hole solutions, we followed a
similar shooting procedure. The field equations give

I

log (r)

m'(rh)=[1 —w (rh)] l2rh+p [I+w(rh)]

C '[1+~(r~ )]ra —[1—~'(rh )]~(rh )

rh
—[1—w (r&)] Irh —2p [I+w(r&)] rh

(3.39)

FICx. 1. Two-node regular solutions to Einstein —non-
Abelian —Proca theory. The connection [I+w(r)] and total
mass are plotted as functions of radius for a range of vector field
mass values 0 &p &p,„. Increasing p in Figs. 1(a) and (b) [and
in Fig. (2)] corresponds to decreasing the value of the radius at
which the solution exponentially decays to its vacuum value.
The k =2 and quasi-k = 1 solutions, so named because as p~O
they resemble the k = 1 solution of Bartnik and McKinnon [20],
bifurcate at p =@,„.

(3.40)

We shall use the prefix "quasi-" to describe solutions when
their p~O behavior suggests a correspondence to some other
solution category.

7We recently became aware that a similar bifurcation of solu-
tions has been observed in the Einstein-Skyrme (ES) system [33].
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(3.41)

on the horizon, and we can construct initial data from
Eqs. (3.29) —(3.31) with only the shooting parameter
w (rh ) and the horizon radius rl, unspecified. Following
[17],we examine rh =1 and chose (r rh

—) (10 ' so that
the errors in the initial data are smaller than the global
tolerance.

As in the smooth case, we again find two distinct
classes of solutions whose scales are respectively set by
the two dimensionful parameters in the theory. In ap-
propriate limits, these solutions approach those of [17]
modulo one interesting special case to be mentioned
below. For p) 0 we find that odd-node solutions are pos-
sible in addition to even-k solutions, since the horizon
shields the singularity which would occur at w (0)= + 1

for such regular solutions. These k-node solutions are
classifiable by their behavior as p~O; one class reduces
to the k-node solutions of [17], while the other ap-
proaches the (k —1)-node solutions of [17] as the position
of the kth node moves out to r =~. The two solution

branches are again joined at a bifurcation point for some
maximum value of p for each k. The k =1 quasi-even-
node case is special because there exists no corresponding
non-Abelian solution with k —1=0 nodes in [17]; in-
stead, this solution approaches w =+1 as p~O, which
corresponds to the ordinary Schwarzschild solution. The
(regular and black hole) analogue of this solution in
Einstein —Yang-Mills —Higgs theory (to be discussed
shortly) is significant as it allows us to make contact with
the known existence of a Aat space sphaleron. This is the
only set of solutions (black hole or regular) for which the
limiting case is essentially weak gravity (weak in the
present sense meaning that it becomes arbitrarily close to
Schwarzschild). Hence, ENAP black holes are a set of
fundamentally non-Abelian solutions which, like the solu-
tions of [17], possess metrics which interpolate between
the Reissner-Nordstrom (RN) and Schwarzschild
metrics, but which include as limiting cases both quasi-
Schwarzschild and quasi-RN (k ~ oo here and [17])solu-
tions. In this sense, the spectrum of solutions itself inter-
polates between the Schwarzschild and pure-magnetic

ENAP k = I Black Hole
I I I I I & I I I I I I I I I I I I

(a)

ENAP Quasi-k = 0 Black Hole
2

(b)

& max=

rn(r )

l+w(r ))

2
log&O(r)

ENAP k = 2 Black Hole

I l I I I

(c)

ENAP Quasi-k *l Black Hole
2

log (r)
4

= O,OI752

2
log (r)

0 2
log (r)

FIR. 2. One- and two-node black hole solutions to Einstein —non-Abelian —Proca theory for horizon radius rz =1. Like the regu-
lar case, both odd- and even-node solutions exhibit bifurcation at a maximum value of p. The quasi-k =0 solutions resemble the
Schwarzschild solution w = 1 as p~0; this is the only class of ENAP solutions with a weak-gravity limit.
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RN black holes.
Though the solutions for all node numbers exhibit bi-

furcation, we focus our attention on the lowest odd- and
even-node solutions. In Figs. 2(a) —2(b), the mass and
connections for the two branches of the k =1 solutions
are plotted. The limiting value of @=0.1233 joins the
solution branches, which are described by
1 & w ( rh ) )0.8500, 0 5000 & M & 1.0052, 0 & 50 (0.2854
(quasi-k =0) and 0.6322 & tU(ri, ) &0.8500, 0.9372 &M
& 1.0052, 0.5485) 50) 0.2854. For k =2, the maximum

value p = 1.752 X 10 gives the branches —0.6322
& w(r„) & —0.5027, 0.9372 &M &1.0052, 0.5485 &5,
& 0.5831 (quasi-k = 1 ) and —0.3452 ) w ( ri, ) ) —0.5027,
0.9938 (M ( 1.0052, 0.5932)5o) 0.5831 [cf. Figs.
2(c)—2(d)]. For small p, the deviation from the
Schwarzschild mass M =0.5 appears to scale with p for
the quasi-k =0 solutions; this can be understood from
(3.39) which for w (+ 1 gives m '(ri, ) =4@ independent
of rp, .

As we vary rh —+0, we find that the even-k black hole
solutions reduce to the regular solutions for the same
value of p in the manner of [17], with the shooting pa-
rameter approaching w(ri, )= —I+bri, , where b is the
regular solution shooting parameter. The value of p at
which the two solution classes bifurcate also increases as

rh ~0 from its value at r& = 1 to the regular solution bi-
furcation value; for k =2,

1.752 X 10 &pb;~ & 4.454 X 10

as 0 & rz & 1. The reduction to the regular solutions is
sensible when we examine Eqs. (3.39)—(3.41); despite the
presence of the horizon, w'(rh ) and 5'(rI, ) approach the
leading behavior of the r ~0 regular solution expansions
with r replaced by r&, while the nonhorizon mass contri-
bution

2m (r) rh-
=4b r~

mimics the regular solution mass-radius ratio 2m (r)ir in
the same limit.

Although for @%0 there are no regular solution limits
which the odd-k black holes can approach as rh~0,
there is limiting behavior as the horizon continues to
shield the w(0)=+1 singularity. The shooting parame-
ter for such solutions behaves as m(r~)=+1 b,ffri, , —
where b,ff is now an effective regular shooting parameter,
and we can determine bifurcation p values as well as
mass limits for the solution branches. In the k =1 case
with rI, =10, for example, we find for 0&p&0.2010
the branches 0(b,ff & 0. 1329, 0 & M & 0.9289 (quasi-
k =0), and 0.4537&b,a )0. 1329, 0.8286&M &0.9289;
the latter branch reduces to the k =1 solution of [20]
while the former approaches the Schwarzschild solution
with M decreasing proportional to rz. Because the curva-
ture at the horizon

R "=—8rrT„"=p (1+m) Irh

diverges as r& ~0, the maximum value of p mill presum-
ably decrease until it falls off faster than -r&, which will

bring the expansions (3.40) —(3.41) and the nonhorizon
mass contribution into the regular solution form (we have
not investigated this in detail). Thus the only legitimate
quasi-regular limiting black hole solutions for odd k
occur for p~0, but these are significant: the rh ~0 odd-
node black holes help "complete" the regular spectrum,
in that the regular and quasi-regular solutions to ENAP
theory interpolate between the Schwarzschild vacuum
and the gravitating Dirac monopole [15]. As mentioned
above, we will find the quasi-k =0 branch of solutions,
which are trivial apart from a rapid transition between
the minima of the non-Abelian self-coupling m =+1 and
m = —1, exist with or without event horizons in EYMH
theory and correspond to gravitating SU(2) sphalerons.

It should be noted that the divergent behavior of w as
r ~~ used to shoot both regular and black hole solu-
tions is characteristic of integration toward a singular
point. We would observe the same qualitative behavior
as r ~0 or rI, if we had chosen to integrate inward from
some large value of r using (3.32)—(3.35) as initial data
and [c,M] as shooting parameters. To help verify the
existence of our solutions, we integrated from both small
r and large r to a point in between, where we attempted
to match the values of m, m', and m by adjusting the
shooting parameters [b, c,M]. Using the value of b
found from our original method, we were able to adjust
Ic,M] to give agreement at the common point to an ac-
curacy comparable to the global tolerance. We repeated
this procedure for EYMH solutions after including addi-
tional parameters associated with the Higgs field.

IV. KYMH THEORY: REGULAR AND BLACK HOI.K
SOLUTIONS

A. The Higgs ansatz

The starting point for our theory is the addition in Eq.
(2.8) of a complex scalar Lagrangian to the ordinary YM
Lagrangian. Following the standard model, we take the
Higgs field to be a complex doublet @=(P+,P ) with the
double-well self-interaction

V(@)=X(@4) —p (@ N)+const . (4.1)

The most general comp1ex doublet Higgs field may be
par ametrized:

1 0
C&(x) = —exp[ —r g'(x)] (4.2)

with h and P arbitrary. A parametrization of the Higgs
field which proves useful in finding spherically symmetric
EYMH solutions can be achieved by rewriting N in the
form

$2(x)+i g, (x)
C&(x)= P(x) i $3(x)— (4.3)

where we have grouped three of the degrees of freedom as
a vector @. Substituting into the EYMH Lagrangian (2.8)
gives
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—
I
+I'+ —(0'+

I g I')
I
~ I'+ —g" [~„P~.P+ (~„g).(~A )]+v(y'+

I
pl')4, 4

+ —g~ ~ (yxaA+qa. y ya—A),1
(4 4)

where A is our original connection ansatz (3.7). A useful ansatz for the Higgs field which yields a spherically sym-
metric energy density is to take p=p(r, t) and i|i=1(i(r, t)n„, with n„a unit vector in the radial direction, which is
equivalent to taking h (x)=h (r, t) and g'(x) =n„y(r, t) in Eq. (4.2). We adopt this ansatz below.

dr R
r a—' 2R T—[ ( w +d ) + r( P +—g ) ]a =0,

8
(4.5)

d w' 1 —(w+d ) R 1 R
dr RT

+ w ———[(1+w)P —(1—w)g ]—+a wRT =0,
y2 T 4 T (4.6)

d d' 1 — +d+ d—— [(i' +—Q )d —2i))Q] —+ dRT =0,

2 I

dr RT ~ T 2
—V'r ———[[(1+w) +d ]P—2dg] —+ ar PR—T =0,

T 4

2 I —V' r ——
[ [ (—1 —w ) +d ]g 2d i)) ]

——+ —a r gR T =0,

(4.7)

(4.8)

(4.9)

with the constraint equation2, , 1[(d'w —w'd )+ r(P'P g'i')—]=0— (4.10)

arising from the gauge choice. Following Witten [31],it is useful to express the w and d degrees of freedom in the com-
plex scalar form:

w (r) id (r) =—f(r)exp[ia(r) ] . (4.11)

Substitution of w =f cosa and d = —f sina into the constraint equation with P=—/=0, u —=0 gives the result f a'=0,
implying that the gauge choice allows for the dynamical elimination of one of the remaining degrees of freedom: w and
d are related by a multiplicative constant (the equations for d and w in EYM theory are identical), and d—:0 in [20] and
[17] is not an ansatz but a result of the choice of the constant a —=0 [20,17]. With P and P nonzero, the constraint equa-
tion becomes

2f a'+ —,'h y'=0 . (4.12)

Examination of the field equations then implies that if either a or y is chosen to be a constant, then o, —y =n m.
We will only study the case in which u and y are constants, and hence obtaining static solutions to EYMH theory

reduces to solving the coupled equations for a, f, and h /r and choosing a and n
The equation for a may be rewritten

1 d 2T 2, 2Tr —(a )' =r —(a') +2RT f + —h a2 1 2 2

2dr R R 8
(4.13)

while the f and h /r equations become

d f' [1 f ]f R 1 h— R
dr RT + ————

[f +cosn ir]—+a fR T =0r2 T 4 r T (4.14)

d r (h/r)'
dr RT

—Vhr —— [f+cosnn] ——+ —ar —RT =0 . —2R 1 h R 1 2 2

T 2 r T 4 r (4.15)

For odd n, the above equations can be put in the same form as the even-n equations by defining f: f, so the solutions- —
for odd and even n are isomorphic despite the fact that the physical field configurations are quite different. Before ex-
ploring these diff'erences, we note that the r~ ~ boundary conditions on f and h require a ( cc ) =0, and for regular
solutions a (0)=0. Since the right side of (4.13) is positive semi-definite, we must have a —=0 for static regular solutions.
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Thus the no-dyon results for EYM theory [34] extend to EYMH theory.
Though solutions to (4.14) and (4.15) do not depend explicitly on the values of a and n, some physical properties of

the Higgs field and connection are affected by these parameters. Consider a=O, for example. The even-n solutions
reduce to our ansatz, while the odd-n solutions have a "hedgehog" Higgs field (p, 1()—:(0, +h/r). We will shortly see
that one of the smooth k =1 node solutions of this form which we find in the next section has a limit in which it be-
comes close to the flat space sphaleron of YMH theory.

B. EYMH equations and boundary conditions

+EYMH

To obtain static, spherically symmetric solutions we assume P=P(r)=U+i)(r) and /=0. The Lagrangian for the
theory may then be written in the form

'2

4n 4 2 2
—IFI'+ —

I
~ I'+ —I~ql'+ v(W)

2
(4.16)

(4.17)

where V(P) =A, [P —
U ] /4 satisfies V(+U ) =0. Specializing our results of the last section, the gauge field equation is

'2
d w' w(1 —w ) R gP R
dr RT r~ T 2 T

and the Higgs equation is

d r'q' ——(1+w) P——
dr RT 2 T

V'(P)r =0, —2R
T

(4.18)

where V':dV/dg=—dV/drl.
From variation of the full action with respect to g„we obtain the energy-momentum tensor

'2 '2

~„~.—g„. g
I
~I' +2a„qa.~—g„.[Is~I'+2v(y)],

2
(4.19)

m = 1
2m
r

w' 1

g 2

and the (tt) and (rr) Einstein
2

equations:

2 2

+ + (1+w) +— 1 — (rg') + V(P)r
g p 2

(4.20)

2m T' 2m

r T r

w' 1(1—w ) +
(

2 1 2m

g 2 g r2 2 2 r
(rrl') + V(P)r

(4.21)

For black hole solutions, we again replace the auxiliary T' equation with an equation for 6':

5'= —[2(w'/g) +(ri)') ]/r .

2mr

The Einstein equations can once again be used to express the equations of motion in a form independent of gQ ..
2 2

w" + 2m — —2 (1+w) r 2V(P)r —w'+(1 —w )w — (1+w)r =0(1—w ) 2

g r 2

(4.22)

(4.23)

2

r 1 — il + 2(r —m)—2m „(1—w')'
r g r

(4.24)
2

The addition of the Higgs field and new coupling constants A, ,p requires a reexamination of the scaling properties of
the field equations. From the replacement of p in the ENAP theory with (gP/2) and examination of XFYMH, we find

I: n) = I:U]=1 [~1'"=[et =[I ] (4.25)

so by introducing A, =A, /g and p=p/g, we obtain the same overall scaling behavior of the Lagrangian found in Sec.
III:

+FYMH g +FYMH("~~~P) . (4.26)

Solutions for g&1 will again be related to dimensionless quantities as before, with the addition of i) =i)(gr), and the di-

mensionless field equations can be obtained by replacing (r, m, k.,p) with (r, m, k,P) and setting g =1 in Eqs.
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(4.20) —(4.24). We take g =1 for the remainder of the paper and consider all quantities dimensionless unless otherwise
specified.

By following the analysis of Sec. III, we can again predict general features of the solutions and boundary conditions.
From the expression for 5 (4.22), we see that R IT again increases (and 5 for black holes decreases) monotonically with
radius, but because T now satisfies

d r 1

dr R T
L

2m, R=2 1 — (w') —+
r T [(1—w )

—2V(P)],
r T

(4.27)

2

+ (w —1)w + + (1+w)wr
(w') R
RT r2T 2

it is no longer clear whether T decreases monotonically for regular solutions. The condition T & R 1 with R possess
ing at least one maximum, still holds for regular solutions.

The YM equation may be rewritten
r

(4.28)
1 d (w )'

in general, while at turning points we have the relation

Rww"= (I+w)w w(w —1)+ ~ r, w'=0 .
r2 2

(4.29)

Since P( ~ )WO for a spontaneously broken theory,
w = —1 is again the only acceptable asymptotic value
and m (1 is required for finite energy solutions. Because
P is a field and not a constant, determining restrictions on
the value of m and the occurrence of turning points is not
as simple as for ENAP theory. If we assume that P is
O(v) in the region r 1, we can again use a characteristic
radius to define two regimes of interest and apply the
analysis of Sec. III:

r (O(1/v): —1 (w ( —,
' [1+V 1 —(vr)2],

r )O(1Iv): w'(0, w") 0
(4.30)

quantify the finite-energy constraints on both regular and
black hole solutions.

To better understand the expected behavior of P, we
rewrite the Higgs equation

1 d r((P)'
2 dr RT

+ R 2 (1+w) ~2+ VRT T 2r2
(4.31)

1+w 0'+ V'(4)0
2r

(4.32)

When the gauge field coupling term is negligible, we see
that PP" (0, which is characteristic of oscillations about

The obvious requirement for finite energy solutions is
V (P)P(0, which implies that P is restricted to lie be-
tween the minima of the potential: ~P~

( v. We also note
that P=+v, O are the only allowed values as r moo, but-
because V(P) is nonzero at P( ~ ) =0, finite energy solu-
tions must have P(oo )=+v. From (4.31), the equation
governing the oscillatory properties of P is

2m(r)=O(r ),
lnT(r)=O(r ),

(4.33)

(4.34)

w(r)
g(r)

—1+O(r )z, even k, (4.35)

w(r)
i)( r)

+1+0(r )

+0(„), oddk, (4.36)

where k again denotes the number of m nodes and—v (rlo(0 for P(~ )=+v. Black hole solutions again
possess expansions such as Eqs. (3.29)—(3.31) near the
horizon, with the addition of

/=0 (a solution of infinite energy) unless the initial value
of P' in (4.31) is large enough for the field to reach one of
the minima of V(P) as P'~0. For regular solutions, we
will find that P'(0) =0 for P(0)WO, so oscillatory behavior
will occur unless the gauge field coupling becomes impor-
tant. For black hole solutions and regular solutions with
P(0) =0, the initial derivative of P is nonzero, but the
gauge field term again plays an important role in avoiding
infinite energy solutions. The behavior of the scalar field
is consistent with the analogue of a particle moving in a
potential proportional to —V, with the gauge field in-
teraction and gravitational forces fighting the restoring
force of the potential. These heuristic considerations are
in agreement with the no-hair proof for the Goldstone
theory [2], which approaches the existence of finite ener-

gy solutions rigorously but for which the analysis fails in
the presence of a non-Abelian gauge field. Thus we ex-
pect the Higgs field either to smoothly transit the poten-
tial until ~P~ =v, or to move initially toward /=0 and
then turn under the influence of the gauge field toward
~P~ =v. The P~ —

P symmetry of the field equations also
implies that every solution will have a mirror-image solu-
tion; we focus here on solutions with P( ~ ) =+v without
loss of generality.

The presence of the Higgs field in EYMH theory al-
lows for two possible sets of initial conditions for regular
solutions. Finite T«and regularity of the metric at r =0
give
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q(r) =q(r& )+g'(r& )(r r&
—)+O((r —

r& )~), (4.37) 5(r) — 6O—+ ,'a —(v2pr)e (4.40)

where q(rz ) brings to three the number of unknowns.
The vacuum values w(~)= —1 and g(~)=0 are

shared by black hole and regular solutions; the behavior
of the field equations as e —+ ~ gives

w (r) ——1+ce

g(r) a-e
—&2 r

(4.41)

(4.42)

where c and a are constants, v/2 is the gauge field mass
after symmetry breaking and V2p is the Higgs field mass.

m (r)-M —
—,'a (&2pr)re

lnT(r) —ln +1 M
To p'

(4.38)

(4.39)

C. Numerical regular solutions

The presence of the Higgs field makes the solution of
the EYMH equations a two-parameter shooting problem.
For even —k solutions, the boundary conditions
(4.33)—(4.35) become

t'

2m(r)= 4b + —V r + ——8b + 3
2 3 2 3 4'o 16 z 1

3 5 2 3
+ V b +8 —V'

0

2

r +O(r ), (4.43)

1lnT(r) = — 2b ——V r0

12b —4b +4

5
+4V b 3—2

——V r+O(r. )
1 z

0 7 (4.44)

w(r)= —1+br + 8b 3b +—1

10

'2

+4V b +0( ) (4.45)

q(r)=go+ —Vor + Vo 24b + Vo+ Vo' + gob r +O(r ),
6 120

(4.46)

where Vo, Vo and Vo are the potential and its derivatives with respect to P at P=Po=—v+go, and the shooting parame-
ters are b )0 and go. For odd-k solutions, the expansions are

2m (r)=[4b + —', Vo+(go)~]r +—', I
—8b + —", Vob +(gt) [6b —3b+((go) + Vo+ Vo )]]r~+O(r ),

1nT(r)= —(2b —
—,
' Vo)r + CAVO

—
—,'[12b 4b +4—Vob + —,'(qo) (24b —2b —

—,
'

Vo —Vo )]]r +O(r ),
w(r)=+1 —br —

—,', [8b —3b +4Vob —
—,'(go) (1—8b)]r +O(r ),

g(r) =gor+ —,'o go[8b 2b+ 3(qo) +—
—,
' Vo+ Vo' ]r3+0(r5),

(4.47)

(4.48)

(4.49)

(4.50)

where go replaces go as the second shooting parameter.
We again evaluate the initial conditions at r =10 and
use global error tolerance 10 ' in a standard ordinary
differential equation solver, adjusting either (b, qo) or
(b, BIO) for fixed A, and p and integrating toward r = ~.
The finite energy solution bracketing condition for b is
similar to that of ENAP theory: for qo or qo in the vicin-
ity of a solution, there exists a range of b for which
w —+ —1 but then rapidly approaches ~w~=~, with a
discrete value of b giving the correct asymptotics for w.
As we adjust go or qo, the Higgs field either passes
through g =0 and diverges or experiences a turning point
and begins oscillating about g = —v, with discrete values
of ( b go ) or ( b, qo ) giving the monotonic approach of
both fields toward the boundary values as r~~. The
difficulty of the two-dimensional shooting problem was
compounded by the presence of the two free parameters
A, and p. Examination of (4.41)—(4.42) reveals that a

significant disparity between V'2p and v/2 makes the ac-
curate determination of solution shooting parameters
very difficult, since both fields must simultaneously ap-
proach their asymptotic values for both bracketing condi-
tions to occur. As a consequence, we focus on solutions
with &2@= v /2 (corresponding to A, = —,

' ).
The general properties of finite energy regular solutions

are the same as for ENAP theory. Solutions are again
characterized by w oscillations in the region r ~ 1 and
classified by the node number k, which may now be odd
as well as even. For odd k, the Higgs deviation monoton-
ically increases in the range —v ~ q ~ 0, while for even k
it undergoes a turning point very close to go and then
monotonically increases to q( ~ ) =0. Two distinct sheets
of solutions for each k again arise (for any choice of A, or
p in the appropriate range we have two solutions for each
choice of k), but for A, = —,

' they do not precisely converge,
and a different maximum value v,„ for each sheet may
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solutions on the latter branch have their last node pushed
out to infinity and they go over to k —1 node solutions
with scale set by I &. An interesting special case is that of
our k =1 node solutions (smooth or black hole) since
they would appear to approach a k =0 node solution.
This means that their scale is set totally by I 2 and hence
can exist with arbitrarily weak gravity. In particular, our
smooth solution of this sort can be related to the Aat
space sphaleron in this limit. Explicitly, taking our solu-
tion with the choice a=0 and odd n we can write the
solution in the form

~ ='+fUa U-
P 2 v

U =exp [ nv—r~„],

which is physically equivalent to the YMH sphaleron an-
satz of [35] and [36]. Though the sphaleron solutions
utilizing (4.51) have only been found for k =1 in YMH
theory, we see that they appear to exist for all k when we
include gravity.

D. Numerical black hole solutions

1 h

r

0
U (4.51) To find numerical black hole solutions, we used the

conditions

2

m '( rh ) = [1—w (rh ) ] /2rh + [1+w (r„)] + V(P(rh ))r„, (4.52)

EYMH k = l Regular
2.OOI

(a)
2. 00

EYMH Quasi-k = 0 Regular

0.50- 0.50

-1.00':
-I

2.00
EYMH k = 2 Regular

I I I ' I

I I

I

log (r)

(c)

—l.00
-l

EYMH Quasi-k* I Regular2. 00'

log (r)

0.SO- O. SO

—1.00
-I

I I f II

I

log (r)

-1.00
—

I I

log (r)

FIG. 4. One- and two-node black hole solutions to Einstein —Yang-Mills —Higgs theory for quartic coupling A, = —', a range of vacu-

um expectation values U and rh =1. The quasi-k =0 solution approaches a Schwarzschild black hole metric as U decreases and might
be heuristically described as a black hole with sphaleron hair. The other solutions do not have a weak-gravity limit (a limit arbitrari-
ly close to the Schwarzschild limit).
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[4'(rh)/2] [1+w(r/, )]r/, —[1—w (r/, )]w(r )

rh —[1—w (rh)] /rh —2[/(rh)/2] [1+w(rh)] rh —2V(P(rh))rh

[1+w(rh )][/(rh )/2]+ V'(P(rh ))rh2

rh
—[1—w (rh )] Irh —2[/(rh )/2] [1+w (rh )] rh

—2V($(rh ))rh

~ (rh ) [2[w (rh ) ] + [rh n (rh ) ]'I «h

(4.53)

(4.54)

(4.55)

on the horizon, and use w (rh ) and ri(rh ) as shooting pa-
rameters for rz =1. The results for k =1 and k =2 are
shown in Figs. 4(a) —4(d).

Two solution branches again appear for each k,
with the quasi-k =0 branch distinguished by its weak-
gravity v —+0 limit. The k = 1 solutions are des-
cribed by 0&v &0.356, (1—0.292v ))w(rh))0. 870,
—

( 1 —0.217v )v & g( rh ) & —0.304, (0.5+ 1.820v ) & M
& 1.0181, 1.19v & 5o & 0.3310 (quasi-k =0) and
0&v &0.331, 0.632&w(rh) &0.801, —0.826v ) ri(rh)) 0.275 0.9372 & M & 1 ~ 0043 0.5485 )60)0.4300.
The specifications of the k =2 solutions are
0& v &0.0486, —0.632& w(rh) & —0.518, —(1—1.62v)v)g( rh ) ) —0.0429, 0.9372 & M & 1.0073, 0.5485 & 5o
&0.5799 (quasi-k =1) and 0&v &0.0475,—0.345 )w ( rh ) ) —0.489, —0.901v )q( r„)) —0.0417,
0.9938 &I&1.0066, 0.5932) 6,)0.5844.

We see that these black hole solutions have nontrivial
gauge and Higgs field structure outside of the horizon.
This could not happen if the gauge group were
Abelian —it relies, as discussed in Sec. II, on the non-
Abelian nature of the field theory being studied here.

V. CONCLUSIONS

In this paper we have studied spherically symmetric
classical solutions to SU(2) non-Abelian Proca theory and
spontaneously broken gauge theory. Our main intent has
been to exploit a gap in the known no-hair results —they
do not necessarily apply to nonlinear field theories —to
find black hole solutions, which have nontrivial structure
outside of the horizon, in the most familiar and relevant
kinds of field theories. In particular, we have presented
strong numerical evidence indicating that such field
theories, when coupled to Einstein gravity, do admit
spherically symmetric black hole solutions in which the
gauge and Higgs fields decay to their asymptotic values
exponentially far from the hole, in contrast with previous
expectations.

An important physical question is whether these solu-
tions are stable (although we reemphasize that the no-

[

hair proofs have to do with existence of classical solu-
tions, not with their stability). We have not exhaustively
studied this question, but it does seem somewhat unlikely
that they are stable. Our EYMH solutions have a fairly
direct relation to sphaleron solutions (even though many
of them involve strong gravity) and hence are probably
unstable. In fact, the arguments of [24,29] and [37] as ap-
plied to the smooth and black hole solutions of EYM
[17,20] seem likely to ensure that our solutions are unsta-
ble. At this time we have only definitively studied this
question for the smooth lowest node ENAP solutions us-
ing linear stability analysis along the lines of [29] which
does in fact show these solutions to be unstable. It would
be of interest to carry out this analysis fully, especially in
light of the natural suggestion [22] that a no-hair theorem
might hold if one demands stability. It is also important
to develop methods to deal with the latter possibility in a
general setting.

Another interesting question is to try to understand at
a more fundamental level why these smooth and black
hole solutions exist. Recently, the authors of [38] have
given some very interesting plausibility arguments to ar-
gue for the existence of the solutions of [20] and [17].
These arguments rely on properties of the Yang-Mills
configuration space associated with the existence of large
gauge transformations. However, one can evade the no-
hair arguments in as simple a theory as two scalar fields
so long as the quartic potential is chosen judiciously. It
would be interesting to see if smooth and black hole solu-
tions can be found in such models as this will help to clar-
ify the essential physics. We are presently studying this
question and will report on it elsewhere.
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