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Thermodynamic stability of Kerr black holes
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Isolated Kerr black holes are thermodynamically stable with respect to axisymmetric perturbations.

Holes in a heat bath may be stable with large enough angular momentum. Isolated or not, at a fixed an-

gular velocity divided by the temperature they are all unstable. The stability of the "inner horizons" has

also been considered. Isolated inner horizons are stable. With different constraints, they are either

stable or unstable. The analysis concerns pure black holes. Thermal radiation around black holes is

treated as one of their possible circumstances. The effects of back reaction on the metric and noncon-

stancy of temperature in a heat bath have been neglected.

PACS number(s): 04.20.—q, 05.70.—a, 95.30.Sf, 97.60.Lf

I. INTRODUCTION

What can be said about the thermodynamic stability of
uncharged black holes, if all that one knows is the equi-
librium Bekenstein-Hawking entropy S(M,J) [1],a func-
tion of the mass-energy M and the angular momentum J
of the hole, when back-reaction effects are ignored'
Much is known on the stability of Schwarzchild holes
[2,3] but little is known about Kerr and Kerr-Newman
holes.

A characteristic feature of the thermodynamics of
self-gravitating systems is that the stability limits of
different ensembles are not the same. Discussions based
on the sign of the heat capacities, their zero and infinities,
do not have the same meaning in gravitating systems and
in classical thermodynamics, and have led to various
claims about the stability of rotating and charged black
holes [4—6] that were not always strongly substantiated.
This has been well illustrated for stellar clusters in a box
[7—9]. Stable isolated stellar clusters have positive heat
capacities at constant volume C~ when they are very hot
but negative Cz otherwise, and they become unstable go-
ing from Cz &0 on the stable to Cz )0 on the unstable
sides. Stable clusters in a heat bath have positive C&.
Unstable clusters, isolated or in a bath, have Cz's of both
signs. Thus, discussions of stability based on classical
analogues and, in particular, on the sign of C~ are not re-
liable in gravitating systems. Conclusions based on Cz
must be supported by other means.

The situation with black-hole thermodynamics is even
more delicate than with star clusters. This is because
while very hot clusters behave practically like a perfect
gas with negligible self-gravitational energy, black holes
have no nonrelativistic limit at all. A more secure
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method for testing stability is that of a linear series which
uses precisely and only thermodynamic functions such as
the one we are given here: S(M,J). This method, with
all its limitations, has the advantage of giving precious in-
formation at very little cost on a subject in which few
solid results are yet known.

II. THE TURNING POINT METHOD

Poincare [10] invented a powerful method for separat-
ing stable and unstable configurations in a one-parameter
series of equilibria. The method has been used by Jeans
[11], Lyttelton [12], and Ledoux [13] in their basic
treatises. Wheeler [14] rederived Poincare's method and
found stable configurations of cold stars (see also Thorne
[15]).The same result can be derived by the turning point
method in a more simple way [16]. Bardeen, Thorne, and
Meltzer [17] described a method similar to Wheeler's and
valid for hot isentropic stellar models. Lynden-Bell and
Wood [7] were actually the first to apply the Poincare
method to thermodynamic systems and found stable iso-
thermal spheres of gravitating particles.

Suppose one has a series of equilibrium configurations
characterized by a parameter y (a linear series), Poincare
shows that changes of equilibrium occur only where two
or more series cut each other (at bifurcations) or where
they merge (turning points). Thus, along the linear series,
if one point represents a stable configuration, all the
points of the branch between two turning points or bifur-
cations are stable. Along a line, stable configurations
may become unstable, unstable ones become either stable
or more unstable. The nature in the change of stability is
obtained from an eigenvalue equation. There are, howev-
er, exceptions where the eigenvalue equation need not be
solved. For instance, Wheeler noted that for cold stars
the linear series also gave the number of unstable rhodes
of each equilibrium. A similar situation exists in hot
isentropic models. Katz [18] has shown that the number
of unstable modes of an equilibrium may, in many cases
of astrophysical interest, be deduced from topological
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A. Isolated systems

If a system under consideration is isolated from its sur-
roundings the total entropy S of the system is the func-
tion Z, which is extremum in equilibrium configurations.
A thermodynamic variable in this case is the total mass-
energy E of the system. The conjugate variable of E with
respect to S is the derivative

the inverse temperature of the system (P=T '). The
differentiation is performed with other variables fixed.

FIG. 1. Example of stability curves with turning points. A
change of stability can only occur at a point A with a vertical
tangent.

properties of the linear series without having to solve an
eigenvalue equation. The principle is based on plotting
the appropriate quantities. Let us review the method
when there are only turning points; this is the case in
black-hole thermodynamics. Proofs are given in the orig-
inal references.

Suppose Z(x,y) is a distribution function whose extre-
ma BZ/Bx'=0 define equilibrium configurations that are
stable if the extremal value of Z is a maximum. Stable
solutions have a matrix —(8 Z/Bx'Bx ), with a positive
spectrum of eigenvalues 0& 1,, & X2& . The x "s may
be functions with compact support, in which case the
spectrum is also discrete. If it is one dimensional as in
spherical systems, the spectrum is nondegenerate.

Now consider the equilibrium value Z, (y)
=Z [X'(y),y], X'(y) is a solution of BZ/Bx '=0. Suppose
the derivative dZ, /dy, plotted versus y has the topology
shown in Fig. 1. Changes of stability will only occur at
points such as 3 where tangents are vertical. The branch
with negative slopes near 2, such as point 3", is a
branch of unstable configurations. The branch with a
positive slope near 2, such as 3 ', is one of the more stable
configurations. If the lower branch is stable then A, &) 0
and on the upper branch, A, &&0&A,, &A,, & . . This
method found useful applications in engineering [19]and
in astrophysics [20] and as been refined in several ways
[21].

A statistical mechanics of black holes has been
developed by Zurek and Thorne [22], and Thorne, Price,
and Macdonald [23]; see also York [24]. This means that
they have a Z(x', M, J,Q) for black holes whose max-
imum value in Planck units c =G =%=8m.k& =1 is the
Bekenstein-Hawking entropy S(M,J,Q).

1. Pure holes

In order to make a Schwarzschild hole in a vacuum a
completely isolated system, one has to suppress the parti-
cles evaporating from the hole. As a thought experiment,
this can be achieved by covering just above the event hor-
izon with a perfectly reAecting, spherical mirror. In this
case, the total mass-energy E of the system is that of the
hole M and [1]

The conjugate variable is M as calculated from Eqs. (1)
and (2). The stability curve is thus a straight line at 45
[line (a) in Fig. 2]. It has no vertical tangent. Accord-
ingly we say that a pure isolated hole is thermodynami-
cally stable with respect to spherically symmetric pertur-
bation s since the line represents all the equilibrium
configurations within our approximation and no other
equilibrium configurations are available.

2. Hole and radiation

Hawking [2] has considered the stability of a
Schwarzschild hole immersed in a thermal bath of finite
size from a viewpoint of microcanonical ensemble. This
is because the canonical ensemble of Schwarzschild holes
(the holes in an infinite bath) is shown to always be unsta-
ble. We reproduce here his results by using the turning

III. THE STABILITY OF SCHWARZSCHILD HOLES I

0 cr fp/2

It is most indicated to apply the turning point method
to Schwarzschild holes first. Here we know results from
other, more complete methods, and comparison among
them will emphasize the limitations of our standpoint
and also value of the Poincare method in this case.

FICx. 2. Stability curves of a Schwarzschild hole in different
circumstances and different approximations: (a) a pure hole,
(b) a hole with radiation, (c) a hole with back reaction, and (d)
a hole in a heat bath whose temperature is fixed at the wall. All
curves are only topologically correct.
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The entropy in this case is a function of E and V. The
stability line P(E) has the topology of curve (b) in Fig. 2.
This has a vertical tangent at A. Hotter holes (P(f3& )

such as A" are unstable because the tangent of the stabil-
ity curve is negative. Cooler ones are stable. This means
that the instability of a Schwarzchild hole in radiation is
stabilized if the faction of the energy in radiation is
sufficiently small. For P high enough the curve tends to
the straight line P=E. Thus, the stability curve of pure
holes is approximately valid also for holes in radiation as
long as temperatures for a given V are low enough so that
radiation effects can be neglected.

3. Stability of black holes with back reactio-n sects

The accurate approximation found by Page [25] for the
expectation value of the renormalized thermal equilibri-
um stress-energy tensor of a free conformal field in a
Schwarzschild black-hole background was used by York
[26] to calculate the back-reaction effect on the metric. A
similar attempt was also made by Balbinot and Barletta
[27]. Here we quote the latter result for a vector-boson
dominated case:

M
1 —a /M

(4)

where a is a positive number. The curve P(M) is shown
in Fig. 2 as (c). This has no vertical tangent, though it
deviates completely from the uncorrected curve (a) at
small M. Therefore, there is no change of stability.
Since the curve tends to the stable line (a) in the large
mass region, the whole curve represents stable equilibria.
Thus, an isolated Schwarzschild hole is stable even if the
back-reaction effects of the thermal atmosphere [23] are
taken into account.

The stability of black holes with back-reaction effects
will be further discussed elsewhere [28].

B. Holes in a heat bath

The effects of thermal radiation around black holes can
also be examined from a standpoint of canonical ensem-
ble. The radiation is then treated as a heat reservoir, a
circumstance specifying black-hole states. In this case,
instead of M, P becomes a control parameter provided
that a reservoir is ideal and can provide or absorb heat
which is needed by any change of state of the hole under
consideration, without varying its own temperature. In
this sense, reservoirs constituting a canonical ensemble
are required to have infinite heat capacities.

The entropy is no more the appropriate distribution
function which takes its maximum at a stable equilibri-
um. It is rather S —PM= PF, with F the He—lmholtz
free energy. Thus, here Z, is S —PM, the parameter y is

P, and the conjugate parameter

point method.
The radiation energy in a bath is proportional to T,

say o. VT or cr VP, where Vis the volume and cr a posi-
tive number. The total mass energy is thus

(3)

d(S —PM)/dP= —M .

The stability curve is thus —M(p) which is just Fig. 2 ro-
tated 90' clockwise (E should be interpreted as M in this
case). Looking at this rotated Fig. 2, we can see that
without back-reaction effects [curve (a)] there is no verti-
cal tangent. It is evident that there is at least one unsta-
ble mode which is associated with the negative heat capa-
city [2]. Therefore, we conclude that a Schwarzschild
black hole in an infinite heat bath is unstable at any tem-
perature. However, the rotated curve (c) has a vertical
tangent at P. The lower mass branch has positive
tangents near P while the higher mass branch has nega-
tive tangents and is hence unstable. Thus, we see that the
back reaction of Hawking radiation has a stabilizing
effect [27] for a Schwarzschild hole in a heat bath.

One may legitimately argue like York [3] that P is not
a homogeneous parameter in a heat bath owing to the
background metric of Schwarzschild holes. One should
rather fix the temperature at the surface of a spherical
box of radius rp containing a hole. Then one has

]. /2

Pv„q=M 1— (6)
I'p

York has found along this line a new branch which is
stable in a heat bath. This branch, which is different
from the stable one found by Hawking [2], is again
beyond the scope of our present treatment. However, his
result can also be interpreted by the turning point
method. The —M(Pv„k) curve [curve (d) in Fig. 2 with

P and E interpreted as Pv„z and M, respectively] has a
turning point Q, and his unstable branch approaches
curve (a) in the high-temperature limit. If we let the ra-
dius of his box be infinitely large, we recover our inverse
temperature P. In this case, his unstable branch exactly
coincides with curve (a) and the stable one disappears to
infinity. The combined effects of back-reaction and local
temperature on the stability of Schwarzschild holes have
been discussed by Zaslavskii [29].

C. Summary

If we neglect the effects of the back reaction on the
metric and of inhomogeneous temperature in a heat bath,
the turning point method shows all isolated holes to be
stable and those in a large enough heat bath to be unsta-
ble. We now apply the method to rotating holes with
these limitations in mind [30]. Other limitations may be
present in fast rotating holes since rotational velocities
should not exceed that of light. This would put limita-
tions on the volume of heat reservoirs which may
conffict, in some cases, with the requirement for our P to
be observed at infinity.

IV. ROTATING BLACK HOLES

A. The thermodynamic functions

By virtue of the no-hair theorem [31], the equilibrium
entropy S of Kerr black holes are specified by two in-
dependent variables, the mass M and the angular momen-
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turn J. The equation of state S(M,J) is most convenient-
ly written in terms of the rotation parameter h intro-
duced by Okamoto and Kaburaki [32]:

b:—
r

where a =J/M represents the specific angular momen-
tum and rH=M++M —a the "radius" of the event
horizon. Thus,

S= 1 M J= M2h

2(1+h ) 1+h
The first law of thermodynamics reads

dS =PdM —adJ,

(8)

where P=T ' is the inverse temperature and a=f),/T,
with Q the angular velocity:

1 1 hM, a= —=—
T 2

(10)

All other thermodynamic functions [32,33] can be ob-
tained from Eqs. (8) and (10). Among general Kerr black
holes 0 ~ h ~ 1, those of h =0 correspond to nonrotating
Schwarzschild holes while h =1 correspond to extreme
Kerr holes. Eqs. (8) may actually be considered for h ) 1.
Solving the latter of Eqs. (8) for h in terms of J/M, one
readily finds two solutions for h, h+, and h, corre-
sponding to the outer (r+ ) and inner (r ) horizons,
r+=a/h+. Equations (8) may thus be regarded as the
thermodynamic equation of state of the inner horizon
[34]. Thermodynamic properties of the inner horizons
have also been discussed by Curir [35].

Corresponding to the heat capacities at constant pres-
sure and volume in usual thermodynamics, those at con-
stant angular velocity and angular momentum are defined

for Kerr holes, respectively, by the relations [32]

BSC~=T
0

2(1 —h ) S,(1+h )

asCJ=T aT
2(l —h )(1+h )

1 —6h —3h
S. (12)

Notice that C& is negative for 0 h (1, positive for
h ) 1, and tends to 0 as h ~~. CJ diverges at
h =(1/V3 —1)'i—:h, going from —ao to + co when h

crosses h, from below. CJ is negative for h & 1 and tends
to 0 as h —+~. At h =0 and 1, the two heat capacities
are equal (see Fig. 3).

B. Massieu functions for rotating holes
and their conjugate pairs of variables

MS(M J)= 1+ 1—
1/2J2

M4 (13)

where the upper sign is for 0 » h ( 1 and the lower for
1 (h; for the canonical ensemble which is in contact with
a heat bath

4(P,J ) =S—/3M = 13F, — (14)

For stable isolated black holes the entropy is max-
imum. In Gibbs statistical mechanics, isolated systems
are treated in terms of the microcanonical ensembles.
Other ensembles have different thermodynamic functions
that are maxima for stable equilibrium; they are the Mas-
sieu functions [36]. The equilibrium values of the Mas-
sieu functions for Kerr holes in various ensembles are as
follows: for the microcanonical ensemble, S is given by
Eq. (8) or by

hc

Cg,

e e o o e o oy O FIG. 3. Comparison of the
heat capacities at constant J and
Q. CJ is shown with solid
curves while Cz, with dotted
curve.

EVENT HORIZON INNER HORI ZON
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where I =M —TS is the Helmholtz free energy; for the
"a-microcanonical" ensemble which is in contact with an
"a bath, "

](
i/2/J P

2.5—

X(M,a):—S+aJ, (15)

and for the "a-canonical" ensemble which is in contact
with both heat and "a"baths,

A(P, a)—:S —/3M+a J= —PG, (16) 2.05—

where G =F—QJ is the Gibbs free energy. Here we have
used the correspondence of variables J~V and 0+-+—p
between the black hole and usual thermodynamics, where
V and p denote volume and pressure, respectively. The
o.-microcanonical ensemble, whose counterpart in usual
thermodynamics is artificial (p/T is fixed but T itself is
not), is considered together since, in general, the various
ensembles give complementary information [9]. There is
a hierarchy in the constraints from the most constrained
one (microcanonical) to the least constrained one (a-
canonical ensemble). A more constrained system cannot
be less stable than a less constrained system. Instead of
Massieu functions one may use the thermodynamic po-
tentials M, F, —P (S+aJ), and G which are minimum
for stable equilibria. But then the stability curves have to
be read in a slightly diFerent way from the one described
in Sec. II.

Information on stability changes comes from plotting
the conjugate of each parameter versus the parameter it-
self [18]. For an isolated hole the conjugate parameter of
M at fixed J is the derivative of S with respect to M:

—O. I

-0.5

1.7 I

Fixed J

I

2.5
I

1/2/J M

aM, =P(M) .

Similarly, the conjugate parameter of J at fixed M is

(17)

For the canonical ensemble the relevant figures will come
from plotting —M(/3) at J constant and —a(J) at p con-
stant since

(19)

and so on. Table I gives the Massieu functions and the
conjugate pairs of the four ensembles. The linear series
of conjugate variables are readily obtained from Eqs.
(13)—(16) and are given in Figs. 4—7. Notice in Table I
that the function —M(p) at fixed J is the function p(M)

FIG. 4. The stability curves of conjugate parameters
/3(M) at fixed J. Parametric equations are &2/J p
=(h +h i)i/2(1 —h )

' and v'2/JM =(h +h ')' The
curve for the microcanonical ensemble shows no vertical
tangent, thus no change in stability. Rotating the figure 90'
clockwise represents —M(P) at fixed J. That is the stability
curve for the canonical ensemble. A vertical tangent at
&2/JP=2. 03, &2/JM=1. 71 shows a loss of stability for
h & h, =0.39. No vertical tangent appears on the h & 1 curve.

for a fixed J rotated 90' clockwise; the same is true for—M(p) and /3(M) for fixed a. At fixed M, J(a) is —a(J)
rotated 90' counterclockwise; the same is true with J(a)
and —a(J) with fixed P.

V. THE STABILITY OF ROTATING HOLES

In what follows we assume that the spectrum A, , is non-
degenerate as in nonrotating holes.

Type

TABLE I. Massieu functions and conjugate variables.

Ensemble Pairs of conjugate variables
Control parameters Massieu function Function Fixed Function Fixed

Mic rocanonical
Canonical
a-microcanonical
a-canonical

M, J
P, J
M, a
p, a

S
S —PM
S+aJ
S+aJ —PM

P(M)—M (P)
P(M)—M(P)

J
J

a

—a(J)
—a(J)
J(a)
J(a)
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0.5

holes in our Universe seem to be best described as isolat-
ed systems. At least in the present Universe they are not
immersed in a heat bath, and the thermal relaxation time
measured by their evaporation times is longer than the
age of the Universe for holes of M~ 10' g. This means
that, unless miniblack holes (M « 10' g), reversible
heat-exchange processes with the environment can be
neglected. However, they are not prevented from losing
mass and angular momentum through gravitational radi-
ation. In this sense, holes in the Universe are actually
open systems even if some astrophysically probable in-
teractions with the environment such as accretion pro-
cesses are neglected. It has indeed been shown [38] that
extreme Kerr holes have indications that they are unsta-
ble for strongly nonaxisymmetric perturbations and radi-
ate gravitational waves.

—0.5 B. Rotating holes in a heat bath

Curves of M(P) a—t constant J are given by Fig. 4 ro-
tated 90' clockwise. Here we see a vertical tangent for
h =h, . The branch of the line p(M) for 0 & h & h, is thus
certainly less stable than the branch for greater h's since

FIG. 5. The stability curves of conjugate parameters —a(J)
at fixed M. Parametric equations are —cx= —zh(1 —h ) and

J/2M =h(1+h ) '. The curves hold for the microcanonical
ensemble and, rotated 90' counterclockwise, for the u-
microcanonical ensemble. There is no vertical tangent and no
change of stability at any point.

A. Isolated holes

Curves at constant J are given in Fig. 4. There is no
vertical tangent and therefore no change of stability for
any M. Since as we have seen isolated Schwarzschild
black holes are stable [37], we may infer by continuity
that holes with a tiny angular momentum are equally
stable. Therefore, the upper branch of Fig. 4 where h ~0
is associated with stable configurations. From this we
conclude that isolated Kerr holes are thermodynamically
stable with respect to axisymmetric perturbations, since J
is constant. "Inner horizons" with h ) 1 are either all
stable or all unstable. Since we do not know the stability
of any of them, we cannot say more.—u(J) at constant M are given in Fig. 5 and tell exact-
ly the same thing as P(M) at constant J (see Fig. 4). This
is because J/M appears in one combination.

We have seen that in spite of negative heat capacities
for h & h„ there is no change of thermodynamic stability
in the linear series p(M), for any value of J. A11 isolated
Kerr holes must thus be stable with respect to axially
symmetric perturbations. The sign of the heat capacities
is thus no indicator of stability for self-gravitating micro-
canonical ensemble.

Note, however, that no back reaction is taken into ac-
count in the above discussion. These results are likely to
be upset by taking the back reaction and inhomogeneity
of temperature into account.

If we remain in the equilibrium thermodynamics, Kerr

0.5—

Fixed P

0.24
I 0.5 J/2p2

-0.24— ti h=hc

—0.5—

FIG. 6. The stability curve, at fixed P, for the canonical en-

semble and, rotated 90' counterclockwise, for the a-canonical
ensemble. There is a vertical tangent and a loss of stability for
h &h, in the canonical ensemble. The a-canonical ensemble
does not show any change of stability.
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above argument is not sufficient to prove such a transi-
tion. Actually, the point of infinite CJ corresponds to the
turning point of the —M(p) curve and there is no
branching oQ there. There is no stable branch to which
most stable states for h & h, can go. This argument alone
shows that no phase transition occurs in the black-hole
states.

Similar conclusions for the nonexistence of such a
phase transition have been reached by Sokorowski and
Mazur [6] and Landsberg and Tranah [39] by somewhat
diFerent methods. Sokorowski and Mazur further claim
that the temperature is not a fundamental parameter be-
cause the mass is a double-valued function of T. Howev-
er, this is incorrect. As seen in Fig. 4, double-valuedness
reAects the change of stability in the canonical ensemble.

C. Other ensembles

FIG. 7. The stability curves for the e-microcanonical ensem-
ble and, rotated 90' clockwise, for the a-canonical ensemble are
straight lines for a) 0. At a=0, P=+ co for h =1 for any M.
No change of stability shows up in these lines.

the slope goes from —to +. This result is in line with
the fact that Schwarzschild holes (h ~0) in a heat bath
are unstable. Fast rotation thus has a stabilizing effect.
One can, however, not conclude from this analysis that
fast rotating Kerr holes are stable because we do not
know if the number of negative eigenmodes in unstable
slowly rotating holes is 1 or greater than 1. We can only
say that they are less unstable thermodynamically than
slow holes. They are perhaps stable. h ) 1 holes have no
change of stability and are thus all stable or unstable.

Curves of —a(J) at fixed P tell a similar story, with the
same critical value of h (see Fig. 6).

There exists in the case of the canonical ensemble a
simple and obvious connection between stability changes
and the heat capacity CJ which goes from + ~ on the
stable branch to —~ on the unstable branch. The first
derivative of the free energy is, however, continuous since
the entropy at this point is determined uniquely. This
fact may be reminiscent of a second-order phase transi-
tion. Indeed, Davies [4] claims that a phase transition
must appear in Kerr holes at this point. However, the

The n-microcanonical ensemble is associated with
p(M) at fixed a (Fig. 7) and J(a) at M (Fig. 5 rotated 90'
counterclockwise). No change of stability occurs. Such
ensembles are thus either all stable or unstable. Since we
know nothing about the Schwarzschild hole with such
constraints, the curves are inconclusive. However, the
addition of an infinitesimal amount of charge shows that
the configurations are, in fact, unstable [40] because they
become less unstable with a lot of charge; we therefore
conclude that all these configurations (with zero charge)
are indeed unstable.

The a-canonical ensemble is represented by —M(p) at
fixed a (Fig. 7, 90' clockwise) and J(a) at fixed P (Fig. 6,
90 counterclockwise). Again, there is no change of sta-
bility. However, here we have some more information
because this ensemble is less constrained than a canonical
ensemble. Since some canonical ensembles are unstable
we conclude that a-canonical ensembles at fixed a's are
all unstable. Thus, ensembles at fixed a are all unstable.

D. Remarks about the inner horizons

The remarkable feature of the inner horizons is that no
ensemble shows any change of stability. Unfortunately,
stability curves at h =1 are always at infinity. We cannot
infer by continuity from h & 1 to h ) 1 anything about
their stability except that they offer no change of stability
at all for the whole range of their parameters. We shall
show elsewhere [40] that this situation changes dramati-
cally in charged holes. Notice, however, that the linear
series for isolated holes represents all possible equilibria.
The hole has nowhere else to go and must therefore be
stable.
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