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Chiral corrections to lattice calculations of charge radii
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Logarithmic divergences in the pion and proton charge radii associated with chiral loops are
investigated to assess systematic uncertainties in current lattice @CD determinations of charge radii.
The chiral corrections o8'er a possible solution to the long-standing problem of why present lattice
calculations yield proton and pion radii which are similar in size.
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I. INTRODUCTION

While it is generally accepted that quantum chromo-
dynamics (@CD) is the correct theory of strong interac-
tions and, as such, is sufficient to explain the structure
of hadrons, it is extremely difficult to solve the theory in
the low momentum transfer region. The most promising
technique for eventually deriving low-energy properties of
hadrons directly from @CD is via numerical Monte Carlo
simulations of the functional integral in lattice regular-
ized @CD.The examination of hadron structure through
lattice techniques has provided many new insights to our
understanding of quark dynamics [1—3].

Unfortunately, given the current computational power
and algorithms available, it is not possible to directly cal-
culate hadron properties in a completely realistic man-
ner. One important limitation is the present inability
to directly calculate hadron properties with light u- and
d-current-quark masses.

There is another approach to hadronic structure which
in one important respect is complementary to lattice
@CD. This approach, based on minimal model assump-
tions, is the expansion in rn of chiral perturbation the-
ory gPT [4—7]. This expansion is motivated by a sep-
aration between the scale of the pion mass and other
mass scales in the @CD spectrum. The approach be-
comes increasingly valid as the current-quark masses be-
come light. In contrast, critical behavior in the quark
mass makes the lattice approach increasingly intractable
as quark masses become light.

In this paper, we will investigate the relationship be-
tween lattice @CD and yPT. Information from yPT
might help one extrapolate lattice results obtained with
rather heavy-quark masses down to the physical point.
Similarly, information obtained with lattice calculations
may help one determine the range of validity for yPT
estimates of various quantities.

The lightest-quark mass parameters have been inves-
tigated in spectroscopy calculations where typical m to
p mass ratios are found to be of order 1/2 [8—10]. In
an attempt to make some connection with the physical
world where m /m~ 0.18, hadron properties are often
extrapolated in quark mass to the chiral limit where the
pion becomes massless. In general, given the values of
quark mass presently used, the values of various quanti-
ties when extrapolated to the physical point (using sim-
ple linear extrapolations) are essentially indistinguishable

from extrapolations to the chiral limit.
The principal idea we will explore in this paper is that

yPT suggests corrections to the standard linear extrapo-
lation of lattice results. Consider the role of "pion loops"
in a hadronic description of various quantities of interest.
The presence of the pion mass in the propagators can lead
to infrared divergences in the chiral hmit, m ~ 0, and
hence to nonanalytic behavior of quantities as a function
of the pion mass. Of course, the meaning of a pion loop
in @CD is somewhat obscure. However, the physics un-

derlying the nonanalytic behavior is simply the existence
of nearby singularities in a dispersion relation treatment
of the quantities of interest.

In this paper we will focus on the electromagnetic
charge radii of hadrons. These are particularly interest-
ing since they have dramatic nonanalytic effects. yPT
predicts that the electric charge radius of both the proton
and the pion diverge as one approaches the chiral limit.
This divergence is logarithmic in the pion mass. More-
over, these radii have recently been extracted in lattice
calculations [1,2]. By including these chiral logarithms
in the extrapolations with respect to the quark mass, the
systematic error associated with the present lattice cal-
culations may be assessed.

II. CHARGE RADII FROM LATTICE @CD

To investigate these efFects, we will consider the lattice
results of Refs. [1] and [2] for the pion and proton form
factors. These lattice calculations are based on a numer-
ical simulation of quenched @CD on a 24 x 12 x 12 x 24
lattice at P = 5.9 using Wilson fermions. Twenty-eight
quenched gauge configurations are used in the analysis.
Statistical uncertainties in the lattice results are deter-
mined using a third-order, single elimination jackknife
[ll]. The form factors or radii are determined at three
values of the Wilson hopping parameter K and are ex-
trapolated linearly in I/r to I/x„where the pion mass
vanishes. Traditionally one uses a linear extrapolation in
1/e (or mz) of the squared pion mass to zero in deter-
mining the value of K„. Thus the extrapolation of radii
in 1/e may be equivalently described as an extrapolation
in m~.

It is worth noting that in the extrapolation of the pion
mass squared, the effects of terms of higher order in mq,
expected in a yPT expansion (even in the quenched ap-
proximation [12,13]), have been neglected in using a sim-
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III. CHIRAL CORRECTIONS

The logarithmic divergences in the pion and proton
charge radii associated with chiral loops are well known
[14]. The expressions, which become increasingly better
as one approaches the chiral limit, are

2
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Here f~, g~iviv, gz, and M are the pion decay constant,
the pion-nucleon coupling constant, the axial-vector cou-
pling constant, and the nucleon mass, respectively. The
parameter q0 is a constant with dimensions of mass. In
the preceding expression g~iviv refers to the pion-nucleon
coupling constant at q~ = 0. The Goldberger-Treiman re-
lation is exact at q = 0 and thus the quantity g~iviv/M
can be replaced by gA/f~ Moreover, g ~~. and M only

pie linear extrapolation. Errors in other extrapolated
quantities such as charge radii will be induced by the ne-
glect of these nonlinearities. However, these errors will
be at most of order rn~ in(m~) (i.e., finite) as one ap-
proaches the chiral limit. In contrast, the leading-order
chiral corrections to the charge radii diverge.

In the analyses of Refs. [1, 2] charge radii are deter-
mined by parametrizing the charge form factor to a dipole
or monopole form, from which a charge radius may be in-

ferred. Many different extrapolation methods were tested
in determining the extrapolated values for the charge
radii. In the following we define a conventional extrapo-
lation scheme as fitting the lattice determination of the
form factor to a dipole form, followed by an extrapola-
tion of the radii to the chiral limit as a function of 1/e
or equivalently as a function of rnz.

For the pion, the momentum transfer varies by a fac-
tor of 2 over the range between the lattice calculations
and the physical pion mass [1]. While an extrapolation of
the pion form factor is unreliable, an extrapolation of the
pion charge radius may be more reasonable. At q 0.15
GeVz where the lattice form factors are determined, the
dipole and monopole parametrizations of the form factor
produce radii which agree within statistical uncertain-
ties. This is due to the fact that the curvature associated
with dipole and monopole forms is insignificant in this
regime of qz. A linear parameterization of the form fac-

tors also produces similar radii. Therefore the radius,
proportional to the derivative of the form factor, is much

less sensitive to variations in qz.
The assumption in performing a linear extrapolation

for the charge radii is that any significant curvature due
to nonanalytic terms of yPT lies between the physical
point and the chiral limit. The similarity of empirical
isoscalar and isovector radii of the nucleon suggest that
such an approximation is not unjustified. However, in

this paper we will take chiral corrections more seriously
in an attempt to estimate the possible size of systematic
errors in present calculations.

F(m ) = CD+Cion . (3.3)

The contribution of the unknown constant q0 may be

absorbed into C0 and therefore we define q0 ——a i the

inverse lattice spacing and consider the extrapolations
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The physical constants appearing in these equations

enter the expression as a ratio and therefore to determine

the singular parts only g~ and f„need be specified.
In principle, these parameters should be evaluated in

the chiral limit. On the other hand, these parameters cor-

respond to observables which are free from singularities

in the chiral limit. Thus, in the chiral limit, these quan-

tities equal their physical values plus correction terms of
order mz. Such corrections have been estimated to be on

the order of a few percent [5, 6] and for our present qual-

itative purpose it is sufhcient to take the physical values.

We take f = 93.2 MeV and g~ = 1.26. Of course, along

with the singular terms there are contributions which re-

main finite as the chiral limit is approached. This physics

is accounted for in the functions F~ and F„.
The results of Refs. [1,2] are obtained in the quenched

approximation of @CD. When comparing yPT with lat-

tice calculations, one may wish to address the question of

whether the physics which dominates the chiral singular-

ities (i.e. , pion loops ) is, in fact, present in the quenched

approximation [12, 13, 15, 16]. However, this question

only sects the interpretation of the results rather than

the predictions.
If quenched calculations do have the correct chiral

physics, then as will be shown in this paper, there may

be large systematic errors in extrapolated quantities if

one does not account for chiral logarithmic terms in the

extrapolation. On the other hand, if the quenched ap-

proximation does not include the correct chiral. behavior

[17] then the inability to reproduce this behavior is it-

self an important systematic error of the quenched ap-

proximation. Of course, the assumption implicit in this

approach is that the lattice results for charge radii at
the relatively heavy quark masses considered in Refs. [1,

2] are similar to what one would extract in an analysis

of full @CD. This assumption is generally supported by

present hadronic mass spectrum analyses. However, it

is not so apparent that the quenched approximation will

remain a good approximation when the quark masses be-

come light. In fact the discrepancies between full and

quenched yPT to some extent indicate the breakdown of
the quenched approximation for many quantities.

Alternatively one may wish to extrapolate the physi-

cal charge radii to the regime of quark masses or pion

masses typically investigated in lattice calculations. To

extend the yPT physics into this regime we consider the

following assumption for the finite terms. The obvious

and standard choice for F(rn ) is



47 BRIEF REPORTS 2149

f (m ) f (0) + (0.081 GeV ) m (3.6)

where we have used the APE Collaboration results [9]
for f~ to determine the coefficient of m~. Results from
a recent lattice simulation of full @CD suggest a similar
dependence for f [18].

We have not used yPT to estimate the m dependence
of f . Furthermore, using an ms dependence for f~ is not
consistent with leading-order yPT. The fact is we do not
know how to study higher-order effects in a systematic
way. We have simply included the m2 dependence in f
in order to assess the scale of higher-order terms which
might appear in the expansion.

The radius of convergence in m for (3.4) and (3.5)
is unknown. Indeed, it is unknown if the series is con-
vergent. However, the contributions of the logarithmic
terms are largest when the pion mass is small and more
likely to be the dominant physics. Conversely, at pion
masses typical of present lattice calculations one might
be in a regime beyond the validity of low-order yPT.

The parameters t 0 and C~ are optimized by fitting the
lattice determinations of the radii at the three different
values of pion mass by minimizing a y measure weighted
by the square of the lattice statistical uncertainties. Fig-
ures 1 and 2 display the results for the various extrapola-
tion procedures. For both the pion and proton radii, it is
clear that smaller quark masses will be required to reveal
any logarithmic divergences in lattice /CD simulations.
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FIG. 1. Extrapolations of the lattice pion radii to the
physical regime indicated by the vertical dotted line. In this
and the following figure the axes have been scaled by a con-
stant lattice spacing of 0.131 fm to provide a reference scale
to otherwise dimensionless quantities. Prom top to bottom
the extrapolation curves correspond to Eq. (3.4) with f as
in (3.6), (3.4) with f fixed, the conventional linear extrapo-
lation of (r ) and a linear extrapolation of (r ).

are also functions of the pion mass. Variations in these
parameters give rise to higher-order terms in the expan-
sion. To estimate the importance of these higher-order
terms we also consider extrapolations of the radii where
f is a function of m~. The extraction of the m de-
pendence of g~ on the lattice is complicated by a mass
dependence in the renormalization constant. For present
purposes it is sufBcient to leave it fixed. For the m
dependence of f we use
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PIG. 2. Extrapolations of the lattice proton radii to the
physical point. Prom top down, the extrapolation curves cor-
respond to Eq. (3.5) with f as in (3.6), (3.5) with f fixed,
the conventional linear extrapolation of (r ) ~ and a linear
extrapolation of (r ).

IV. DISCUSSION

We have shown the possibility of significant corrections
to conventional linear extrapolations of charge radii. The
inclusion of chiral logarithms enhances both the extrap-
olated pion and proton charge radii and offers a possible
solution to the long standing problem of why present lat-
tice calculations yield radii for these hadrons which are
similar in size.

We do not claim that these "chirally corrected" predic-
tions of charge radii are reliable. There are a number of
reasons to question the validity of the additional terms.
A critical point is that we have only included a single chi-
ral correction term, although it is divergent in the chiral
limit. yPT also allows the inclusion of terms propor-
tional to m~4, m s, etc. While it may be legitimate to
conclude that such terms are negligible near the chiral
limit (and hopefully up to the physical point), it is not a
priori obvious that such terms are negligible in the region
of quark mass where the lattice calculations are done.

There is a more fundamental question about yPT. The
radius of convergence of yPT is unknown. If the series is
asymptotic the number of terms which are reliable is also
unknown. It is generally believed to be valid for physical
quark masses but it has been suggested that the yPT
approach may break down with quark masses as light
as the scale of the strange-quark mass [20]. There have

The plots also indicate an underestimation of the radii
using conventional lattice extrapolation techniques. The
pion radius is underestimated by approximately 5'%%u& and
the proton radius by 25Fo. Some sensitivity to higher-
order terms in the chiral extrapolations is displayed in
the difFerence between the curves with f fixed and f a
function of m . In Table I, charge radii obtained using
linear extrapolations in m2 or m [19] and the standard
chiral expansions of (3.4) and (3.5) with f fixed are com-
pared with experiment. It is amusing to note that the
chiral correction to the proton charge radius is precisely
the amount required to restore agreement between the
lattice and experimental results.
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TABLE I. Comparison of extrapolated charge radii with experimental results in units of fm.

Hadron Linear in m~

0.64(7)
0.65(5)

Linear in m„
0.74(9)
0.73(7)

XPT

0.68(6)
0.88(3)

Expt.

0.66 +0.01
0.862+0.012

been recent suggestions that the standard yPT approach
to nucleon properties is not valid when the pion mass
becomes of comparable scale to the N xmas-s splitting
[21].

We believe, however, that studies of these chiral cor-
rections are significant. They give us some estimate of
the scale of the errors associated with the current lattice
QCD predictions of charge radii. Figures 1 and 2 give us
an estimate of how important these chiral logarithms are
near the physical point and hence how large a systematic
error may be in any calculation which does not account
for them. It is clear that to obtain accurate predictions
of charge radii it is necessary to reduce the systematic
errors in the quark mass extrapolations. This may not
be possible until lattice calculations with much lighter-
quark masses become available. In the meson sector the
predictions of quenched yPT [12, 13, 16] may be useful
due to the large separation between the pion mass and
all other relevant mass scales. In the baryon sector, the
proximity of baryon excitations at the scale of the pion
mass demands a more careful treatment perhaps includ-
ing many baryon excitations in yPT.

We do not view the divergences anticipated by yPT
as a problem insurmountable to lattice QCD methods.

The logarithmic terms of the extrapolation function have

an associated finite volume dependence [22] which may
be examined to determine the coefBcients of the loga-
rithms. For the quenched approximation, techniques are
under development for the calculation of the logarith-
mic coefficients anticipated by quenched yPT [12, 13, 16]
which may be used to verify the physics included in the
quenched approximation [16] and evaluate the validity
of yPT itself. Until lattice calculations with realistic
quark masses become feasible, one hopes to be able to use
an extrapolation function motivated by generalized yPT
considerations with all input parameters determined self-

consistently on the lattice in order to make contact with
the physical world.
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