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The polarization tensors of Z —+3y and yy~yy via 8'-boson loops are calculated in the standard
model. The constrained equations for the tensors are deduced from crossing symmetry and gauge invari-
ance. These equations are numerically checked by the calculated tensor of yy~yy to the first three
lowest orders in its low-energy expansion.
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The decay Z~3y is a rare decay of the neutral vector
boson Z. The fermion-loop contribution to the decay has
already been discussed [1].But there is no calculation of
the 8'-loop contribution [2]. Although these two contri-
butions predicted by the standard model are very small
and cannot be observed at the CERN e+e collider
LEP, there is still an interest in them, especially, in the
8-loop contribution. It is concerned with the vertices
ZWW, yWW ZyWW and yyWW which remain un-
touched experimentally, and it may become large in some
composite model at an experimentally testable level [2].

The y-y scattering is intimately related to Z ~3y de-
cay in their calculations. The scattering is interesting be-
cause it is concerned with electromagnetic nonlinear in-
teraction which is absent in the classical Maxwell theory.
The fermion-loop contribution to the y-y scattering was
calculated in the early 1950s when the renormalization
scheme was available [3]. But the W-loop contribution to
the scattering seems still not calculated in the standard
model, perhaps because it is very small in comparison
with the fermion-loop contribution at low energy.

In this paper, the polarization tensors of Z~3y and
@@~ay via the W loop are calculated in the standard
mode in the R& renormalization gauge with /= 1. In Sec.
I a general expression for the tensors with crossing sym-
metry and gauge symmetry is given. Because of the sym-
metries the 2, B, and C coefficients of the tensors should
satisfy certain equations which are different from those in
the fermion-loop case [3]. These equations reduce 57 of
the 3, B, and C coefficients to 4 independent ones, sim-
plifying the calculation, and they are also very useful in
checking our final results. In Sec. II the 3 and B
coefficients for both Z~3y and yy~yy are calculated.
At low energy the 3 and B coefficients of yy~yy may
expand in Taylor series. By using their expansions we
have checked the constrained equations to the first three
lowest orders. In Sec. III some discussions are given.

I. THE GENERAL FORMS
OF THE POLARIZATION TENSORS

OF Z 3y AND yy ~yy
Consider a Feynman diagram in a process with four

external lines: three of them are photons, and the fourth
one is a Z boson or a photon. Their four-momenta are
kt' (i =1,2, 3,4). For convenience all directions of the
momenta are taken to be out going. Thus energy-
momentum conservation law is written as

4

g k/'=0 .

The amplitude for the process is

+p ( k] i~) )+p ( k/i ~2)+p (k3 i ~3)+p (k4i ~4)

XG ' ' ' '(k„k2, k3, k4),
where e„(k,A, ) is the photon polarization vector, and
e„'(k, A, ) is Z boson or photon polarization vector. These
vectors should satisfy

e„(k,A, )k"=0 (A, =1,2),
e„'(k, A, )kt'=0

(X=1,2, 3, when e„' is the Z-boson

polarization vector), (3)

where A, are taken to be physical polarization degrees of
freedom.

Because of Eqs. (3), the polarization tensor

k ) —= G""(1234)

in Eq. (2) cannot be determined exclusively. Polarization
tensors are called equivalent when they give the same am-
plitude I in Eq. (2). Crossing symmetry prescribes that
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there is always a polarization tensor with Sz (the sym-
metric group of rank 3) symmetry (in yy —+yy case S3
can be replaced by S4):
G' (1234)=P, I

G' (1234) I

P, ES&(a =1,2, 3,4, 5, 6) (4)

where P, is an element of S3. When P, is applied to the

G, its (k,p) pairs should be permuted. For example, if
P, =(123)=(' )

(123)I G i ~4(1234) I
=G2314(2314) .

Suppose all Lorentz indices p in the tensor G are pure
vectors (not pseudovectors). Then G has the general ex-
pansion

23 14 13 24
+ g B (123)

j,m

(i =2, 3;j =1,3;l =1,2;m =1,2, 3),

1234
G' (123)= g A,"( (123) . .i + g B,' (123)

i,j, l, m

12 34 14 23 24

+ +BI (123} i + QBt(123) .i + QB,I(123)
1, m j, 1 i, l

34 12
+ gB (123) . . +Ci(123) ' ' ' +Cq(123) ' ' ' +Cq(123)g

f,j
(5)

where

1234
ijlm

= k 'k 'k( 'k '= (ij lm),i j 1 m Ljm

14

lm
~PakI'ik I"4

m~ ec.

In expression (5) k4 is already canceled by using Eq. (1)
and all terms with k, ', k2', or k3' are discarded due to
Eq. (3). The restriction on the summation indices i, j, l,

and m is indicated in Eq. (5). All coefficients A, B, and C
in Eq. (5) are Lorentz scalars. There are 24 A, 30 B,
and 3 C coefficients. The base vectors
I(ijlm), . . . , g"' 'g ' 'I in expansion (5) are so chosen
that they are invariant under S3,' i.e., under the applica-
tion of any element of S3, they transform among them-
selves. Note that the index p4 in G' may not be a pure
vector when p4 refers to the Z boson. But in our case
only the vector part contributes to G.

Now suppose G in Eq. (5) is S& symmetric. We may
further write G as

'4 2312 34 12 34
12 + B~(123) 13 + B~(1

14 23
123) 32 +C, (123)g ' 'g ' '

12

6 1234 1234 1234 1234
G' (123)= g P, ' A, (123) 2111 + A2(123) 2121 + A~(123) 2123 + A4(123)

a==1

12 34
+B)(123) 11 +B2(123) 23)

'4 23
+—B4(123) 11 +B6(

2

where A, =—A2111, A2 =—A2121 A3 —A2123 A4 —A2311,
3 = 3 = 3 4B1:B]1~ B2:B12~ B3:B13~ B4:B1]~ B5:B

B6——B32', and

B4(123)=B4(132), B6(123)=B6(132),

C, (123)=C,(213} .

In Z ~3y gauge invariance demands

k,„e„(k~,A~)E (k3 A3)e„' (k4, A4)

XG ' ' ' '(k, , k2, k~, k4)=0, (8)

e„( k), X, ) k~„e„( kg, kg)E„' (k4, A4)

XG"'"' ' '(k k k k )=0
(&')

e„(k„i,, )e„(k2,A~)k~„e„' (k4, A4)

X G ' ' ' '(k„k~, k~, k4) =0,
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where A, , are physical polarization degrees of freedom. If
G is 53 symmetric, Eq. (8) guarantees Eqs. (8'). Usually
from Eqs. (8), we cannot get

(9)

The tensor G of yy~yy from the fermion-loop contri-
bution fortunately satisfies Eq. (9) [3]. Thus it simplifies
the calculation a lot; i.e., only several coe%cients 3 are
needed for the calculation of G. But in the 8'-loop case
the G, which is calculated from Feynman diagrams and is
S3 symmetric, does not satisfy Eq. (9). Still we can find a

tensor G', which is equivalent to the G and satisfies Eq.
(9). But, in general, G' is no longer S3 symmetric.

How to get G' from the G in Eq. (5)'? For simplicity,
suppose k, refers to the photon and k2, k3, k4 refer to
massive vector bosons. For a polarization vector e„(k,A, )

of the massive vector boson with mass M,
k„k

e„(k,A, )e,(k, A, ) = —g„+ (10)

where X=1,2, 3 are the physical polarization degrees of
freedom. By using Eq. (10), Eq. (8) can be turned into

—k,„G ' ' ' (1234)+ ki„[k~„G ' ' ' 4(1234)kq'+k3„G ' ' ' '(1234)k3'+kq„G ' ' ' (1234)k4']

k,„[k~„k~„G ' ' ' '(1234)k 'k '+k k G ' ' ' '(1234)k 'k '+k3 k4 G ' ' ' '(1234)k3'k4']

of all terms in G which do not contain k4'. After substi-
tuting G of Eq. (13) into Eq. (11), the left hand of Eq. (11)
has two parts: the first part is k&„G' ' ' ' ', which does1P I

not contain any of k 2', k 3', and k 4', and in the other part
2 3 v4

every term at least contains one of k2, k3, and k4 . In
this way the left hand of Eq. (11) has expanded according
to base vectors (12) with j= 1,2, 3, I =1,2, 3, and
m = 1,2, 4. So the two parts in Eq. (11) should vanish, re-
spectively, ' thus,

ki„G' (1234)=0 . (14)
1@I

So one may easily get G' from the G of Eq. (5), substitute
k3'= —(k, +kz +k4') into the G of Eq. (5), and dis-

card all terms in G containing k4, the remaining part of
G is just G'. According to Eqs. (3), G' is equivalent to G.
If G is S3 symmetric as in Eq. (6), we get

The left-hand side of Eq. (11) is a tensor of rank 3 with
vector indices. So it may expand according to base vec-
tors:

[ k 'k 'k " ' 'k ' ' 'k ' ' 'k " (12)

where, due to Eq. (1), each j, l, m can take three values

out of 1, 2, 3, and 4. Noting that k 2', k 3', k 4 already ap-
pear in Eq. (11), we may take j=1,2, 3, l =1,2, 3, and
m = 1,2, 4, for example. Substituting the G of Eq. (5) into
Eq. (11), we find that in Eq. (5) m =1,2, 3, but in Eq. (11)
m was just taken to be 1,2,4. So for consistency within
the same base, we should substitute

k, ' = —
( k, ' +k z'+ k 4' ) into G of Eq. (5):

+ A4(231)(2312)+B,3(123)

—B,~(312)

(15)

G' (1234)=G' (1234)+K' (1234), (13)

where all terms containing k4' belong to K, so G' consists
I

G' (123)= A, ~(123)(2111)+A, 3(213)(2122)+A, ~(132)(3111)+A, ~(231)(2322)+ 3~3(123)(2121)
+ Aq3(213)(2112)—A iq(312)(3311)—A i~(321)(3322)—3 i3(312)(3312)—2~3(321)(2321)

A i3(321)(3321) A ~3(312)(3112) A 4(312)(2311) A q(321)(3122)+ A 4(132)(3121)
12 34 12 34 13 24

11 +B,3(213) 22 +B,~(132)

23 14 12 34 12 34 23 14
+B,~(231) 22 +B~3(123) 12 +B~3(213) 21

—B,P(321)

24 13 24 23 14 14
31

—Bz3(132) 12 Bi3(321) —
31

—Bz3(231) 21

13 24 '4 23 24 13 '4 23—B,3(312) 32 +B~(123) 12 +B5(213) 21 +B~(132)

34 13 '4 12 14

+B5(321) 23 +B5(231) 32 +B5(312) 31 +B~(123)

24 13 34 12 14 23 24

+B„(213) 22 +B~(321) 33 +B6(123) 32 +B6(213)
J

34 12
+B6(321) +C, (123)g ' ' ' '+C, (132)g ' ' ' '+C, (321)
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where

(2121)=k"ik "~k"~k"4

13 p4
~~~~k ~2k JM4

2 etc.

and

[13]A i2(123)—[23]A iq(213) =0,
[12]Bq(123)—[13]85(132)=0,
Bq(123) 85—(321)= [13][ A 4(312)—A 4(132) ] .

(18)

A i2(123)—= A i (123)—A 2(213),

A, i(123)=—A, (123)—Ai(213),

A2q(123)= Aq(123) —Ai(123),

8, (123)"=B,(123) 8(1—23),

Thus we express all 3, B, and C coefficients and so G' in
terms of A, 2, A2&, A4, and B5 which are further con-
strained by Eqs. (18).

Note that k2, k&, and k4 may refer to photons or mas-
sive vector bosons and Eq. (14) still holds.

Note that

(i,j =1,2, 3), A4(123):—A4(123) —A4(231) . II. CALCULATION
OF A AND B COEFFICIENTS

8 (123)—[12]A (321)—[13]A, (321)=0,

[12]A, ~(231)—[13]A, ~(321)=0,
[12]8,2(231)—[13]8,2(321)=0,

[12]84(213)+[13]85(231)=0,
C, (321)—[12]B~~(231)—[13]B,~(321)=0,
C, (123)+[12]8 (321)+[13]B (312)=0,

(16)

A i2(123)+ A2i(213) = A ii(123),

8, (2123)+8 2(q123)+8 q(123) =0,
so there are only 9 independent A, and B, and C
coefficients in Eq. (15). Now substitute the 6' of Eq. (15)
into Eq. (14), which already expands in terms of the base
(12) with j = 1, 3, I = 1,2, and m = 1,2. Thus we obtain
eleven equations:

[12]A ii(123)+ [13]A i2(132)+Bii(123)

+8 i2(132)+84(123)=0,
[12]A2i(213) —[13]A2s(312)+82'(123) —82'(132)=0,
[12]A2i(123)+ [13]A q(132)+82'(213)+85(123)=0,
[12]A, i(123)—[23]A 4(312)+B,i(123)=0,
8 (132)—[13]A, (312)—[12]A'(312) 8, (312)=0—,

Although by using Eqs. (17) it is enough to calculate
3 23 3 4 and B5 in order to get 6 ', still we have

calculated all A and 8 coefficients in Eq. (6), which gives
our freedom to use Eqs. (16) to check our calculation.

There are the following Feynman diagrams for Z~3y
or yy~yy via the W' loop (see Fig. 1). In Fig. 1 the
internal lines (curly lines) are ghost lines, the dashed lines
are P

—lines, the wiggly lines are W lines. The four exter-
nal lines are photons in yy~yy, and three photons, one
Z boson in Z~3y, where we refer (p4, k~ ) to Z. The cal-
culation is carried out in the renormalization gauge with
the parameter g= 1. The 9 diagrams [(1)—(3) and
(8)—(13)] are divergent. Their divergences are canceled
among themselves. In the /= 1 gauge, only the diagrams
of (1), (2), and (3) contribute to A coefficients and only
the diagrams of (1)—(9) contribute to 8 coefficients. But
all diagrams contribute to C coefficients. In a unitary
gauge only diagrams (3), (9), and (12) remain. The most
complicated calculation comes from diagram (3).

First we calculated the tensor G in Z —+3y, which has
Si symmetry and expands in Eq. (5). Through a compli-
cated and tedious calculation we obtain all A and B
coefficients. They can be expressed as

where [ij]—:k, .k (i,j =1,2, 3). From Eqs. (16) and (7),
we obtain

8 i2(123)=Bq(213)—[12]A i2(123)—[23]A 4(123),

82'(123)= —85(213)—[12]A ~i(213)—[23]A 4(231),

C, 3) ( 4)

Bi~(123)= [23]A 4(312) [12]A ii(123)

B~(123)= [23][ A ~(132)—A4(312) J
—B,(312),

86(123)= [12]A2i(321)+ [13]A, q(321),

Ci(123)= —[13]Bq(312)
—[12][ [23]A2i(123)+ [13]A, q(123)]

(17)

FICx. 1. Feynman diagrams of Z~3y and yy~yy.
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2
A (123)= g fDX (a,R, +azT&, ) (j =1,2, 3,4),

s=1 M,

1
B, (123)= g fDX (a&X;, —2az Y;, )

s=1 s

3

+ g d (a,X;, —2azY;, )
M —

1

(i =1,2, . . . , 6) (19)

where a& ——e e&/(4m), az —=e ez/(4m), and
el gzcw ez (g 1 gz )/2(g 1+gz ) e glgz/

2 2 2 2 1/2

(g f +gz )', C~ =—cos8~=gz /(g
& +gz )'; g& and gz are

the coupling constants of U(1) and SU(2), respectively, in
the standard SU(2)XU(1) model. d, —:[23]=kzk3,
dz=[13]=k&k3, d3=[12]=k&kz. The X, Y, R, and T
coefficients are independent of the external momenta and
only depend on the parameters of Feynman integrations.
These coefficients are available upon request. In the g'= 1

gauge there is a factor

1

(lz —M~z)[(l —k, ) —M~][(l —ki —kz) —M~][(l —ki —kz —k3) —M~]
(20)

which comes from the four propagators of diagrams
(1)—(7) and may be expressed in Feynman parameter in-
tegration by di6'erent choices of Feynman parameters:

DX
[(l —r ) —M ]

where t1=ak1+bk2+ck3, ' by using the on-shell condi-
tion k, =k =k3 =0

In the calculation of B coefficients, there are only three
propagators in the diagrams (8)—(10). But we still
manage to get the factor of the expression (20) so that the
final expressions of the A and B coefficients are simple.

It is easy to get the A and B coefficients of yy~yy
from those of Z~3y, just by setting e, =e2=e or
a, =az=a =e /(4'), where a is the fine-structure con-
stant of electromagnetic interaction. So A and B
coefficients of yy ~yy are

M, =M +2db [12]+2dc [13]+2(b—1)c [23],

d=a —1, fDX= —,', M~ is the mass of the W boson.
One of the choices of the integration parameters is

a =xz+1 —z, b =xz+(1 —z)y, c =xz;

fDX= f dx f dy f z(1 —z)dz .
0 0 0

M2 and M3 come from M1 through permutation of k „k2
and k2, k3, respectively:

1
AP 123)=2az g fDX Rf, (j =1,2, 3,4),

s=1 s

1 ~ 2B;~(123)=a g fDX X,~+ g d X,~
s=1

ls M4 m asm

(i =1,2, . . . , 6),
R ~ =R + T X~=X —2F.js js js ~ is is is

y = Z — Z
Xism =Xism 2 asm

(21)

Mz =M~+2db [12]+2(b —1)c [13]+2dc[23),
M3 =M~+2dc [12]+2db [13]+2(b—1)c [23] .

All R~„X,~ and X,~ are available upon request. It is
enough for us to know the following A, B coefficients:

A
&
(123)=2fDX [a&d(32d b+16db+9b+5d —2)+8azd b(2d+1)]1

1

+ [a&(32db 48db +—26db+4b —Sd 6b +2)+8azdb—(b —1)(2b —1)]
2

+ [a,d(32d c+16dc+9c+Sd —2)+8azd c(2d+1)]
M3

Az(123)=2f DX [a&(32d b —32d b+16db 6db+4b —5d ——6b+2)+8azdb(2d+1)(b —1)]
1

1

+ [a&d(32db 16db +5d +9b —2—)+8azd b (2b —1)]
2

+
4 [a,c (32d c +16dc +Sc +9d +2)+8azdc (2d + 1)]

M3
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A
&
(123)=2fDX [a&(32db c —16db 32dbc+4b 6—db+32bc 6—b 5—d —32c+2)1

1

+Sazdb(b 1)—(2c—1)]+ [a,d(32dbe 1—6db+5d —23b+32c —2)+8azd b(2c —1)]
2

+
~ [a,c(32dbc —16dc+5c —23d+32b —30)+8azdc (2b —1)]
3

A ~ (123)=2fDX [a,(32d bc +16dbc +4db 27d—c +5bc +4d +2b —4c 4)+—Sazdbc(2d + 1)]1

1

+
~ [a,(32db c 48db—c+21dc 28b—c+5db +24c —d 2b ——2)+Sazdc(b —1)(2b —1)]

1

2

+ [a (32d bc —32d c+16dbc —27db —11dc+4bc —d 2b ——Sc —2)
M4

3

+Sazdc(2d +1)(b —1)]

B5 ( 123 ) =fDX [a,( 38db —29d +24b —70) +4az(db +d +4b —8 ) ]
1

1

+ [a,(44db 46d +3—1b +10)—16azd(2b +1)]1

2

+ [a,(38dc+23d +16c +38)+4azc(d +6)]
M3

+ [a d ( 40db c —3—db +69dbc+2db+26bc 6b 29dc—4b+—d —10—c+2)
M 1

—4azd I ( db c +—4dbc +2b c —8bc —3dc +6c )

+a,dz( 40d b—c —3d b —16dbc+42d c+16db —12bc+9d +46dc+4b
—4d +20c+4) 4azdzd ( d—bc +4—bc+dc —Sc)

+a,d&( 40d b +—39d b —16db +62db+2d 12b —26d+—24b —12)

4azd~db—( db+d +4—b —8)]

+ [a,d, d( 40dbc+3d—b —17bc+12dc+b —6d —7c+6)+16azd, d c(b+1)

(22)

+a,dz( 40db c—+3db +46dbc —14b c+15db+9b 10dc+—5b 2d+6c+2—)

+16azdzdc(b 1)+a,dzd( 4—0db +—18db —17b +18b —12d —6)

+ 16azd &d b (b + 1)]

+ [a,d ) c( 40dbc —13db +—27dc +8bc + 5d —22b —14c + 10)2

3

—4azdlc ( db +3d +4b ——4)

+a,dz( 40dzbc 3d c —S—dbc ——10d b+20dc —12bc+7d

—26db +8c —8b +22d +16)+4azdzdbc(d —6)

+a idzc ( —40d zc —13d —Sdc —6d —12c)+4azd&dc (d —6) ]
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By using A, B; and dr, B;r, one may check the Eqs.
(16). We have not found the general way to do so. But in

yy —+yy, when the external momenta k,- are small in
comparison with M~, one may check Eqs. (16) order by
order by expanding 1/Mg in a Taylor series. We have
checked those equations in Eqs. (16), which contain only
2 and B coefficients, to orders of 1/Mw, 1/Mw, and
1/Mw for yy~yy. The correct check gives credit both
to the Eqs. (16) and to the calculation of 2 and 8
coefFicients.

The 3 r and B; can be exPanded in terms of 1/Mw:

2 2

w

2 2

8('(123)=
Mw

2 2

867 (123)=
Mw

To the first two orders 1/M~, 1/M~ of Eqs. (16), we ob-
tain

3j(123)= g 3 r"(123),
n=0

Bf'(123)= g 87"(123),
n=0

where

2 2 3
pro — + D~ ~r

Mw s=1
2 3

B,r = DX X;r,
Mw s=1

ro= gP
Byo —8(0 —BP Byo 8(0 Byo ()

8 '(123)—d 3, —d A/=0,
d3 A, 3 +8 f3 (123)=0,
d3 A (3 +8g (213)+8$' (123)=0,
d3 A g —dq A (3 +8(3 (123)—8)3 (132)=0,
d A ~ +Bi'~ (123)+8]'(132)+8~'(123)=0,
Bj'(132) Br~ (312—)=0 .

(25)

1 1 1—
Mw

2 3

gt, d +.
Mw m=1

3

M, =M~+2 g d t,
m=1

22 =t31 =(b 1)C, tip —t21 —t33 dc

t 13 t23 t32 db

Note that Azr and B,r are independent of k, .
We can obtain

11 2a
~0

11 2a
60 Mw' 60 Mw

60 M' ' 20M'

Bf =BP=B( 2 cx

3 Mw

B~ =8( =B~ =0,

w

2

2

w

and

20,' 3 3

Bf '(123)= fDX g g (X~ —t, Xf, )d
M4w s=1 m=1

with

(24)

By using the numerical values of Eqs. (24), the Eqs. (25)
are checked correctly. Note that in the yy~yy case,
d, +dz+d3 =0. We also checked the Eqs. (16) to the or-
der of 1/Mw in the yy~yy case. Therefore, all 3 and
B coefficients are checked.

III. DISCUSSION

In our discussion above we have confined ourselves to
the S3 symmetry of the polarization tensor G. But we
know the tensor may be written in S4 symmetry form in

yy ~yy as the manifestation of the crossing symmetry
[3]. This can also be done for Z~3y in the fermion-loop
case. How about Z~3y in the 8'-loop case? In the uni-
tary gauge only three diagrams (3), (9), and (12) of Fig. 1

contribute to the tensor G. It is easy to see the contribu-
tions from diagrams (3) and (12) of Z~3y can be written
in S4 symmetry form. As to the diagram (10), there are
two terms corresponding to Z boson at triple vertex and
quadruple vertex, respectively. For each term exists only
S3 symmetry. But the sum of them still can be written in
S4 symmetric form. So there is also a tensor G with S4
symmetry in Z~3y for the 8-loop case.

We already mentioned that the polarization tensor G
with S3 symmetry in Z —+3@ for the 8'-loop case does
not satisfy Eq. (9), but the counterpart of fermion-loop
case satisfies Eq. (9). Suppose the G in Eq. (6) satisfies Eq.
(9), we can obtain equations as follows:

[12]A ) (123)+[13]A )(132) 8+) (123) +)8(132)

+8~(123)=0,
[12]A (213)+[13]A (312)+8 (123)+8 (132)=0,
[12]A (123)+[13]A (132)+B,(123)+8 (213)=0,
[12]A ) (213)+[13]A4(213)+8, (213)=0,
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[12]A3(123)+ [13]A4(321)+83(213)=0,
[12]A (321)+[13]A (231)+8 (123)=0,

[12]A, (231)+[13]A (231)=0,
[12]82(231)+[13]Bi(321)=0,
[12]B (231)+[13]8(321)+C,(231)=0,

[12]Bs(312)+[13]85(312)+C,(123)=0,
[12]B~(231)+[13]B,(231)=0 .

(26)

It is not difficult to see that Eqs. (16) can be deduced from
Eqs. (26), but one cannot get Eqs. (26) from Eqs. (16). In
yy~yy, at lowest order, we can obtain, from Eqs. (26),
for example,

A@=A@=0, Bro=B~'=0. (27)

The numerical values of A r and B~r in Eqs. (24) do not
satisfy Eqs. (27), which in turn indicates that the G with
S3 symmetry in the W-loop case does not satisfy Eq. (9).
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