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We apply the Kerman-Klein method of quantization, an approach based on Heisenberg matrix
mechanics, to the Skyrme model. In this approach the operator equations of motion and kinematical
constraints are evaluated within an appropriately chosen Hilbert space, and the resulting set of c-
number equations is solved to determine the values of matrix elements of the field operators. These
values permit predictions for physical observables. The Kerman-Klein method allows symmetries
to be maintained throughout the computation, a property shared with methods based on variation
after projection techniques. In this report we concentrate on the quantization of the rotational zero
modes of a Skyrmion. We show that the restoration of rotational symmetry leads to a A state that
is larger than the nucleon and to a modification of the values of observables.

PACS number(s): 11.40.Fy, 11.10.Lm, 11.30.Cp, 12.40.—y

I. INTRODUCTION

It has been almost a decade since, in a revival of in-
terest in the Skyrme model [1], it was demonstrated [2,
3] that this model could fit observed properties of the
baryons to an accuracy of about 30%. This rebirth of
attention was stimulated by the belief that some such
model is the long-wavelength limit of QCD, as reviewed,
e.g., in Refs. [4-6].

In the intervening period, there have been a large num-
ber of works extending the range of applications, modi-
fying and extending the model, and improving the way
in which consequences are drawn from it. Among the
further applications, the most prominent have been to
pion-nucleon scattering (the relevant literature can be
traced from Refs. [7-11]) and to the two-nucleon problem
[12-18]. The basic Skyrme model has been extended in
various directions. Excluding the mention of models that
contain quarks explicitly, one encounters in the literature
models with higher-order terms involving the same fields
[19-23] and models in which vector mesons have been
added [8,24-27], as well as extensions to include strange
[28-31] and even charmed mesons [32]. All these mod-
els are first presented as classical field theories, since one
can do much physics using only selected classical solu-
tions. The need to address the problem of quantization
is, however, manifest in the intrinsic properties of the
classical solution. It is to the problem (and problems) of
quantization that this paper is addressed. Though the
ideas to be presented could have been developed within
the framework of many of the extended models, we have
chosen, initially, to work with the original Skyrme model.

The capability of extracting interesting physics from
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the Skyrme model is grounded on the existence of a spe-
cial solution of the classical field theory, the hedgehog
Skyrmion. Like all interesting classical (or mean field)
solutions, it breaks some of the symmetries of the un-
derlying Lagrangian. The hedgehog Skyrmion violates
translation, spatial rotation, and isospatial rotation sym-
metry. The restoration of these symmetries requires, at
the very least, the quantization of the generators of the
symmetry transformations and of the associated canoni-
cally conjugate collective coordinates. As a consequence
maximum attention has been paid to this aspect of the
problem of quantization (for a recent discussion, see Ref.
[33]). (In addition, to study pion-baryon scattering, it is
necessary to discuss quantization of the small oscillations
of the pion field [7,8,10]. There have also been some dis-
cussions of radial oscillations [34-36] in connection with
problems of stability that we shall discuss in Sec. II.)

There is major difference in methodology between all
previous work on the quantum theory of Skyrme’s model
and that to be presented in this paper. There is also a dif-
ference in potential scope between our work and almost
all previous papers, which quantize either the collective
degrees of freedom, as in the original papers, or the pion
fluctuations, but not both at the same time. A major ex-
ception is the work of Verschelde [37], who has developed
a general method of quantization of all degrees of free-
dom, termed the method of “nonrigid” quantization, in
which the collective coordinates are treated as redundant
variables.

This paper is devoted to the application of the so-called
Kerman-Klein method of quantization [38], which in its
application to field theories [39-43] involves, first of all,
formal quantization of the entire classical field. The spe-
cial signature of the method, however, is in its approach
to the study of both the equations of motion and the
kinematical constraints, involving, by means of an anal-
ysis of the structure of Hilbert space, the definition of
a sequence of symmetry-conserving approximations. By
means of this scheme one can recover the classical solu-
tion as a limiting case, but at the same time, at least
for a renormalizable field theory, one can proceed as far
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toward a better solution as one’s analytic and computa-
tional powers permit.

Questions may be raised concerning the justification
for quantizing the Skyrme Lagrangian at all, since it is,
in no sense, a fundamental field theory, but rather a clas-
sical model that results from taking the limit of such a
theory, including only some of the degrees of freedom of
the original theory. This means that even if a formal re-
quantization could be carried out unambiguously, which
we shall see below is not the case here, we could hardly
insist on the validity of all the consequences of such a re-
constituted quantum theory. Nevertheless, there is a rich
experience from the nonrelativistic many-body problem,
for example from nuclear physics [44-46], suggesting the
validity of such an approach for the study of collective
properties at low energies.

An undertaking to quantize the Skyrme model by the
Kerman-Klein procedure confronts a number of prob-
lems, some of which are shared with other methods. The
first such problem is the choice of field variables. We at-
tempted, initially, to quantize a set of independent angle-
valued fields, perhaps most closely related to the chiral
hedgehog field, and then applied the resulting formula-
tion to the restoration of translational symmetry [47].
In both the formulation, on theoretical grounds, and in
the application, for practical reasons, there are difficul-
ties which led us to abandon this effort and to replace
it by the choices made in this paper. We chose the for-
mulation in terms of four fields, a scalar-isoscalar meson
(o0 meson) and a pseudoscalar-isovector meson (7 me-
son), which satisfy the constraint 02 + w2 = f2 at each
point. The reason for this choice is that the Kerman-
Klein method is most conveniently implemented when
the equations of motion are polynomial in the fundamen-
tal variables. The variables chosen satisfy this criterion,
at least at the classical level.

As a consequence of the above choice of variables, we
have to follow the Dirac method [48, 49] of constrained
quantization. This, by itself, is not a special source of
difficulty. The main source of difficulty lies in the cir-
cumstance, shared with previous work in the field, that
the form of the kinetic energy implies that the field the-
ory is defined on a curved field space. For such a theory,
the problem of operator ordering precludes a unique solu-
tion to the problem of quantization. The choices made in
this paper have been guided both by theoretical consid-
erations and practical advantages. Though other choices
may be equally justifiable, our selection involves an in-
triguing novelty that may prove useful for solving other
classes of problems. Once made, the bulk of the effort
reported in this paper, based on the work of one of us
[50], is concerned with the working out of a symmetry-
conserving coupled-channel approach. Guided by the
hedgehog solution we restrict the study to states with
equal spin and isospin, with special emphasis on the nu-
cleon and A.

Turning to the actual content of this work, in Sec. II,
we discuss selected aspects of the classical Skyrme model.
In addition to a review of standard material, novel as-
pects include a new suggestion for stabilization of the
rotating (“cranked”) hedgehog, one that later proves its
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usefulness in the quantized theory, and the application of
Dirac’s method of modified Poisson brackets for the case
of the redundant fields chosen for the present study.

In Sec. III we describe the method of quantization uti-
lized in this work, involving both an account of the distin-
guishing features of the Kerman-Klein method and our
resolution of the special problems associated with try-
ing to quantize a field in curved space. In particular, we
adopt a quantization procedure based on a c-number vari-
ational principle, the trace variational principle, which is
shown to be completely equivalent to canonical quantiza-
tion in cases without ordering ambiguities. Though such
a proof of equivalence is missing in our case, the method
adopted does define a quantum theory, has the correct
classical limit, and in addition provides the basis for a
powerful computational method.

The application of the quantization procedure to the
infinite tower of baryon-number-1 states contained in the
hedgehog solution is described in Sec. IV. By introduc-
ing a closure approximation suggested by projecting the
hedgehog solution onto states of good spin and isospin,
we reduce the problem to a coupled-channel calculation
for the nucleon and A. It is shown that the classical solu-
tion is contained as a limiting case, and new symmetry-
preserving solutions are found with the help of an algo-
rithm tied to the trace variational principle. Calculation
of some observables is carried out and comparison with
previous results included, without producing any strik-
ing differences with the latter. In the summary and dis-
cussion, it is emphasized, however, that because of the
limited number of states that have been included in the
scheme thus far, the most important aspect of our contri-
bution is that we may have shown the feasibility of a new
method for studying the quantum theory of Skyrme-like
models.

A. Definition of conventions

It is convenient to summarize here the notational
conventions that are used in this paper. The indices
a,b,c,... € {1,2,3} represent the three components of
a vector in isospace, the indices o, 3,7,... € {0,1,2,3},
at the head of the Greek alphabet, represent an isoscalar
mode in addition to the three isovector ones. The in-
dices 4, j, k, . . . indicate spatial directions, and we use the
subscript ¢ to denote a derivative with respect to the co-
ordinate x;. The Greek letters u,v, ], ... represent axes
in Minkowski space. Summation conventions are used for
all these indices. We use a set of units (“Skyrme units”)
that are related to the natural units (& = ¢ = 1) by rescal-
ing time and distance by f.g. and rescaling the units of
energy and momentum by (frg-)~}; an exception to this
convention is the radius r, which is related to the cor-
responding dimensionless quantity = by r = z/(frgr)-
Carets over spatial coordinates (£) signify a unit vector;
carets over variables representing magnitudes of angular
momenta (I) denote the numerical factor /21 + 1, while
other appearances of carets indicate an operator. Con-
ventions for coupling angular momenta are contained in
Ref. [51]. In all other respects, such as the choice of
Lorentz metric, we follow Ref. [54].
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II. CLASSICAL SKYRME MODEL

In the Skyrme model, there are various ways of rep-
resenting the constituent meson fields. Since it is con-
venient for the quantization discussed below, we select a
form involving one scalar (o) and three pseudoscalar (7,)
meson fields constrained such that the sum of the squares
of the field values is a constant, 02 + T,mg = f;‘:. This
constraint dictates that there are only three fundamental
field degrees of freedom. It is convenient to rescale these
fields by fr and introduce the four symbols ¢, defined
by

é E{U/f7r if a =0,

o/ fr ifa€{1,2,3}. (2.1)

This allows the constraint to be written as ¢q¢po = 1. In
terms of the field quaternion U = ¢g + i74¢, (Where 7,

are the three Pauli matrices) the constraint is U tr=1.
Although this constraint could be automatically satisfied
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by using three independent fields defined by U = ‘"%,
we have not found that such a choice leads to a convenient
form of the quantum theory.

As has been discussed in Refs. [1, 2], it is well known
that the structure of the meson fields implies the exis-
tence of a conserved quantity called topological charge.
This charge has been identified with baryon number, with
a value that can be determined by integrating the time
component of the baryon current,

B“(X) = — Eaﬁ’yae‘“/)‘pd)a8V¢B6)\¢76p¢57 (22)

1272
over all space.

A. Lagrangian and field equations

In terms of the chosen field variables and of the units
defined at the end of the Introduction, the basic Skyrme
model is described by the Lagrangian

L= [ @0 [30,600"60 + 52 (00— 1)+ JBaba — 1) = § (0u8a0"a0.850" 85 — 0,800 020,650"85)

where 3, is the mass of the pion in Skyrme units and A
is a Lagrange multiplier field introduced to impose the
constraint. This Lagrangian can also be written as

1. ; A
L= /dsz [-2—¢aMag¢ﬁ -V+ 792 (PaPa — 1)] )

(2.4)

where the inertia density matrix and the potential energy
density are

Mg = gi {8as [1+ (8;$+0;07)] — (858005 8p)},  (2:5)

1
V= Eg—z{(6j¢aaj¢a) - :372r (¢0 - 1)

+% [(«%%ajm)"‘ -3 (aquaawa)z} }

ik
(2.6)
The associated equations of motion are
6L d i\ 1, (5 OMag
i == (Made) - 30 (6.5 e ¢g)
2% A
—— ¢, =0. 2.7
6¢'y g72r ¢’Y ( )

Multiplying this expression by ¢, and summing over the
index v (and using the constraint condition) allows the
value of the Lagrange multiplier field to be found. Sub-
stituting the value of this field back into the equations of
motion transforms them into

(2.3)
[
d . 1, (. OMag 5V
['d_t (Ma6¢a) + 562 (d’a?&;;"qsﬁ) + _6—¢;6_]
X (65— dos) = 0. (2.8)

These equations are not all independent, as becomes ap-
parent if we multiply by ¢, and sum on «, which gives
zero. Furthermore, by using the definitions of M,z and
V given in Egs. (2.5) and (2.8), it is straightforward to
see that the field equations are polynomial in the fields,

[Os — 0,(0"$50,¢a0"da) + 8, (8" $60,$a 0" ba)

—B2650] (645 — Pb5) =0,

as we require for the quantization method to be utilized
in this paper.

Though the aim of this research is to go beyond the
standard classical results, they are, nevertheless, used in
a fundamental way for guiding our study. Thus it is im-
portant to recall a few features of the well-known “hedge-
hog” ansatz, which is characterized by a rigid coupling
of the isospace direction of the fields with the radial di-
rection: i.e.,

(2.9)

Ta%a sin 6 (x).

U = ¢o(z) + iTapa(x) — cosOu(x) + ~

(2.10)

This simplification reduces the equations of motion to a
single ordinary differential equation for the radial func-
tion 6. The boundary conditions can be fixed by as-
suming that the field ¢, vanishes at infinity and that
the primary configurations of interest are characterized
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by unit baryon number. These conditions are satisfied
if 6 (0) = 7 and limgz_,o 0y (z) = 0. The differential
equations characterizing this solution can be found by
minimizing the potential energy, as given by

HH]"‘—-/d { 2(0H)2+sin20;1[ +(9 )]

sm GH

+ B2z%(1 - COSGH)}.
(2.11)

For stationary configurations, this quantity is equal to
the mass of the hedgehog Skyrmion, M = V[6g]. The
function 8 (z) has been determined numerically in Ref.
[2]. This mean-field solution allows values for many ob-
servables to be predicted, some of which are reproduced
in Sec. IV for purposes of comparison with our results.

B. Rotational modes of the hedgehog Skyrmion

The hedgehog ansatz breaks a number of symmetries
that are respected by the Skyrme Lagrangian, such as
translational, rotational, and isorotational invariance.
Since the purpose of this article is to restore rotational
and isorotational invariance, it is useful at this juncture
to examine the effects of rotations on the hedgehog solu-
tion. This is done by applying the self-consistent crank-
ing technique (for a general discussion see [52], for an
application in a related field see [53)), in which one looks
for a solution of the field equations describing a rotating
and shape-altered hedgehog form. Such a solution where
the rotation occurs with fixed frequency w about the z
axis is given by the expression

do 1 0 0 0 cos O,

¢1| _ [0 coswt sinwt0 Zsin b,

¢2 ] | 0—sinwtcoswt0 22sin gy, |’
¢3 0 o 0 1 22 5in Oy,

(2.12)

where O, is the hedgehog function whose shape is to
be determined. By inserting this modified ansatz into
the equations of motion as given by Eq. (2.9), the self-
consistently determined hedgehog function is found to
behave as

. A _
Jim 0p,,(z) = ;‘2‘1(1 + px)eH,

(2.13)
2w

Mzzﬂﬁ——B—

Since the nature of the solution changes as u? changes
sign, it is useful to define a critical frequency wc =
V1506, ~ 2.57 x 10%® Hz which corresponds to p2 = 0.
For a rotational frequency below the critical one, w < we,
the resulting profile exhibits exponentially damped be-
havior. In contrast, the hedgehog function oscillates
about zero within a 1/x envelope for a supercritical ro-
tational frequency.

Although such a solution has unit baryon number, it
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also has an unbounded value for the energy; therefore the
distribution cannot describe a stable, physical particle.
This result has been interpreted as a classical manifes-
tation of pion radiation, occurring when the energy of a
rotating state exceeds that of the static hedgehog by more
than the pion mass. Of course, this same problem arises
in a quantum theory, where it is perfectly obvious that
we must treat the A as a resonance in the pion-nucleon
continuum. Unlike standard radiation problems, here the
same field describes the bound state and the radiation.
We have chosen to make an approximate decomposition
of the two parts, to preserve as much as possible the pic-
ture of a tower of stable spin-isospin states inherent in the
hedgehog solution. It is only with an understanding of
this aim that the discussion that follows makes any phys-
ical sense, since it is a discussion of means of suppressing
the decay so as to have stable excited configurations.

Several approximations designed to stabilize rotating
configurations have been studied, as discussed further be-
low, including determining the hedgehog function in a
non-self-consistent manner, and attempting to separate
the terms leading to radiation from those describing the
core of the baryonlike excitation. The simplest approach
is the adiabatic approximation, which suppresses the re-
quirement that the shape of the hedgehog be frequency
dependent. As carried out by Refs. [2-4] and many later
articles, this is done by using the hedgehog function de-
termined in the zero-frequency limit. Though a num-
ber of ambitious attempts to maintain self-consistency
and achieve stability have been reported in the literature,
such as those described in Refs. [10, 35, 55-57], none of
these has so far proved useful for the quantum theory
developed in this paper, and therefore we shall not dis-
cuss them in detail. In this paper we have utilized a
new method that has a natural generalization to the full
quantum theory. This method is based on an approx-
imate separation between contributions from radiation
terms and those of the core of the baryonlike state. This
is implemented by making the substitution

0w (T) = OH,w(2)O(Tmax — ). (2.14)

The © function takes a value of unity within the cut-
off radius, and vanishes outside Z,,x, which effectively
suppresses the radiation and stabilizes the system. The
restoration of the radiation can then be carried out as
a second step (e.g., by treating the neglected term as
a perturbation), but this has not been done in this pa-
per. [The procedure described by Eq. (2.14) introduces
a time-dependent elastic energy for the Skyrmion in the
classical theory which is ignored in the numerical deter-
minations that are given in Sec. IV. However, due to
the different role that “rotation” plays in the quantum
theory, additional elastic energy terms do not arise in a
corresponding quantum theory.]

In the semiclassical cranking approach, one makes con-
tact with the quantum theory by assuming a relation be-
tween spin and rotational frequency, namely,

VIT +1) = Albgo]w.

Since there is now a method of converting from angu-

(2.15)
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lar frequency to angular momentum, it is permissible to
label the moment of inertia and potential energy by J,
the value of the angular momentum. Within the semi-
classical approximation, the energy of a rotating hedge-
hog Skyrmion can be written as

(I +1)
Er==xh

In Fig. 1, the dependence of energy upon the value for
the angular momentum is shown for subcritical values
of angular momentum. This energy can be interpreted
as the mass of a configuration that has intrinsic angular
momentum J and isospin I = J, since this last equality is
inherent in the use of the hedgehog solution. The masses
of the nucleon (I = 1/2) and A (I = 3/2) states can
therefore be written as

+Vs. (2.16)

3
My = Erog=y = m + VJ=%—7
(2.17)
15

- 8AJ=%

MA=EI=J=% +VJ=%.

The masses of the nucleon states can be directly deter-
mined within either the adiabatic approach or the self-
consistent approach (without imposing additional restric-
tions). However, the calculation of a finite result for Ma
within the self-consistent approach requires the previ-
ously discussed technique for removing oscillations, since
the angular frequency is supercritical.

C. Modified Poisson bracket formalism

One of the aims of this work is to quantize the basic
Skyrme model by a canonical method. Because we have
chosen to work with redundant field variables, we cannot
consistently quantize the Poisson brackets. Therefore it
is necessary to replace the standard Poisson bracket by
a modified bracket, such as the one due to Dirac [48,49],
which takes proper account of the constraints. In this
section we describe briefly the application of this method
to the Skyrme model.

1 050 T T T T T
1010 4
S
s 970 .
=
N
930 4
i
890 4
850 1 1 1 1 !
0 0.2 0.4 0.6 0.8 1 1.2
J
FIG. 1. Dependence of the energy of a spinning hedgehog

Skyrmion (2.16) on the angular momentum for subcritical
values of J.
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In the usual Hamiltonian formulation, one derives
the field equations by taking Poisson brackets of the
fields and field momenta with the Hamiltonian, evaluat-
ing these expressions by assuming that the fundamental
Poisson brackets take their canonical form. This proce-
dure appears to work also for the constrained theory, if
the constrained Hamiltonian (the transform of the con-
strained Lagrangian) is utilized and if the evaluation also
includes the imposition of the constraint condition

XIE%(¢a¢a—1)=O

after the evaluation of the Poisson brackets. The further
requirement that the condition x; = 0 not vary in time
can be satisfied by imposing a secondary constraint

X2 = $aTa = paMapdp = 0. (2.19)

The two constraints involving x; and x2 are said to
be “second class” because the Poisson bracket of the
fields x1 and x2 is nonvanishing. Furthermore, it can be
shown that this secondary constraint is also independent
of time, using the canonical equations of motion.

Nevertheless, if one carries out a canonical quantiza-
tion by replacing the fundamental Poisson brackets by
the usual commutators, trouble ensues from the fact that
[x1,x2]pB # 0. The quantum expression of the con-
straints is that every vector in Hilbert space must be
annihilated by the constraint operators x; and x3. It fol-
lows trivially that every vector must also be annihilated
by their commutator, and this conclusion is inconsistent
since the commutator in question is itself nonvanishing
in the canonical quantization.

One resolution of this difficulty is to introduce mod-
ified classical brackets, the Dirac brackets, which share
with the Poisson brackets all its basic algebraic proper-
ties, but are designed so that the Dirac bracket of any
pair of second class constraints vanishes, in our case,
[x1, x2]pB = 0. As a consequence of its definition, given
below, it follows that the Dirac brackets of any dynam-
ical variable with the constraints vanish. If A and B
are dynamical variables and {x;} is the complete set of
second-class constraints, the definition that satisfies these
conditions is

[4, Blpg = [4, Blpg — [4, xilpp A5 [Xs» Blps »
(2.20)

(2.18)

Aij = [Xi Xjlpp »

where the set of expressions {x; = 0} contains all the
second-class constraints. For our particular problem, the
basic Dirac brackets involving the fields and momenta
are

[$a(x), 65(¥)lp =0, (2.21)
[a(x), WB(Y)]DB = 63(x -y) (6015 — 9adbs), (2.22)
[re (%), 78(¥)]pp = 6> (X — ¥) (Tatbp — $ams) - (2.23)

The Dirac brackets replace the Poisson brackets for de-
termining the time evolution of relevant quantities. This
replacement also eliminates the need to introduce a La-
grange multiplier field. The appropriate Hamiltonian for
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deriving the evolution of the meson fields is simply
1
H= /d3;1; <§7FQM;éTFﬁ + V) .

The time development of the fields and the momenta can
be found by taking the Dirac bracket of these quantities
with the Hamiltonian. This leads to the equation

o1 oM, 5V
[7'!'5—531 (’ﬂ'amﬂ'ﬁ +5€5;

which is equivalent to that derived using the Lagrangian
formalism [Eq. (2.8)].

(2.24)

(676 - ¢’Y¢d) = 07

(2.25)

III. QUANTIZATION OF THE SKYRME MODEL

The major part of the research into the quantum me-
chanics of the Skyrmion has been based on the quan-
tization of an effective classical Hamiltonian written in
terms of collective coordinates and harmonic fluctuations
about the hedgehog solution, as exemplified by Ref. [2].
The Kerman-Klein method is an alternative approach to
quantization, usually based on a formal canonical quan-
tization of the entire classical field, where the restriction
of study to special degrees of freedom enters through as-
sumptions about the composition of Hilbert space. In
this approach, based on Heisenberg’s matrix mechanics,
we express the equations of motion and the kinematical
constraints as nonlinear equations for matrix elements by
taking the expectation value of the operator equations
of motion between unknown eigenstates, while using the
completeness relation for any matrix element of a product
of operators. It is turned into a useful calculus by recog-
nizing how the structure of Hilbert space permits a series
of justified truncations of the infinite sum over intermedi-
ate states in the equations, based on the classification of
matrix elements according to degree of collectivity, i.e.,
according to relative orders of magnitude.

We shall illustrate the ideas underlying this method
by a review of the one-dimensional ¢* model, using the
canonical method. An equivalent method, formulated in
terms of c-number equations, the trace variational for-
malism, is also described. The ideas involved in trunca-
tion of the equations to manageable size are then de-
scribed. Unfortunately, when we turn to the Skyrme
model, we encounter new difficulties associated with the
nonuniqueness in the quantization of the “kinetic en-
ergy.” We have chosen to describe the dynamics by a
trace variational principle, but we must still choose oper-
ators to represent other observables. As an example, in
Sec. IV, we exhibit an energy operator and a symmetrized
operator form of the conserved topological current.

A. Quantization and the trace variational principle:
One-dimensional model

Before describing quantization of the Skyrme model,
it is useful to review how the one-dimensional ¢* model
can be quantized and studied using both the canonical
method and the Kerman-Klein approach. By using stan-

DAVID P. CEBULA, ABRAHAM KLEIN, AND NIELS R. WALET 47

dard techniques to derive operator equations of motion,
and evaluating them within the complete Hilbert space,
one obtains a set of c-number relations involving ma-
trix elements. However, these equations can be repro-
duced by taking variations of a single c-number func-
tional. This motivates the definition of an alternative
method of quantization, the trace variational approach,
which turns out to lead to equivalent results when the
quantum theory does not contain any inherent ordering
uncertainties. (Most of the results presented in this sub-
section have been derived previously in Refs. [39, 40].)

The quantum mechanical Hamiltonian operator for the
¢* theory can be derived in an unambiguous manner from
the classical Hamiltonian. The quantum operator

. Foo 1 1, 1 o) 2
H=/_m dz [§ﬁ2+§(¢’)2+—ﬁ(m2_x\¢2) ]
(3.1)

is simply the classical Hamiltonian with field values re-
placed by field operators. The standard commutation
relations

[$(x), 7(y)] = ib(z — y)

can be used to determine two operator equations of mo-
tion:

(3.2)

>
Il
-
y

=ﬁ,

] = @" 4+ 2m2¢ — 22¢3.

—i (3.3)

(3.4)

b

3
Il

—i[#,

In the sequel, we find it useful to eliminate both the
field momentum and the explicit occurrence of the time
derivative of the field in favor of the commutator of the
field with the Hamiltonian, both ends achieved with the
aid of Eq. (3.3).

These substitutions allow the operator equations of
motion and the canonical commutation relations to be
written as

(6, H), H] + ¢ + 2m*¢ — 2A6° = 0,
[6(2), [$(), H)) = —6(z — v).
These equations are next converted to c-number
equations by taking matrix elements between states
[1), |4}, ... that are a complete set of eigenstates of the
energy, and by evaluating the matrix element of a prod-

uct of operators by means of the completeness relation.
We thus obtain the following sets of c-number equations:

(By = By)? + V2 +2m?| (w13]")

(3.5)
(3.6)

~22 Y (GIBENBIBI ) (@ Blw) =0, (3.7)
D
3= (Bo + By - 2B5) (01d(@)19)(F16)1v")
¥ = —(5¢¢/5(.’E - y) (3.8)

What has emerged from our considerations is thus a
sum-rule formulation of Heisenberg’s matrix mechanics.
This is the formal structure of the so-called Kerman-
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Klein quantization, which will be discussed both in this
subsection and in the succeeding one. To be useful for
any particular problem, however, we must adjoin an anal-
ysis that justifies replacing, in the sum rules above, the
full Hilbert space of states, |¢), by a subspace of states,
|x), that defines a leading approximation. This analy-
sis should also specify the order in which the discarded
elements of the full Hilbert space are to be restored for
more ambitious approximations.

Before turning to these matters (in the next subsec-
tion), we wish to discuss another essential property of
this method. It is important to emphasize that Eq. (3.7)
can be derived from a variational principle as the varia-
tion with respect to (¢'|¢|y) of a functional, given by

1

Fy = —TI‘[IA/],

T (3.9)

R +o00 1 R . 1 N2
L=/ dz {-amaw - = (m2 - ,\¢2) ] ., (3.10)
—oo 2 2A
where again a time derivative is replaced by a commu-
tator with the Hamiltonian, and the latter is not var-
ied inside the functional. The operator L may be re-
garded as a “quantum Lagrangian,” since it is a sym-
metrized, operator-valued generalization of the classical
Lagrangian; for the model under discussion, L is essen-
tially unique.

Since the trace variational principle is equivalent to the
sum rules derived from the equations of motion, we may
choose this principle plus the kinematical sum rules ob-
tained from the commutation relations as the definition
of the method of quantization adopted in this work. The
approximate sum rules that follow from choosing a sub-
space of the Hilbert space may also be considered as an
approximate method of quantization for those degrees of
freedom included in the subspace.

The reason for emphasizing these seemingly elemen-
tary points is that in contrast with the models illustrated
here, for the Skyrme model the process of canonical quan-
tization (or better Dirac quantization) is not unique be-
cause of the multitude of choices of a quantum Hamilto-
nian associated with the classical one. Each such choice
leads to a different set of equations of motion at order
h2. Furthermore, we have not been able to associate the
equations of motion that follow from any of these choices
with a variational principle. We have therefore taken the
radical and simplifying step of defining a quantum theory
for the Skyrme model by choosing as equations of mo-
tion those that follow from the trace variational method.
This choice commends itself above all others for resolving
the ambiguities involved in a quantization of the Skyrme
model, because it also provides, as we report later in this
paper, a simplified and powerful technique for solving the
equations of motion.

Quantization by the trace variational principle does
not, however, resolve all problems involved in the quan-
tization. We still have to choose, separately, forms for
observables such as the energy and the currents. The
former enters as part of the solution algorithm to be ap-
plied, and both are needed for comparison with experi-
ment. We shall return to these points in Sec. IIIC.
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B. Kerman-Klein quantization

We have already described the essential formal aspects
of the Kerman-Klein method, namely, the expression of
Heisenberg matrix mechanics as a set of nonlinear equa-
tions of both dynamical and kinematical origin obtained
by the use of completeness. This method was, however,
first introduced for the restoration of broken symmetries
in the nonrelativistic many-body problem [38]; it was first
applied to the ¢* model discussed above by Goldstone
and Jackiw [39] in order to solve a problem of broken
translational invariance. The application described in
this paper belongs to the same class, aiming in this case
to restore rotational invariance in ordinary space and in
isospace, at the same time recognizing that this cannot
be done without an improvement in the dynamical de-
scription of the system.

The application of the Kerman-Klein method to a
many-body problem, be it relativistic or nonrelativistic,
has proved to be of value for systems with mean-field or
classical solution describing either a stable many-particle
system (nontopological soliton) or, as in the problem un-
der study, a topological soliton. The latter can be treated
as a classical particle when its size is large compared to
its Compton wavelength, or equivalently its mass is large
compared to that of the elementary boson in the prob-
lem, where the latter is described by fields that appear
directly in the Lagrangian.

The mean-field or classical solution always breaks some
symmetry of the Lagrangian. The elaboration of which
symmetries are broken, together with the remarks about
relative scales in the previous paragraph, is sufficient to
teach us how to implement the Kerman-Klein method,
namely, how to elaborate the necessary elements of the
Hilbert space, and how to subdivide those elements into
subspaces that define successive approximations.

To be specific, let us review the situation for the one-
dimensional model. The existence of a localized solitary-
wave solution informs us that there is a heavy-particle
sector in Hilbert space. The minimal way to restore the
broken translational invariance and, incidentally, the bro-
ken Lorentz invariance, is to restrict the sum rules given
above to a subset of states {|x)} € {|1)} that describe all
possible states of linear momentum of the heavy particle.
Since the number of heavy particles is a (topologically)
conserved quantum number, the missing pieces of Hilbert
space contain one or more light particles (mesons) in ad-
dition to the single heavy particle. The fact that there is
approximate decoupling of any subspace containing one
heavy particle and a fixed number of light particles arises
from the property of the theory that a quantum fluctu-
ation such as the emission or absorption of a light par-
ticle is proportional to the square root of the ratio of
the mass of the light to that of the heavy particle, which
thus serves the role of a small parameter in the theory
and demonstrates the convergence of the so-called loop
expansion for the model. Formally, let A and B repre-
sent field operators whose matrix elements are the ob-
jects that one would like to study. The evaluation of the
matrix element of the product of these two operators be-
tween soliton states of different momentum can thus be
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where the most important missing piece comes from in-
termediate states containing one additional meson, the
one-loop contribution. As already implied by our previ-
ous discussion, this evaluation method can be applied to
the computation of any matrix element of a finite prod-
uct of operators to produce a result involving matrix el-
ements of single operators.

Similar but more complicated considerations apply to
the Skyrme model. The topological solution in this case
breaks translational (and boost) invariance, as in the
one-dimensional case. We have already treated this sub-
ject [47] using a choice of quantum fields different from
the ones used in the present paper. This choice led to
some technical difficulties that can be avoided in the
present work. Of more physical interest for us is that
the Skyrmion also breaks rotational and isorotational in-
variance; i.e., it is “deformed” in space and isospace. As
is well known, this implies that the model predicts an
infinite tower of states with spin J equal to isospin 7'
Restoration of the rotational invariance of the model at
the quantum level requires that we choose this tower of
states as the minimal set defining the collective subspace
that plays the role of the set |x) in Eq. (3.11) above. Fur-
ther discussion of how to treat this case is, of course, one
of the essential elements of this work and will be taken
up in context.

In general terms, we shall seek, within the collective
subspace, some tractable set of c-number equations that
can be solved for the matrix elements of the basic field op-
erators between states of interest. The same approximate
sum-rule technique is subsequently employed to evaluate
operators associated with observables to predict values
that can be compared with experiments. It is straight-
forward to use this approach for evaluating polynomial
expressions, and this is why we have chosen to carry out
the quantization with constrained field variables.

B]X’>, (3.11)

C. Formal quantization of the Skyrme model

Although in the end we have studied a slightly differ-
ent form of the quantum theory than that obtained by
slavishly following the Dirac method of quantization, we
shall nevertheless begin by describing, briefly, the results
of this procedure.

J
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As discussed previously, the existence of a constraint
condition requires that the methods of canonical quan-
tization be modified. The Dirac formalism provides the
most convenient approach for treating the constraint con-
dition, dictating that the commutation relations take a
noncanonical form determined by the Dirac brackets [Eq.
(2.23)],

[q;a (X), (73,3(}')] =0, (3.12)
[Ba(), 7a(y)] = i6°(x = ¥) (8ap = dads) . (313)

~ A . 1 oy Do

[fa(x), 75 )] =i6°(x — ¥)5 {# BSP},  (3.19)
B2P = 6,005 — 6p4Pa- (3.15)

The constraint conditions involve the operators

. _Llaa

X1=3 (¢a¢a - 1) ) (3.16)

N 1,

XZEE {¢a,7ra}’ (317)

which must annihilate all physically meaningful states. It
is straightforward to show that the operators ¥; do not
evolve in time, so that an appropriate choice of initial
conditions leads to a satisfaction of the constraints for
all values of the time.

The dependence of the inertia density Mgqg on the
field values implies that the Hamiltonian operator carries
with it ordering uncertainties that lead to ambiguities at
relative order O(h?). One choice for the Hamiltonian
operator is

N 1. R ~_ A

# = [ & (5 {7 {0, M55} +9).
where the inertia density matrix and the potential energy
density are elevated to operators. This Hamiltonian, to-
gether with the commutation relations given above, leads

to operator equations of motion that can be combined to
form the operator equations

i‘ {% {‘257-’0‘56} ’ (675 - &7‘2’5)}

{fgﬂv (9/\;1043 (5'76 - ‘73%135) }}

(3.18)

Ods,i

13 A aMag PN
-3 {qba, {¢>ﬁ, Dol (826 - wm)}}
+§(—;% (576 - &’7&6) =Qy, (3.19)

where QA, is a quantum force that is O(h?),

Qs = L Wtanis [ [borbd] ] + 3 (00 — 58, { (aw> (s 3624

+

a¢w,i

(bbbl o))

(3.20)

OMays
6¢w,i
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When the quantum force term is neglected, these equa-

tions are polynomial in the field operators ¢A)a and ‘Z’ﬁ-
Even with the quantum force term, the equations are
polynomial in the fields, provided we do not carry
through the equal-time commutators. On the other hand,
we have not succeeded in deriving these equations, in
whichever form, from a variational principle. Since the
existence of such a principle has proved to be of ines-
timable value in obtaining numerical solutions after mak-
ing suitable closure approximations on intermediate-state
sums, we have chosen to study the set of field equations
that follow from a trace variational principle.

The procedure is simply to define a quantum La-
grangian that is a fully symmetrized (Hermitized) ver-
sion of the classical Lagrangian [Eq. (2.3)]. Thus the ap-
propriate functional for determining values of the matrix
elements is

%aug’aa#q;a + /672r (‘EO - 1)

1(c1
+_2' {)" _2'(¢a - 1)}

—% {{ouda0da}. {085,035}
+§% {{au‘i;av auéa} ’ {auéﬁ’au&ﬁ}}J ’
A= 3 {or80 = (5 {960, 085005} )

+8ﬂ (% {au(i)m {auq;& a”‘ﬁﬁ}}) - ,@,2‘.6,10} .
(3.21)

The determination of the matrix elements is reduced to
finding stationary values of Fsx. The field equations
proper that follow from this variational expression are
shown in Ref. [50], but are not displayed here since they
are not needed. In the next section, this approach is used
directly to study matrix elements of the field operators in
a collective subspace of rotational states. Other aspects
of the quantization, such as the choice of an energy oper-
ator and the topological current, will also be discussed.

IV. RESTORATION OF ROTATIONAL
INVARIANCE

In this section, we apply the Kerman-Klein method to
the study of the tower of spin-isospin states implied by
the hedgehog solution of the Skyrme model. We first
summarize the elements, discussed in Sec. III, necessary
to carry out this study.

(1) Definition of a collective subspace.

(2) Selection of the basic field operators and an analysis
of the matrix elements included in the study.

(3) Derivation of operator equations of motion (or,
equivalently, a variational functional) and auxiliary con-
ditions such as commutation relations and constraints.

(4) Determination of values for matrix elements of the
fields by solution of the nonlinear equations provided by
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step (3) or, in our case, by replacement of the equations
of motion by a variational principle.

(5) Evaluation of observables using these values for the
matrix elements.

These steps are carried out in the subsections that fol-
low. We shall also show that the hedgehog solution is a
limiting case of our equations.

A. Collective subspace

Guided by the semiclassical results found from project-
ing out states with good spin and isospin from a cranked
hedgehog configuration, the collective subspace of Hilbert
space is chosen to consist of baryonlike states having defi-
nite values for the magnitude and 2 component of isospin
(I, my) and spin (J, my), restricted to the values I = J,
which are designated by |I,mj;J,ms). This space of
states is spanned by two commuting representations of
SU(2) subject to the condition that the magnitude of the
spin is equal to the magnitude of the isospin. This collec-
tive subspace does not include any states possessing free
mesons, necessary to account for loop effects. Without
the inclusion of such quantum fluctuations, the sum rules
based on the commutation relations cannot be satisfied,
and therefore these do not play any role in the following
discussion.

For brevity it is useful to assign labels to the states
that will play the major roles in the following discussion:

N forI=J=%,
A forI=J=%,
\%4 forI=J=%.

In contrast with the IV and A states, the V states may be
considered to be artifacts of the large-N. limit that are
included to allow a connection with previously derived
hedgehog results.

B. Field operators and matrix elements

It is convenient to choose a form for the meson oper-
ators characterized by spherical indices in isospin space,
$T=9= where T, is the magnitude of the isospin and ¢,
is the z component. (In future discussion, the +1 val-
ues for g, may be written as + where they appear as
indices, and the isospin values T' = {0,1} may be ex-
pressed by T = {o,7}.) These field operators can be
written in terms of mode operators ATY (z) with defi-
nite values of angular momentum (operator partial-wave
decomposition):

L
T (x) = Var > HHTATL (@)Y Em(@).  (4.1)

L=0m=~—L

In practice, the unrestricted sum over L will be cut off
by a restriction on the maximum value of the angular
momentum of the baryon states actually included in the
final calculational scheme. Since the mode operators and
the states of the collective subspace possess definite val-
ues of spin and isospin, the Wigner-Eckart theorem can
be used to express matrix elements of the field operators
as
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Jomg,
CLmJlTILJl

Iymy, Tq Ag(IO?Il)YLm(i')

_ [T (AT (_y2lo=m1o—m, ( Iy T Il> Jo L J;
I;n W(Z) ( ) ’ —mi, ¢ M, —Mg, MMy,

XAE(IOy II)YLm(i‘),

where AT (Io,I1) = (lo|||AZ(z)|||]1) defines a reduced
matrix element that depends on the radial coordinate.
Since the o and the pions possess definite parity, the
mode operators must satisfy the relations
AT AT
Apm (@) = (“)T+LALfn(x)v (4.3)

which require that half of the reduced matrix elements

(4.2)

I
that the “diagonal” (I = I’) reduced matrix elements are
real. In fact, all the solutions found in this paper consist
of purely real reduced matrix elements, whether diagonal
or off diagonal.

Formally, the set of c-number equations that follow
from taking variations of the functional Fg) with respect
to matrix elements is infinite dimensional, and does not

allow a natural decoupling into manageable subsets of
equations. This difficulty arises because the isovector
mode operators connect states with different values of
isospin. A complete solution to the c-number equations
requires, for example, the self-consistent determination of
the following unbounded set of reduced matrix elements:

vanish identically. In addition, since matrix elements of
field operators must satisfy

(xI8T9x) = (17 1),

it is necessary that AL (I',I)" = AT(I,I’). This impliesJ

(a2 (Bl ) - ol .

The method that we have chosen to obtain closure and to thus reduce the number of equations to a manageable size
is to use results derived in the hedgehog limit (that will be discussed later) to relate values of the reduced matrix
elements involving the unwanted high-spin states to functions involving states with I < Iy, namely,

(4.4)

(4.5)

7 ) AL (Imaxs Tmax) it1=1r,
A’{(I, II) — fmax(;;’:_l) 6T16L1A¥(Imaxafmax - 1) ifI-1= I/$ (46)
fmax(ﬁiax—l) 6T16L1A1r (Ima'x - 1’ Imax) if I + 1 = I/y
otherwise.

In addition, energy differences involving states having I > I, are fixed by assuming that the baryon energies
correspond with those found for a rigid rotor; this leads to

€'+ 1 (EImax - EImax—l) *
max
The relations given in Egs. (4.6) and (4.7) are used throughout this section. The merit of this form of closure is
that the remaining equations still contain a limiting solution corresponding to the classical hedgehog, but with this
symmetry-preserving formulation, the possibility of a richer and more complex physics emerges, in which the remaining
amplitudes deviate from their hedgehog values.

In practice, we have chosen a cutoff at Ina.x = 3/2, so as to be able to study at least the nucleon and the A particles.
This cutoff still leaves us with seven radial functions, namely, the reduced matrix elements

AF(N,N),AT(N,N), AT (N, ), AG (A, A), AT(A, A), A3 (A, A), A3 (A, A).

Erp—Er=

(4.7)

(4.8)

C. Evaluation of operator expressions

In this subsection, operator expressions are evaluated, utilizing the approximation scheme that has now been fully
defined, to produce sets of c-number equations that can be used to determine the values of the reduced matrix elements.
The required operator expressions are (i) the constraint condition, (ii) the quantum Lagrangian used to define the
variational functional Fgy, and (iii) the energy. If meson loops were included in this treatment, the commutation
relations would also need to be considered.

For example, matrix elements of the operator constraint condition are given by

Z <I07 My J07 mJo| (_)qquq(x)d;T—q(x) |I27 mr,; J2y mJ2> = 610126m10m12 6m_)0 my,
Tyq
This expression can be evaluated using standard rules for coupling angular momenta, as described in Ref. [51].
Remembering the isoscalar nature of the constraint condition, we thus obtain three nontrivial equations involving
only nucleon and A external states, one from the N-N channel (L = 0) and two from the A-A channel (L = 0,2).

(4.9)
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These are
Oo = 7 [A5(N,N)? + AT(N, NY? + |AT(N, A) ] =1 =0, (410)
ch = lG[ AZ(A,A)? + AT(A, A)? + AZ(A, A) + AT (A, A)?
HIAT(A, N+ AT(A, V)P +145(A, V)| —1=0, (411)
ch, = 11—6 [ 243 (A, A)AZ(A, A) — =AT(A, A)? + = A (A, A)AT(A, A)
FEAT(A, A) 4 |AT(A, NP + 24T (A, V)P + 2 Re(aT (8, V)43V, 8)] - 2145 (8, V)P
(4.12)

In the remainder of the text we shall refer to these three as the “c-number constraint conditions.”
The variational functional Fgy is used as the basic calculational tool for the explicit determination of values for the

matrix elements. Specialization of this functional, as defined in Eq. (3.21), to the collective subspace described in the

beginning of this section allows it to be written as

(-[07 mys ']0, mj, I L |I0a mos JO) mJo) )

1
Fs = m Z (4.13)

Iomypamy,

where L is the quantum Lagrangian defined in Eq. (3.21). For example, the quadratic contribution to this functional
is given by

1 d3z
FSk,2=mg+—1)2 Z <IO, miy; Jo, Mg, /292 ,u.¢aa ¢a I07mon']03mJo>
Iomigmy,
_ 1 3 1 2 L(L + 1) T 2 1 T 2
= IS LTI /d zIO;L{[2 (Er, — E1,) 53 |AT (To, I1)| 5 |6:AT (To, I)|™ ¢ - (4.14)

The quartic contributions lead to additional, and more complicated, functions of the reduced matrix elements, which
we shall spare the reader. For the choice of subspace made above, the sums over external states should only be taken
over the nucleon and A states, Iy = {1/2,3/2}. The value I = 5/2 then occurs as one of the intermediate states, but
the matrix elements that contain this state are eliminated by our closure approximation [Eq. (4.6)], at the same time
that the corresponding unknown energy difference is eliminated by the use of Eq. (4.7)

In principle, the energy operator is not needed to determine the values of the reduced matrix elements, but in
practice it is necessary to calculate the energy of states to ensure self-consistency in the value AE = Ep — En. We
have already explained that due to the nontrivial nature of the inertia density matrix Mg, the association of a
quantum energy operator with the classical one is not unique. A particular ordering that is consistent with that of
the quantum Lagrange operator used in the trace variational principle is the symmetric form, as given by

Beos [da { Bade+ 0:dadida) = B2 (d0 1) + 3 [{Bader 0dodida } + (0i0adide) (0:060:85)]

L[ ({60} 55,05} + (0dusi) (0000,60)] }

(4.15)

The energy of the state |I,my; J,my) is thus given by

Er = (I,mp; J,my| E|I,mp; J,my). (4.16)
Once again we use completeness to replace the matrix el-
ements of products of operators by a sum over elementary
matrix elements.

D. Hedgehog limit

In this subsection, we obtain the values of the reduced
matrix elements that follow from spin and isospin projec-
tion of the hedgehog solution. This not only establishes a
connection between the hedgehog function 8 (z) and the
reduced matrix elements, but also provides the informa-
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tion that was needed to define the closure approximation.

For this analysis, we introduce a set of localized states
|A), where A denotes a set of Euler angles. We may pic-
ture these states to correspond to hedgehog field distribu-
tions that have been obtained by carrying out an isorota-
tion A on the standard defensive hedgehog of Eq. (2.10),
which thus corresponds to the identity transformation.
This picture is not to be taken literally, however, since it
is strictly correct only in the classical limit.

Since the hedgehog is a collective state, where the col-
lective degrees of freedom can be separated from the
non-collective internal degrees of freedom, we now as-
sume that the overlap between a state of good spin and
isospin and the rotated hedgehog can be treated like the
wave function of a rigid body. To distinguish the many-
body state |A) from the rigid-body state without internal
structure, we use a round bracket |A) for this last state.
We take the standard result [3] for the overlap of this
state with a state of good spin and isospin:

2I+1

I
27!‘2 D—mI myJ

Il

(AlImpmy) = (=)™

(4). (417

|

cosOg(za)
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Thus the approximation

|A) = Z [I,mp; J,mz) (Imrmy|A) (4.18)
I,mr,my
implies that
(AlA"y =6(A—-A). (4.19)
However, the statement
(Ala(T)|A") & pa(z4)6(A" — A), (4.20)

where x4 is the point to which z is rotated by the trans-
formation A, is a physical assumption about the model,
i.e., that the left-hand side of Eq. (4.20) is so sharply
peaked in the variables of relative rotation and that a A
function approximation is valid. It is also of interest to
consider corrections to this extreme approximation, but
this will not be done in the present paper.

It can be shown that the successive introduction of Egs.
(4.18) and (4.20) into the equations of motion for the
full tower of states reduces these to those of the classical
theory possessing the hedgehog solution. This allows the
identification

if a =0,
Pa(ra) = {—;—Zﬂ (&) Tr [TaATﬂAT] sin@y(x4) otherwise,

(4.21)

where these expressions reduce to the hedgehog ansatz for A = 1, the identity transformation.
The equations given above generate the hedgehog approximation to the symmetry-preserving matrix elements of
the fields, according to a formula that once again combines Egs. (4.18) and (4.20), namely,

(I,mp; J,my| o) [I'ymp; J' ymys) = /dA(ImszIA)(AfI’mpmJ')%(:vA).

(4.22)

Evaluation of this expression produces a combination of purely geometric factors and functions of 8 (x). By identifying
common factors between this expression and a similar one involving the mode operators A{fn (z) [Eq. (4.2)], the reduced

matrix elements are found to be related to 8y (x) by

Z(I, II) = 611/51;0(2[ + 1)C080H,

otherwise.

AT(I,I) = {(_)I_IlaLIAQEi/éﬂESiHQH if |I-I'| <1,
’ 0

These values satisfy the closure relations presented in Eq.
(4.6).

The results of inserting the hedgehog values for the
reduced matrix elements into the c-number expressions
derived in Sec. III are as follows.

(1) The three c-number constraint equations [Egs.
(4.10)—(4.12)] are automatically satisfied.

(2) The variational functional Fgy reduces to

(lo)?3A 1w}
Fsk—_—zh’ ) 2 = Lo _ vy, (4.25)
21, (o)
(oo}
Ar= 577;/0 dzz2sin? 0y |1+ (6))°
kig
N I? + T +3) sin?0y
24+71+3 z2 |’
(4.26)

(4.23)
(4.24)
|
I?+71+3

2_ 2 2

wr = (m) (Er41 — EI)

42 3 2
=5\ +1+5)(Ea—En), (4.27)

and V; is the classical potential energy of the Skyrmion
as given in Eq. (2.11). In the limit that all baryons have
the same energy (degenerate limit), this functional re-
duces to the negative of the hedgehog mass and we thus
reproduce the classical results.

(3) The energy of the Skyrmion is given by

1
El0g; L) = §A10w?o + Va. (4.28)

E. Formal analysis of c-number equations

In this subsection, the c-number equations derived pre-
viously are studied to determine how they may be solved
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for the reduced matrix elements. In addition, with the
aid of an operator version of the topologically conserved
charge, we examine the role that baryon number plays in
our solutions.

We have found it convenient to define a param-
eterization of the seven basic reduced matrix ele-
ments in terms of four independent radial functions
{2(x), ¥3(x), Ya(z), ¥s(x)} and one dependent function
Y1(z):

AZ (N, N) =2 cos; cos 1,
AT(N,N) =2cos; sina,
T(N,A) = —2siny,

Z(A, A) =4 cos P cos 1Pz cos P4 coS Ps, (4.29)
AZ (A, A) =4 cos iy cos 3 cos P4 sin s,
T(A, A) =4 cospy sin s,
T(A, A) =4 cos 1)y cos 13 sin g,
where 11 (z) is defined by
11 = arcsin, / 1 _)f_x,
(4.30)

X = 2sin? ¢z — 3 cos g sin 1)g sin 14
— cos® 3 (2sin® 14 + 5 cos? 14 cos Y5 sin 95 .

This parametrization satisfies the three c-number con-
straint conditions, and simplifies the determination of
values for the reduced matrix elements. In the hedge-
hog limit, these radial functions are given by

11 = arcsin (\/g sin 6H> s

1o = 13 = arctan (% tan 9H) )
Ys =95 =0.

Since the pions have odd parity, the isovector mode
operators must have vanishing amplitudes at the origin.
In order to have a finite-energy solution, the matrix ele-
ments of the pion field should vanish far from the center
of the soliton. These requirements lead to the following
conditions on the reduced matrix elements involving the
isovector mode operators:

(I, I')(0) =0,

(4.31)

(4.32)
mlltnolo AT (I, I')(z) =0.

A consideration of the constraint equations as well as
the standard hedgehog boundary condition leads to the
following set of boundary conditions:

Ag (I, 1)(0) = —(2I + 1),
(4.33)
mlg{.xo AF(I, I)(z) =+(2I + 1),

with all other reduced matrix elements vanishing at the
origin and infinity. These boundary conditions can be
related to boundary conditions on the five angle-valued
functions, implying that all the functions are equal to
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integral multiples of m at both the origin and at infin-
ity. If it is assumed that the optimal configuration is
a perturbation of the hedgehog solution, these bound-
ary conditions take the form given in Table I. Because
they are found to vanish for configurations that possess
a stationary value for the functional Fgy, reduced matrix
elements involving the quadrupole and octupole modes
are ignored in the remainder of this subsection.

The asymptotic behaviors of the radial functions can
be determined by examining the variational functional
Fsy at large radius . The function 2(x) is found to
behave as a damped exponential:

e Prz

lim gy (2) ~ S, (4.34)

similar to the decay properties of the hedgehog function
of the static Skyrmion (assuming massive pion fields).
The asymptotic behavior of ¥3(z) is given by
e KT
lim 3(x) ~ s
T—00 T

. (4.35)
2_ p2 2
W =Pz — 57 (AE),

where AE = Ea — En. A damped solution for 3(x)
exists when the pion mass term is taken sufficiently
large that the pion radiation threshold exceeds the en-
ergy splitting. For the experimental value of AE = 293
MeV, the required value for 3, corresponds to a pion hav-
ing a mass of approximately 356 MeV. For any value of
the mass below the critical one, the functions ;(z) and
1s3(x) have oscillatory tails, and calculations of the en-
ergy and of Fgy lead to divergent results. In the results
given below, this unconfined nature of the radial func-
tions is regulated using two different approaches. The
simplest approach is to take the energy splitting to be
vanishing, AE = 0, which returns us to the hedgehog
limit. Of course, this degeneracy was inherent in the exis-
tence of a mean-field solution. A more physical approach
is to restrict the range of time variability to bounded
values of the radius, such as

¢a(x) - ¢a(x)e(zmax - le) (4.36)
The sharp cutoff used here can of course be replaced by
a smoother switching function, but does not lead to any
problems. Since the effects of energy splittings are elim-
inated at large values of the radius, there are no oscilla-
tions in the functions v;(z) that can lead to divergences
in the values of observables. This approach effectively
separates the radiation terms from the core of the baryon-
like excitation, and permits a systematic expansion of

the remaining radiation terms, ¢, (x)[1 — ©(Zmax — |X|)]-

TABLEI. Boundary conditions for the five angle variables
14, introduced in Eq. (4.29).
Yi(x)  Ya(z)  Ps(m)  dulx) ¢Ps()
T = 0 g kg 0 0
limz — oo 0 0 0 0 0
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However, these additional terms are not studied in the
present account.

Before turning to a description of the results obtained,
it is necessary to describe how we dealt with the question
of baryon number conservation. We have been able to de-
fine a conserved symmetrized quantum-operator version
of the classical topologically conserved current. It is then
natural to associate the baryon number of a given state
with the expectation value of the space integral of the
associated density:

N 1 .. A ~ N N
0 — abed 0ijk . .
B(x) = T5—e e+ SYM {¢a,al¢ﬁ,a]¢c,ak¢d}.
(4.37)

When the hedgehog-limiting values of the reduced matrix
elements, given by Egs. (4.23) and (4.24), are used to
evaluate the matrix elements of this operator, it is found
that all Skyrmion states have unit baryon number, which
is only a consistency check. The topological argument
that is used to show that the baryon number in classical
solutions of the Skyrme model is quantized can no longer
be used for the quantum theory. In particular, we find
that expressions for the baryon numbers of the nucleon
and A states do not reduce to surface integrals. However,
these computations can be simplified under the condition
Yo(z) = 3(x), leading to By = 1 and B = 1. In
addition, it can be shown that regardless of any splittings
between the two independent radial functions, all states
with isospin I > 3/2 have unit baryon number because
of the relations used to close the set of equations.

A perturbative analysis shows that the deviations of
By and B from unity (6B = By —1), when only terms
linear in the difference e(z) = ¥s(z) —y2(x) are retained,
are given by

2 o0
6BNy = —= d
N ﬂ_\/g/(; X 4§ €

1 o0
6B = ——— d.
4 27r\/§/o x{e

cos 93 sin® Y3 O(e
(—%+sin2¢3)3 j' ot )},

cos g sin® Y3l 2
_— O .
(%+Sin2'l,b3)3 :l + (G )}

(4.38)

The baryon numbers characterizing the nucleon and A
states depend sensitively on i3 (z) and ¥3(z). One way to
enforce baryon number conservation is to add appropri-
ate constraints and Lagrange multipliers to the functional
Fsk. We found that the imposition of these constraints
did not significantly alter the predicted values for phys-
ical observables. The deviation of the baryon number
from unity is small in all cases, typically |§B| < 1072,

F. Numerical results

For a self-consistent determination of the reduced ma-
trix elements, the following steps are carried out.

(1) Assume a particular value for En — Ep.

(2) Determine values for the reduced matrix elements
using the constraint condition and the variational func-
tional (this implementation employs relaxation tech-
niques).
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(3) Compute the energies of the nucleon and A states,
and compare the calculation of EA — En with the as-
sumed value; if the values disagree, this process is re-
peated with a different assumed value for the energy split-
tings.

(4) Adjust the parameters of the model to obtain self-
consistency at the observed value Ea — En = 293 MeV.

Before discussing the new solutions determined by the
procedure outlined, it is important to point out once
more that our equations also admit the hedgehog solu-
tion as a special case that we obtain by imposing the
restriction that the baryons are degenerate, namely, that
Er41 = Eg for all values of the isospin I. In this limit,
all terms in the functional that depend on time deriva-
tives vanish identically. Although the general variational
problem involves four independent radial functions, the
optimal solution in this case is identical to the static
hedgehog results described by a single function 65 (z). In
terms of the ¢ functions defined above, this is equivalent
to the statements that (z) = 93(z), where these quan-
tities are related to the standard hedgehog function by
05 = arccos (cos 11 cos 12), and that the functions 94(x)
and ¥5(z), associated with the quadrupole and octupole
modes, vanish identically.

We find it convenient not to use Skyrme units in this
section. We use r to denote a radial coordinate in fm.

To obtain new solutions, we must introduce a cutoff ra-
dius to restrict the time variability of the configurations
at large values of the radius, as described in connection
with Eq. (4.36). Two approaches for defining a value
for the cutoff radius 7max were utilized: (i) 7max was ad-
justed until the calculation of Ea — En yielded 293 MeV
(with the values of f and g, fixed), and (ii) the value of
Tmax Was fixed at the Compton wavelength of the pion
while the input parameters f, and g, were varied un-
til the masses of the nucleon and A states are predicted
correctly.

Consider first the case that rpa.x is varied until the
value for the energy splitting between the A states and
the nucleon states is found self-consistently. An exami-
nation of the energy differences as a function of the cut-
off radius is shown in Fig. 2, and compared with sim-
ilar calculations using both a self-consistent determina-
tion of Om,,(z) and the adiabatic result 8z (z). For the
Kerman-Klein method, the calculated value Eao — En
increases with cutoff radius since the effective moment
of inertia, which leads to most of the energy splitting,
can become large. As rmax — 0, the classical hedgehog
results are recovered. This should be contrasted with re-
sults from the semiclassical approaches, where it is found
that Ea —En decreases as the cutoff radius increases; this
behavior occurs because the cranking frequency needed
for self-consistency in the spin J becomes smaller as ryax
increases. In Fig. 3, the predictions for the mass of the
nucleon states are shown as a function of the cutoff ra-
dius. Values computed for observables using f, = 54.1
MeV and g, = 4.842 are shown as case (I) in Table II

In the second case, the values of f, and g, are al-
tered to permit correct predictions of the nucleon and
A masses, while the cutoff 7.y is fixed at the Compton
wavelength of the pion, namely, A = 1.43 fm. Self-



47 QUANTIZATION OF THE SKYRMION

800

600 -

400 L

AE (MeV)

200 - i

FIG. 2. Energy splitting between the nucleon and A
states as a function of the cutoff radius rmax. The solid line
displays the results obtained from the Kerman-Klein method
(Sec. IV), the dashed line describes the results found from a
self-consistent determination of 0x,.(r) (Sec. II B), and the
dotted line shows corresponding results from the adiabatic
approximation [2].

consistency is found when f, = 56.0 MeV and g, = 6.51.
Values calculated for observables using this method of fix-
ing the input parameters are displayed for the Kerman-
Klein method and the semiclassical approaches as case
(II) in Table II. Values for the five reduced matrix el-
ements involving the monopole and dipole mode oper-
ators are shown in Figs. 4-8. Note that the profiles

TABLE II.
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FIG. 3. Energy of the nucleon states as a function of the
cutoff radius rmax. The solid line displays the results obtained
from the Kerman-Klein method (Sec. IV), the dashed line de-
scribes the results found from a self-consistent determination
of O, (r) (Sec. Il B), and the dotted line shows corresponding
results from the adiabatic approximation [2].

found using the Kerman-Klein method are less spread
out for the reduced matrix elements involving only nu-
cleon states (compared with the semiclassical results),
but more spread out when A states are involved.
Generally speaking, our results are of the same quality
as or better than those obtained from the projection of
the hedgehog results. In view of the very preliminary and

Values of the observables based on a restriction of the range of the time derivatives

to 7 < Tmax. In case (I) the constants fr and g are fixed to their standard values f. = 54.1
MeV and g» = 4.842, while the cutoff radius is varied until the N — A energy difference is found
self-consistently. In case (II) the cutoff radius is fixed at the Compton wavelength of the pion, while
f» and g are varied to fit the masses of the nucleon and A states. Three different approaches are
used to determine the configurations: the results obtained by using the Kerman-Klein method
(Sec. IV) are listed in the columns labeled by (KK), and the results following from a self-consistent
determination of 6x,.(x) are denoted by (SC), while the standard results based on assuming that

the rotation is adiabatic are listed under (AD).

¢9) I
KK SC AD KK SC AD Expt.
fr (MeV) 54.1 54.1 54.1 56.0 56.7 51.6 93
I 4.84 4.84 4.84 6.51 5.13 4.65 6.28
Tmax (fm) 0.89 1.23 0o 1.43 1.43 1.43
My (MeV) 1080 950 939 939 939 939 939
V) g ron (Em) 0.68 0.73 0.68 0.77 0.69 0.73 0.72
V) g roan (Em) 0.68 1.21 1.05 0.95 1.14 1.17 0.88
(1) o oy (EM) 0.66 0.99 0.96 0.90 0.96 1.02 0.82
V) pey y (f0) 0.68 1.21 1.05 0.95 1.14 1.17 0.80
Ma (MeV) 1373 1245 1232 1232 1232 1232 1232
V) 1o, () 0.69 0.82 0.68 0.84 0.83 0.73
V% gy a (f) 0.71 1.28 1.05 0.96 1.34 1.17
V) 1 re,a (B1) 0.67 1.05 0.96 0.90 1.10 1.02
) g (f0) 0.70 1.28 1.05 1.04 1.34 1.17
Lim —068  —098  -124  —1.11 ~095  —1.18 —1.91
o 2.02 1.92 1.97 3.73 1.82 2.02 2.79
wtt 3.36 4.66 3.99 6.62 4.70 4.15 5-7
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A“O(N,N)/z

r (fm)

FIG. 4. Reduced matrix element A§(NN, N) as a function
of the radius r, where the input parameters are determined by
fixing the cutoff radius at the pion wavelength. The solid line
displays the results obtained from the Kerman-Klein method
(Sec. IV), the dashed line describes the results found from a
self-consistent determination of 6, () (Sec. II B), the dotted
line shows corresponding results from the adiabatic approxi-
mation (with cutoff), and the short-long-dashed curve shows
the usual adiabatic results as computed in Ref. [2].

still incomplete character of our theory, the most we can
claim is to have made a possibly promising beginning.

V. SUMMARY AND OUTLOOK

Many studies of the Skyrme model have demon-
strated that this is a useful approach for gaining a semi-
quantitative understanding of the properties of baryons,
to an accuracy of about 30%. In the present work, we
have applied the Kerman-Klein method as an alterna-
tive way of analyzing the Skyrme model. Our method of
analysis is such that one is guaranteed to reproduce the
known classical results in a suitable limit, but the main
goal is to describe quantum effects that may be more
difficult to obtain by other methods.

From many previous applications to a wide range of
problems, it has become clear that the Kerman-Klein ap-

0.8 —

0.6 | ~ 1
N 27N
= [ &
Z o4 ' %
Z A
— AN
B AN
< o2 . S |

N :..“
0 L L B —
0 1 2 3
r (fm)

FIG. 5. Reduced matrix element AT (N, N) as a function

of radius. Refer to Fig. 4 for an explanation of the different
curves.
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FIG. 6. Reduced matrix element A7 (N, A) as a function
of radius. Refer to Fig. 4 for an explanation of the different
curves.

proach is a method for implementing the Heisenberg form
of quantum mechanics that may be considered to consist
of two stages. In the first, the formal stage, the opera-
tor equations of motion and the kinematical constraints
(commutation relations, constraint equations, etc.) are
turned into a set of c-number equations by evaluating
matrix elements between exact eigenstates of the Hamil-
tonian and using the completeness relation for evaluating
matrix elements of a product of operators. In the second,
the practical stage, the physics of each special application
is analyzed to specify a hierarchy of possible truncations
of the full set of equations that define, in turn, a con-
vergent sequence of approximations. It is the essence of
these approximations that they can be chosen to preserve
all the symmetries of the system.

In applying these ideas to the Skyrme model, a number
of special problems are encountered.

(i) For the method to be useful, the equations of motion
should be polynomial in the basic quantum variables. For
the Skyrme model, this dictates the choice of redundant
field variables, necessitating, in turn, the application of
Dirac’s method of quantization.

(i) The Skyrme model has a field-dependent mass, i.e.,

1.2 T T
0.6
N
~
g
5 0
~o
©
<
-0.6
1.2 s l
0 1 2 3
r (fm)

FIG. 7. Reduced matrix element AZ(A, A) as a function
of radius. Refer to Fig. 4 for an explanation of the different
curves.
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is defined on a curved field space. For such a model,
there are ordering problems involved in the quantization;
as a consequence one cannot associate a unique quantum
theory with the classical theory. For all previous applica-
tions, the equations of motion could be derived from, and
therefore be replaced by, a variational principle where the
stationary functional is the trace of a Lagrange operator
over the eigenstates of interest. For the Skyrme model,
we have not succeeded in establishing such a relation-
ship for the equations of motions that emerge for any
of the choices of operator ordering that we studied. We
have, consequently, taken the unusual step of defining the
equations of motion used as those that follow from the
variational principle. These are, after all, a set of quan-
tum equations that reduce properly to the classical limit.
Furthermore, the variational method becomes the basis
for a solution algorithm.

(iii) The resulting formulation has been used to study
the spectrum and other properties of the one-baryon,
zero-strangeness sector. To satisfy in a minimal way
all the requirements that have been imposed in our for-
mulation, the minimum choice of a Hilbert space is the
spin-isospin tower of states implied by the existence of
the hedgehog solution. In practice, we have suggested
a means, based on the limiting properties deduced from
that solution, to reduce the problem to a coupled-channel
calculation for the nucleon and A.

(iv) Because the A can radiate a pion, we are thwarted,
initially, in our goal to treat both nucleon and A as sta-
ble particles. By the introduction of a cutoff radius in a
special way, we are able to to suppress the radiation field,
at the same time leaving open the door for its reintroduc-
tion at a later stage of the calculation. We end up with
a well-determined set of rotationally invariant equations
that describe a stable nucleon and a stable A.

The solution of these equations for various radial form
factors within the space considered provides a basis for
the computation of some electromagnetic moments. The
results are satisfactory, but we feel that the main contri-
bution of this paper has been to suggest (radically) new

0.8 T T

06| - ]
< 27 N0
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) £ "
4 %
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P : N

0.2 N 4

N
\:-"-._
0 1 L T
0 1 2 3
r (fm)

FIG. 8. Reduced matrix element AT (A, A) as a function

of radius. Refer to Fig. 4 for an explanation of the different
curves.
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methods for the study of models of the Skyrme type.
Without attempting to be exhaustive, it is easy to list a
number of feasible, though not necessarily trivial, exten-
sions of the calculations presented in this paper.

(1) Inclusion of more states in the coupled-channel
equations. For instance, it is not clear that one can ne-
glect the Roper resonance.

(2) Study of the A width, by including the radiative
decay.

(3) Simultaneous restoration of rotational and transla-
tional invariance.

(4) Addition of meson states to reexamine pion-baryon
scattering and the estimation of one-loop effects on one-
baryon properties.

(5) Application to extended Skyrme models, partic-
ularly those in which stabilization of the hedgehog is
achieved by the introduction of vector mesons.
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APPENDIX: ELECTROMAGNETIC CURRENT
AND ASSOCIATED OBSERVABLES

The electromagnetic current operator is defined by
s 1.4 a
Fa () = 5B 0) + Jiig (),
5 1
m __ afyé pvip
B*(x) o3¢ €
xSYM {8a,0,89,0x8,, 0ps | »

Tt = 2 (3 {000
AR TNY

{{pora fadiorda})). o

The lowest moment of this current is given by the in-
tegral over space of the time component:
Q= [ 3800 + 2] (a2)
this operator can be identified with the charge of the sys-
tem in units of e. In the hedgehog limit, the evaluation
of this operator between collective (baryon) states can
be performed in a straightforward manner since the first
term represents the baryon density, and the second term
is the density of the z component of isospin (this cor-
respondence is shown in Ref. [3]); therefore the matrix
element of this charge operator is given by

A 1
I,mp; Jymg| QI mp; J,my) = 3 +my. (A3)

The “electric” mean-square radius for a given configura-
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tion is defined by the expression
<x2>E =(I,mr; J,my| /d?’xj}%lvl(x)x2 |[I,mp; J,my),

_1,9 2
=3 (= >E,T=0 +my (2 >E,T=1 ) (A4)
where the isoscalar and isovector contributions to this
result have been separated.

The differential magnetic density is defined by

(%) = 465 T (%). (A5)

The values of the magnetic moments of specific states are
given by

= 2My [ &2 (x| %), (A6)
where My is the mass of the nucleon. Weighting these in-
tegrands by z2? and normalizing by the magnetic moment
iy allows the magnetic mean-square radius (z2) s of the
states |x) to be determined. (Of course, it is also straight-
forward to calculate the mean-square radius with respect
to either the isoscalar or isovector contributions.) Evalu-
ation of these electromagnetic operators in the collective
subspace allows the above expressions to be written in
terms of the reduced matrix elements.

The expressions for these observables are considerably
simplified in the hedgehog limit, as summarized below
and discussed in more detail in Ref. [3]. The moments of
the charge density are given by
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<:c2> — _2 0 da:(“’z) sin2 056’
BT=0" "7 [ 0%,
(A7)
2 — _8_7£ *° 2\ 2.2 2 2/ p \2
<IB >E,T=1_ 3A J, dz(z?)sin® O [z? + 2%(0y)
+sin2 GH].

It has been argued in Ref. [3] that computations of mag-
netic moments should utilize the adiabatic approximation
to justify the neglect of terms having two time deriva-
tives. (For the results obtained using the Kerman-Klein
method, a corresponding omission of these terms leads to
decreases of order 1% in the values of the isovector mag-
netic radius, and reductions of order 0.2 for the magnetic
moments.) This approach simplifies the calculations of
magnetic moments, and leads to the following results:

_ <“’4>E,T=0

<x2>M,T=0 = @) 5 1o
T=

(A8)
<552>M,T=1 = <x2>E,T=1 ’

1 A
Mn = 2M N <1_2X <z2>E,T=0 - g) )

1 A
Mp = 2Mpy (m <x2>E,T=0 + E) s (AQ)

1 2 3A
Ua++ =2Mn (-4?\- <IL‘ >E,T=0 + E) .
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