
PHYSICAL REVIE%' D VOLUME 47, NUMBER 5 1 MARCH 1993

Flux-tube model, quark-antiquark potential, and Bethe-Salpeter kernel
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%'e reconsider the problem of the quantization of the relativistic Aux-tube model already treated in the
literature and show how to make it completely consistent with the effective quark-antiquark Hamiltoni-
an derived from QCD in the context of the Wilson loop approach. We obtain an explicit form for the
model Hamiltonian as an expansion in the string tension constant and construct an instantaneous related
Bethe-Salpeter kernel including even the spin and the short-range part of the interaction.

PACS number(s): 12.40.Aa, 11.10.St, 12.38.Lg, 12.40.Qq

I. INTRODUCTION

As is well known, an effective semirelativistic quark-
antiquark Hamiltonian H can be derived in the frame-

qq
work of @CD by some appropriate generalizations of the
Wilson loop method [1—3]. Such a Hamiltonian has been
very useful for an understanding of heavy quarkonium
but, since it proceeds in terms of an 1/m expansion it
cannot be significantly extended to the light-quarkonium
case.

Among the various attempts to generalize in a more
complete relativistic way the above formalism a particu-
larly simple one is provided by the so-called Aux-tube
model [4,5]. This model rests on the observation that, in
presence of a quark-antiquark static pair, the functional
integral for the gauge field must be dominated by a purely
chromoelectric Aux tube connecting the two quarks and
the energy o.r carried by the tube must be simply propor-
tional to its length r. This is indicated by the Wilson area
law [1] and confirmed by numerical lattice simulations
[6]. Then the basic area is that if the two quarks move,
the flux tube is dragged by them in such a way that in a
reference frame comoving with a given segment dr of the
tube the energy carried by the segment is again o. dr.

This suggests to assume as the classical Lagrangian for
the system quarks plus flux tube the expression

T

L = —mi+I —vi —m2'1/ I —v2 —o dr'Ql —v,
'

r r'
(1.2)

(1.1)

that properly defines the model. Here x„x2,v„vz are the
positions and the velocity of the quark and the antiquark,
respectively, r =x, —x2 is their relative position, and v', is
the purely transverse velocity of the Aux-tube segment at
the distance r' from the antiquark 2. If the Aux tube is
treated as a rigid rod with respect to the rotation motion
one can write

v~, =v —(v„r/r )(r/r). Notice that the notation used by
us is somewhat different from that used in Refs. [4,5] to
meet better with our following developments.

In Ref. [4] it is shown how one can quantize the model
and the result is applied to the evaluation of the Regge
trajectories for a light-quark —antiquark system obtaining
straight line trajectories with the correct slope. In Ref.
[5] it is also shown that the classical Hamiltonian & of
the flux-tube model coincides at order 1/I with the
confinement part of the effective semirelativistic Hamil-
tonian H . This is apart from spin related terms, pre-qq'
cisely Darwin and purely Thomas precession terms.
However, the operator ordering prescription used in the
quantization H„T of & in Ref. [4] is different from that
occurring in H (cf. Sec. II) and so the reordering terms

qq
are significantly different in the two cases.

The point is that in Ref. [4] the classical Hamiltonian
& can be obtained only in an implicit way; its quantiza-
tion is not straightforward and it is performed indirectly
in terms of the square radial momentum
q„= —[d /dr +(2/r)(d/dr)] and the square angular
momentum L =l(l +1); this brings as a consequence a
natural order prescription which is not the "correct" one.

In this paper we want to reconsider the problem of the
quantization of the model and show how the quantization
can be performed even in a Cartesian framework. Then a
well defined and very tractable ordering prescription can
be given for which H„T becomes identical to the
confining spin-independent part of H . We shall also see

qq
that the result can be immediately combined with the
short-range part of the interaction in an instantaneous
Bethe-Salpeter kernel which in the semirelativistic limit
reproduces H, spin-dependent terms included, but pos-qq'
sibly with some differences in the long-range part of the
Darwin term. We give also an explicit expression of
&(r,q) in terms of an expansion in the string tension o
which has exact relativistic kinematics and could be actu-
ally already used for the study of light meson spectrum. '

where v» and v2, are the transverse parts of the velocities
of the quark and the antiquark, respectively, defined as ~Calculations in this line are in progress.
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and we have setThe plan of the paper is the following one. In Sec. II
we rewrite H in a form convenient for us. In Sec. III
we simply review the Hamiltonian formulation of the
Aux-tube model in a Cartesian framework and give an ex-
plicit expression for &(r,q) both as an expansion in
1/m and in o.. In Sec. IV we discuss the quantization
and elaborate the ordering prescription. In Sec. V we
deal with the form of the Bethe-Salpeter (BS) kernel.

ghk ghk
8a,
9r

2CXs

37

07' + 1 ~hk r 7'h k

9 3 2

(2.4)

h k
Thk ghk C ~r + 1 ghk

4 9 3 72

II. THE qq POTENTIAL

We recall that in the center-of-mass system
(p, = —pz=q) the effective semirelativistic quark-
antiquark Hamiltonian derived in the context of the Wil-
son loop formalism can be written [3]

2 2 4 4
H =m, +m, + ~ + ~

2m1 2 12 8m1 8m

(2.1)+ ~ t t+ ~sD+ ~vD

with

4 ~s
V = —— +C+or,stat (2.2a)

1

2
L.S, + 2

L.S2 2 2 4 4
H =m1+m2+ + — — +o.r

8m1 8m 2

4 ~s
(L S)—
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m1m2
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m1m2r r +— + 7 (err)
1 1 1

m' m'
1 232VT'Cl
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o 1 1+
6 m m1 2

2
(2.5)

m1m2
4o.,' +err
37

~vD = 1 1 1+ Vm'
1 2

with the transverse momentum q, defined again as

(2.6)
I phd kShk(~) ].„

m1m2

(2.2c) III. THE RELATIVISTIC FLUX-TUBE MODEL

Since r is not a relativistic invariant the Lagrangian
(1.1) of the model has to be understood in the center-of-
mass system. If we treat, however, for the moment, the
positions x, , x2 as independent variables, the conjugate
momenta are

Here the symbol I ]„d denotes the ordering prescription,

h kxhk(r)] .
[

h
[

k ~hk(2 1

m1V1 (r' Ir)v',+o. dr'
Q 1 —v', ' Q 1 —v",

BLP1=
C)V1

h k Xhk( )]
3 2

(3.1)
m 2V2 [1—(r'Ir)]v',

+o dr'
&1—v', ' &1—v",

Bl.
P2=

BV2
h k~hk( )+ hxhk(r) k1

6

while the total linear momentum and the Hamiltonian
turn out, respectively, as+q "X""(r)q +2Xh"(r)q "q ], (2.3)

It should be stressed that the ordering prescription
(2.3) is not arbitrary as explained in Ref. [3]. In fact it
derives from a discretization rule in the two particle
Feynman integral which is essential in order to obtain a
Pnite velocity-dependent potential.

We recall that in Eqs. (2.2) —(2.4) the short-range terms
in a, have a perturbative character, the terms in o. corre-
spond to the Wilson area law and to its generalization to
the case of a distorted loop for nonstatic quarks, and the
terms in C come from an additional perimeter contribu-
tion [3]. Such terms are essentially related to the classical
dominant configuration of the gauge field in the function-
al integral expressing the potentials.

Disregarding the terms in a, and in C, Eq. (2.1) takes
the form
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v,

(3.2)

m] v) m 2V2P=p+p = + +~f dr'
Q 1 —v', Q 1 —v', ' Q1 —v,'

and (3.1), we obtain

m, v&q= +~f 11(u lt r Vzt )V 1t +~f 12( V lt, Vzt )Vzt+I—v',

(3.4)
and

&=pl vl+ pz vz L—
m 2V2

+~f21(v 1tr Uzt )v\t+&fzz(v ltr Uzt )v2t
1 —v2

m&

QI —u',

m2+
QI —u,'

+0
p

(3.3)

Then, if we restrict ourselves to the center-of-mass sys-
tem by setting

P&+P2=0

and perform explicitly the integrations occurring in (3.3)
I

m) m2+
Q 1 —v', Q 1 —u',

+ [arcsinv „+arcsinuz, ],
u1t +uzt

with q=p, = —
p2 and

(3.5)

f12(ultru2t ) f21(ultru2t )
3 [ [(U2t 2 ult )V I u lt+(V lt zvzt )V 1 uzt ](u„+uz, )

+ ( Uzt U 1
T~ )(arcsinu „+arcsinvz, ) j

r
f»(vlt U2t) f22(U2trult) , [ —,'[ (ult+4—U2t)+1 ult+3U2t t/I U2t)

(Vlt+U2t )

+ ( v z, + —,
' )(arcsinv „+arcsinvz, ) J .

(3.6)

In principle Eq. (3.4) should be solved with respect to v, and vz and the result replaced in (3.5) in order to obtain & as
a function of the canonical variables r and q. It is obvious that this cannot be done in a closed form. As we said, how-
ever, an explicit solution of (3.4) can be obtained only as an expression in 1/m or in the string tension a and then even
& is expressed in such a form.

Using an expansion in the inverse of the masses one obtains

=m, +mz+ + —— 3+ q +err — +q q 1 1 1 4 ~r 1 1

2m& 2m2 8 mj m2 6 m& m2 m)m2
2 (3.7)

As observed in Ref. [5], Eq. (3.7) is identical to Eq. (2.5) apart from the Darwin term, the spin-dependent term, and pos-
sibly terms related to a reordering of noncommuting operators. This shows that a quantization HFT of &, if performed
in agreement with the ordering prescription in (2.5), and once the spins are taken into account, provides a full relativis-
tic generalization of Hqq'

Notice that, in order to identify Eq. (3.7) with Eq. (14) of Ref. [5], one has to take into account that
q r =(r X q) =L . However Eq. (3.7) is more appropriate for a comparison with Eq. (2.5).

On the contrary, solving (3.4) by an expansion in tT one obtains

&(r,q)=Qm, +q +Qmz+q
or 1

2+m 2+q2+Qm2+q2

1/2m2+q
Qm', +q„'+

m)+q

2 2 1/2
m&+q

Qm'2+ q„'
m2+q

+ Qm +q Qm +q1 2
are sin +arcsin

Qm', +q' Qm,'+q'

(3.8)

at the first order in o. , or, in the equal mass case,

m +q„2 2

+
16q, Vm +q

+m +q arcsin
qt &m'+q'

' 1/2
~r &m'+q' m +q„

&(r,q)=2+m +q + ar csin +
qt V m +q m +q

1/2 2
m +q,
m +q

(3.9)
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at the second order in cr. The worth of Eqs. (3.8) and
(3.9) with respect to (3.7) is in the fact that they retain a
full relativistic kinematics.

IV. QUANTIZATION OF THE MODEI.

The model can be quantized in the usual canonical way
replacing r and q in &(r,q) with the corresponding
operators once an appropriate ordering prescription is
chosen. Noting that in principle &(r,q) can be expanded
in powers of the components of q, it becomes apparent
that the ordering problem concerns essentially expres-
sions of the form

fq 'q" .
q "X ' "(r)js

(4. la)

1 k k k k k=—{q 'q '. .
q ",X ' "(r)j,

and

Iq 'q" .
q "X ' "(r)j„d

1 2 n 1 2 n
q 'q ' .

q "X ' ' "(r).
We can then easily generalize Eq. (2.3) by setting

[q 'q .
q "X ' "(r)jii,

1 n 1 k2 k k1 . -k k +1 k„
q 'q ' q'X ' "(r)q*+' q",

s=0

&k'IH Ik&=&k'I f&(r, q)j,„dIk&

I.(k —k'). r
3

e(2'�)
2 k'+k

r,'
3 2

1 &(r,k')+&(r, k)
+3 2

(4.4)

The problem of the construction of HFT is so reduced to
the evaluation of the Fourier transform of the classical
Hamiltonian &(r, q) for q equal to k, k', and (k+k')/2.
The expression of the classical Hamiltonian obviously
can be obtained by numerical inversion of (3.4) or directly
by using Eqs. (3.8) and (3.9).

V. BETHE-SALPETER KERNEL

Let us recall that a relativistic potential theory for two
spinless particles with the center-of-mass Hamiltonian

H=+mi+q +Qmz+q +V (5.1)

& k'I VIk &
= I(k', k)

(2~) Qw, (k)wz(k)w, (k')wz(k')

can be related to an instantaneous BS kernel I (k', k) by
the equation (cf., e.g. , Ref. I8])

k1 k k k=—', (q 'q ' .
q "X '

k k2 k k+ —,'[q 'q '
q "X '

k„ r)
. . k"(r)js . (4.1b) where w(k)=+k +m .

Then if we define Icf. (4.4) and (3.8) or (3.9)]

(5.2)

k k k k . . . k
&k'I(q 'q ' .

q "X ' "(r)jii, k&

k' +k'k '+k
2

&k'IX '

(4.2)

while

&k I(q 'q '.
q "X '

h1~ h„& h1 h„, h1 . h„k " +k ' . k ")&k'IX ' "(r)Ik. & .

Indeed, for n =2, Eq. (4.1b) becomes identical to Eq. (2.3)
and consequently such an order prescription makes Ham-
iltonian (3.7) identical to (2.5) apart the spin related
terms.

We stress that prescription (4.1) does not turn out a
purely formal one but, on the contrary, it is very con-
venient also from the point of view of actual calculations.
Precisely we may notice that

&k'IHFTIk&=(+m i+I +Qm2+k )5 (k —k')

+V(k', k), (5.3)

by inverting Eq. (5.2) we obtain the following instantane-
ous kernel corresponding to the potential V:

Qw, (k)w~(k) w, (k')w~(k')
I„„r(k',k) = (2m. ) V(k', k) .

m&m2

1 m)mp
& k'o, a 2I VIkcr, o 2 &

=
(2~) Qw, (k)w~(k)w, (k')w~(k')

Xu'"(k') ' '( —k')I(k', k)
01 02

(5.4)

Now, taking into account the relation connecting a rel-
ativistic potential theory for two spin- —, particles and the
corresponding instantaneous two fermion kernel,

(4.3) XQ'''(k)B' '( —k) (5.5)

In conclusion for the quantized Hamiltonian HFT we
have

~Here the labels 8'and S stand for Weyl and symmetric order-
ing prescriptions (see, e.g. , [7]).

(u stay for the Dirac spinor), the most spontaneous way
to introduce the spin in the model, consistently with the
Dirac formalism and with the scalar confinement hy-
pothesis, would seem to use (5.4) as the kernel of (5.5).
Indeed, when replaced back in Eqs. (5.5) and (5.1), this
kernel reproduces (2.5) in the semirelativistic limit with
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the correct velocity-dependent and Thomas precession
terms. However, the Darwin-type term turns out to be
—

—,'(1/m i+1/mz)V (or) a. nd has opposite sign with

respect to the correspondent one in (2.5). Such a
discrepancy turns out to be of little practical importance
for heavy quarks but could become significant in the case
of light quarks. It is therefore important to notice that it
could be eliminated by including two additional kinemat-
ical factors in the definition of I„„f,at least for nonvan-
ishing quark masses. To this aim we have to set

Qw, (k)w2(k) w, (k') w2(k')
I„„r(k',k) =(2ir)

mim2 I (k', k) =I„„f(k',k)+I„„,(k', k), (5.6)

4m, (m;+w, (k'))(m;+w;(k)}
PI

[(m, +w;(k))(m, +w;(k')) —k' k]

The factors p, renormalize in an appropriate way the spi-
nor contribution without changing the dominant long-
range behavior of the potential and are in this sense
essentially unique.

Once a choice for I„„fhas been made, one can make
the usual additional assumption that in QCD the short-
range interaction is correctly described by perturbation
theory. Then we are brought to introduce the complete
quark-antiquark BS kernel

with

Xp,p~V(k', k) . (5.4')
where I„„&is defined by Eq. (5.4) or (5.4') and I,„, is
given by

(i) (2)
Fo To

Q2
[y(i).y(2) (y(&).Q)(y(2). Q)]

Q2
(5.7)

(with Q =k' —k ) at the lowest order in a, and in the
Coulomb gauge [9]. The BS equation defined by Eqs.
(5.4) —(5.7) provides a full relativistic generalization of the
Hamiltonian (2.1) and reproduces completely the poten-
tials (2.2) —(2.4) at the semirelativistic limit but the terms
in C and possibly the Darwin term.

The terms in C can be understood as an end effect in
the Aux tube. In fact in the neighborhood of the quarks
the Aux-tube field should match with a Coulomb-like
field. Then, if we denote by —C/2 (C (0) the excess of
energy of the field in a system comoving with the quark
or, respectively, the antiquark, we are brought to subtract
from the right-hand side of Eq. (1.1) a term of the form

(+I—vi++1 —v2 . (5.8)

&~(p) = i [B(p)yg"—~ (p) ]

Then, setting for simplicity mi =rn2=rn, the kinematic

In the semirelativistic approximation again such a term
produces exactly the terms in C in Eqs. (2.2) —(2.4). Obvi-
ously in a full relativistic treatment (5.8) can be reab-
sorbed in a redefinition of the quark masses
minim i =mi+C/2, m2 m2=m2+C/2. At the lev-
el of Eq. (2.1), however, this may not be legitimate (cf.
Ref. [3]).

Finally, notice that in Eq. (5.2) it has been tacitly as-
sumed that the full one quark propagator can be replaced
by its free particle form, SF(p)=i (y"p„—m) '. If one
wanted to take into account self-energy effects one could
follow the line of Ref. [10] and write, in the instantaneous
approximation,

factor in Eq. (5.4) should be replaced by

W(k)W(k')/A (k)A (k') with W(k)=(/A (k) +B(k) .

VI. CONCLUSIONS

In conclusion, we have reformulated the quantization
of the relativistic flux model in such a way to make it
consistent with the confinement part of the quark-
antiquark potential as derived in the context of the Wil-
son loop approach apart from the terms related to spin.

Then we have constructed an explicit expression for
the Hamiltonian of the model in terms of the canonical
variables in the form of an expansion in the string tension
constant cr [Eqs. (3.8) and (3.9)].

We also have shown how an instantaneous Bethe-
Salpeter kernel can be defined as the sum of a long-range
confining part which corresponds to the Hamiltonian of
the model and a short-range perturbative part directly
derived from QCD. This kernel includes the spin and
reproduces exactly the qq potential in the semirelativistic
limit but possibly for the Darwin long-range term.

As we mentioned, the controversial origin of the con-
stant term in the static potential seems to be understand-
able as a consequence of an end effect in the Aux tube.
Notice that for static quarks this would be equivalent to
subtracting a strip around the contour of the surface de-
limited by the Wilson loop and so too including a perime-
ter term in its expectation value as done in Ref. [3]. In
this order of ideas, the terms in C can be exactly reab-
sorbed in effective masses of the quarks as the structure
of the corresponding terms in Eqs. (2.1)—(2.4) already
suggested.

Concerning the term in rr r in Eq. (3.9) we observe
that in the two limit situations of large and small m it be-
comes o r q, /64m and (rr r /q, )(q„/q ), respectively.
Then it can be seen that the term turns out to be negligi-
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ble in comparison with trr in the first case (cr =0. 15 and
typically (r ) = 1 GeV ', (q ) = 1 CxeV; on the contrary,
it can be more important in the second one. In this con-
text notice that terms proportional to r have already
been considered in some phenomenological analysis based
on the BS equation [11].

Finally we remark that, as already stressed in the In-
troduction, the Aux tube is treated in the model somehow
like a rigid rod. Obviously the quantum Auctuation of

the gauge field should introduce correction to this pic-
ture. In this order of ideas one should compare the
present treatment with the somewhat complementary
point of view of Refs. [12,13] in the static limit.
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