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With the use of the spinor-spinor Bethe-Salpeter equation, a phenomenological vector-vector-type

Hat-bottom hadronic potential is assumed which is fully relativistic covariant. The 0 meson wave func-

tions in momentum space have been obtained. Then, the physical spacelike electromagnetic form factor

of the 0 meson is calculated directly from the Euclidean space 0 meson wave functions. Numerical

results show that the theoretical calculation gives a good fit to the experimental results by appropriately

choosing the parameters in the phenomenological flat-bottom potential.

PACS number(s): 14.40.—n, 11.10.St, 12.40.gq, 13.40.Fn

I. INTRQDUCTI(3N

The quark hypothesis proposed by Csell-Mann and
Zweig has led to a great deal of success in understanding
the properties of hadrons. Most of these successes rely
on nonrelativistic calculations, using simple assumptions
such as the additivity of quark amplitudes, and simple
approximations such as the instantaneous approximation
method or null-plane approximation method. In the
1970s, Guth [1] studied the bound states of equal-mass
quark-antiquark pairs, using the fully relativistic formal-
ism of the Bethe-Salpeter equation with the phenomeno-
logical potential which incorporates Morpurgo's sugges-
tion. He analyzed the symmetry of the bound states and
obtained the numerical solutions of the bound states of
quark-antiquark pairs, but the results were not as good as
expected, because the radius of meson calculated by him
was much smaller than the experimental result and the
electromagnetic form factor of the meson was not calcu-
lated. Then, Wang et al. [2] assumed a phenomenologi-
cal scalar-scalar-type Oat-bottom potential which was ful-

ly relativistic covariant, and the difhculty in the calcula-
tion of the radius of meson was overcome by using the
phenomenological potential; however, the result of elec-
tromagnetic form factor did not give a good fit to the ex-
perimental data. It was important that the scalar-scalar-
type coupled phenomenological potential was used.

Recently, Gupta, Mitra, and Singh [3] stated that the
interaction form of bound states of the quark-antiquark
system should be a vector-vector-type structure (y„"y„' ')
and gave three advantages of it. The first advantage of
the vector-vector form is that for a quark-antiquark sys-
tem involving spin- —,

' constituents, the vector-vector form

confinement, unlike a scalar-scalar form, simulates to a
significant extent the operative aspects of gauge invari-
ance that are usually sought to be incorporated through a
standard phase integral structure involving a gluon field.
The second advantage is that it satisfies chiral invariance.
The third advantage is compatible with the possibility of
a common origin for qq and qqq confinement while a
scalar-scalar form is not. They also discussed the elec-
tromagnetic form factor of the pion, but their result only
gave a good fit to the experimental result when k was
very small (k ~0.2 GeV ) [3]. They developed a kind of
approximation method, the null-plane approximation
method [3—8] which is similar to the instantaneous ap-
proximation method. In addition, many other problems
can be discussed by using this approximation method.

In this paper, based on Wang's work and the discus-
sion of Gupta et al. , first a vector-vector-type phenome-
nological Oat-bottom potential is assumed which is fully
relativistic covariant. The numerical solutions of the
wave function for pseudoscalar bound states of equal-
mass quark-antiquark pairs, the 0 meson, are obtained,
to the Bethe-Salpeter equation with the phenomenologi-
cal flat-bottom potential. Then the physical spacelike
electromagnetic form factor of the 0 meson is calculat-
ed from the Euclidean wave functions. The calculated re-
sult fits well with the experimental one in a larger k re-
gion without using the instantaneous approximation or
null-plane approximation.

In Sec. II, first, the vector-vector coupled Bethe-
Salpeter equation and the expansion method of Lorentz-
invariant functions are introduced. It includes the calcu-
lation of the matrix elements H'~ which are given in
Table I. Second, the vector-vector-type phenomenologi-

TABLE I. Values of H "(p, k, Q).

4(p'+Q'+m )

—4mQ'

—4m (k.Q)

—2(Q' —p +m')

—4(k Q) —2D(m' —p —Q')
X [p'(k Q) —(p Q)(k p)]

—4(p Q)

—4(k p) —2D(mt —p2 —Q )

X[Q (k.p) —(p Q)(k Q)]
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TABLE II. Values of E„"„,where E,b is

(sine) (cosj9) 1 ( 1)b12 [( + )/ ]

(mz+p gz)+4pzgzcoszg (mz+pz gz)z x(a 6)/2
1 [(a + 1)/2]

n!I'[ [(a +1)/2] —n ]

where x:—4p Q /[(m +p —Q ) ]. (The expression holds only if a and b are even integrals, which includes all the necessary cases. )
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k'
, (p +Q'+ ') z( Ezz zo)

3

k'—,(p'+ Q'+ m z)—Lz(16E,4 —8Ezz+Ezo )
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TABLE II. (Continued).
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TABLE II. (Continued).

3, 1 33

2,0
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k4 rn' — '+

8+—L2QE22
3
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3
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8
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3

k m —p+Q 1 1

42'' Q 3 ' 5
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4Q L2+ L4 (16E26 12E24+E22)
1 1
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5
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k43.p(L +L4)(2E,4
—E2, )

+ —L4(8E24 —3E22 ) ——LqE22
p

33 4k m' —p —Q'
L2

7T ! 3p

k4
2p (L2+L4)(4E26 —4E24+Eq2)

1+—p (L2+Lg) (2E24 —Ep2)
2

+ —L4 ( 16E26 —12E24+2E2q +E20 )
m —p —Q 2p, 5

1 L 2 +—L4 (4E24 —2E22 + 3E20 )

cal Bat-bottom potential and the condition of a Hat bot-
tom are assumed. Then the method of the expansion of
Q(4) eigenfunctions is introduced. It includes the calcula-
tion of kernel functions K„'~„, which are given in Table II.
Finally, the 0 meson wave functions are obtained by nu-
merical calculation and are shown in Fig. 1. In Sec. III,
first the matrix element of electromagnetic current in Eu-
clidean space is reduced. Then the formula for the physi-
cal spacelike electromagnetic form factor of the 0
meson is obtained. Finally, the result of the numerical
calculation of the form factor is given. It conforms with
the experimental one. The conclusion and discussion are
given in the Sec. IV.

II. BETHE-SALPKTER EQUATION
OF VECTOR-VECTOR COUPLED

AND THE PHKNOMENOLOGICAL
FLAT-BOTTOM POTENTIAL

A. Bethe-Saltpeter equation

If the interaction between a quark and antiquark is a
vector-vector-type structure (y„'"y{ ') and the mass of the
quark and antiquark is same, the wave functions of
bound states of the quark-antiquark pairs should be the
solutions to Bethe-Salpeter equation which takes the
form
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X(p, g)= — —I d k U(p —k)y„5 ~(k, g)
(p+Q) +m

iy(p —Q) —m

(p —q) +m

where

5+ (p, g ) = y ( ip +Q )
—m,

F(p, Q)=[(m +p —
Q ) +4(p Q)~]

(3)

where X (p, Q) is the Bethe-Salpeter wave function of the
bound state; 2Q„=(0,0, 0,iM) is the four-momentum of
the center of mass of the pion, 0 meson; M is the mass
of pion; p„ is the relative four-momentum between the
quark and antiquark in the pion; m is the mass of the
quark; U is the phenomenological interaction potential;
and y„are Dirac matrices.

Now, consider the Bethe-Salpeter equation in the rest
frame of the bound state; one can perform the Wick rota-
tion [9] analytically continuing k and p into the Euclide-
an region where we will denote them by k and p, respec-
tively, and define

2Q„=——2ig„= (O, O, O, M);
then the Bethe-Salpeter equation can be written as

X(p, Q)= —iF(p, g) J d k S (p, g)U(P —k)y„5„,

xx(k, Q )yg+ (p, Q ),

where

M~"=y, M"'=Q yy, ,

(3) (4)—M =p.yy, , M =e„,~g„p,o i .

We then define the matrices M"(p, Q ):

M"'= .'D[(P.Q-)p y P'Q y—]y

M"=—.'D[(p Q)Q y —Q'p y]y,
(4)M =

—,', De„, qg„p a ~,
wl ere

(5)

and then the Bethe-Salpeter wave function X(p, Q ) of the
bound state can be expanded as Lorentz-invariant func-
tloils [1]:

4

X(p, g ) = g X"(p,p.Q)M"(p, Q ),

C) 0. 9

C3

0 6
PQ

D =[p'Q' —(p Q)']

and the orthonormal relationships between M" and M' '

are

Tr[M'I(P, g )M'~'(p, g )]=5„.
When applying Eqs. (4) and (8) to the Bethe-Salpeter
equation (2), the Bethe-Salpeter equation for Lorentz-
invariant wave functions X"(p,p.g ) is

3

X I 'I(p, p Q ) = iF (p, Q ) g I d k U (p —k )H 'J(p, k, g )

XXI&'(k2, k Q),
where

H'~(p, k, Q ) = —Tr[ M "(p,Q )5 (P, Q )y„5„~'~ (k, Q )

xyP+(p Q)] (10)

O o. 9

Based on Ref. [10], we know that XI (P,p.g) does
not couple with other components of the wave functions
if the interaction is a vector-vector-type structure. So we
can assume that X' '(p, p Q ) =0. Feldman and co-
workers have discussed the problem in detail in their
work [10]. Of course, we are able to obtain the same con-
clusion from Eq. (10).

B. Phenomenologieal potential

FIG. 1. Wave functions of bound states of the 0 meson,
with B =0.07, p =2m, and X =0.4m in (a) (where m is the mass
of the quark) and with 8 =0.065, p =2m, and X =0.3m in (b).

Now we discuss the phenomenological potential in the
Bethe-Salpeter equation. Considering that the Yukawa
potential has the singular point when r =0, and that a
quark seems to be free in the pion, and that the phenome-
nological potential should satisfy gauge invariance, chiral
invariance, and fully relativistic covariance such as Gup-
ta and co-workers have stated in Ref. [3], we assume a
phenomenological vector-vector-type Oat-bottom poten-
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n —[X+jp]r
V(r)= —G g a,

j=O
(12)

Because the phenomenological potential has a Aat bot-
tom in its three-dimensional form and the singularity at
the point r =0 has been suppressed we assume the phe-
nomenological potentials satisfy the following conditions
which are called the Oat-bottom conditions:

tial which is the sum of a set of Yukawa potentials. This
phenomenological potential cannot only satisfy three
conditions but also suppress the singular point which the
Yukawa potential has. Actually the phenomenological
Aat-bottom potential is analogous to the exchange of a
series of particles with diA'erent mass. And we assume
that there is a relation among the exchange particle
masses. The phenomenological vector-vector-type Aat-
bottom potential can be written as

62 fl a

(2~), =o p +(N+jp)
where X is the minimum value of the mass of the ex-
change particles, p is the difference of the mass of the ex-
change particles, and a is the relative coupled constant
of different particles; its value decides the relative
strength of each exchange particle; its sign denotes the
property of this term. The three-dimensional form of the
phenomenological potential corresponding to the four-
dimensional form of the phenomenological Aat-bottom
potential can be written as [2]

ering the invariance of time reversal, we can write
X"(p,p Q) as

X"(p,p. Q ) = g X,"(p,Q )C„'(cosO)
n=0

even if i =1,2,
odd if i =3, (15)

sin HC„' cosI9 C' cosO dan=6,
7T 0

(20)

where the expression of Gegenbauer function is

sin(n +1)O
C„ cosO =

sln0

where O is the angle between p and Q.
As above, the four-dimensional phenomenological Aat-

bottom potential can also be expanded in O(4) eigenfunc-
tions or Gegenbauer functions:

'62 OO

U(p —k)= — „g L„(p, k)C„'(c os5),
(2~)" .=o

n —1

L„(p,k)= g (Z, —QZ, —1)'+',
0 Pk

Z, = [p +k +(X+ip) ],1
(19)

2pk

where 6 is the angle between vectors p and k.
As we know, Gegenbauer functions satisfy the general

orthogonality relation

d V(0)
dp'

d V(0)

V(0) =const,

d" 'V(0) =0
dn —1

From above, the Bethe-Salpeter equation can be re-
duced to the following infinite set of one-dimensional
coupled integral equations:

so n +1 relative coupled constants can be determined by
the equations

X„'(p,Q)= g g G f dk K'i X,", '(k, Q),
j =1n'=0

a, =0, n, n'= . even if i = 1,2,
odd if i =3, (21)

a, (X +ip) = V(0)
i=0 6 2

a, (X+ip) =0,
i=0

kK„"„=— g f sin O C„'(cosO~)F(p, Q)dO
(2~) o o

X f d QkL (p, k)C'(cos5)M"

X C„'(cosOt, ),

a;(X+ip)"=0 .
i=0

From above, we know that if we choose the value of n

[n =9 and V(0)IG % =0.5 in our work], there are only
two variable parameters in the phenomenological Aat-
bottom potential.

where dO, I, is the four-dimensional angle of Euclidean
vector k,

dA=sin OsingdOdgdy

and H'j and K,'j, . are given in Tables I and II.

D. Numerical solutions of Bethe-Salpeter equation

C. Expansion of O(4) eigenfnnctions

In order to obtain the numerical solutions of the wave
functions from the integral equation (9), the Lorentz-
invariant wave functions X"(p,p Q) are expanded in
O(4) eigenfunctions or Csegenbauer functions. Consider-

Before we solve the integral equations (21), it is impor-
tant to change the vectors p, k, and Q into dimensionless
quantities by the change

p~ —,p — k Q
m' m m
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and to make the wave functions X"(p,Q ) with the same
dimension by the change

F'"=X'" F' '=mX' ' F' '=mX' '
n n ~ n m n ~ n m n (24)

In the lowest-order approximation, Eq. (21) can be
written as

Actually, it is impossible to solve the infinite set of
one-dimensional coupled integral equations (21); there-
fore the first step in solving Eqs. (21) is to truncate the
infinite sum over n'. The computer calculations have
been carried out using only the lowest nonvanishing term
(n =0 or n =1) in the expansion of each Lorentz-
invariant function. With this truncation, it is possible to
calculate many properties of the bound states with accu-
racy. That our theoretical calculation result gives a good
fit to the experimental result is a good example. In the
lowest-order approximation, Bethe-Salpeter wave func-
tion can be written as

X =Fo"y, +FOI 'By4y~+FI 'y py~CI(cosH) . (25)

given by [11]

&PzlJ„(z)lP, &

= J d u Tr P~(u, z)A P'(z, u) +ma
Bu

+P~(z, u) +m P'(u, z)b„, (29)
Bu

where

J„(z)=i g(z)A„P(z),

A„=ey„,
y~(z, u) = &Ol Tq(z)q(u) lP~ &,

P~(u, z)= &P&l Tg(u)g(z) 0& .

g(z) is the operator of the quark field and e is the charge
matrix element of the SU(3) group of the quark. Based
on Ref. [2], Eq. (28) can be written as

III. ELECTROMAGNETIC FORM FACTOR

A. Matrix element of electromagnetic current

Recently, many experiments [12] of the pion elec-
tromagnetic form factor have been done, which not only
give information on the distribution of the charge of the
hadron but also on the radius of the hadron. When one
discusses the pion phenomenological model with a
vector-vector-type interaction, it is an effective test to see
whether the model can obtain an electromagnetic form
factor which gives a good fit to the experimental result.
For this reason, we calculate the electromagnetic form
factor of the pion with our model.

As we know, the relationship between the electromag-
netic form factor of the bound states of a quark-antiquark
system F(k ) and the matrix element of the electromag-
netic current between two bound states is

F(k')(P, +P&)„=&P&l J„(0)P; &,

2k =P; —P~,
(27)

where J„ is the operator of the electromagnetic current,
lp, & and lp& & are two bound states, and

0

F' '=G dk(K OF'"+K OF '+K F' ')0 0 0 0 0 01 1

F' '=G dk(K OF "+K OF '+K F' ') .1 1 0 1 0 11 1

The numerical solutions of the wave functions, F0",
F0 ', and F', ' are obtained by using a Vax 8700 computer.
The numerical solutions of the wave functions of the
bound state, F0, F0, and F1 are shown in Fig. 1.

e 4 1 1

(2~)
dqTr. X q

—k, —P yX q, —P,f p

1
X i q

——P @+m
2 I (31)

k =(k, 0, 0,0),

P, =(k, O, O, i+k +M ),

P~=( —k, O, O, i+k +M ) .

As a result, Eq. (28) can be written as

(32)

The Feynman figures corresponding to the matrix ele-
ment of the electromagnetic current in the lowest order
are shown in Fig. 2.

The physical quantities of Eq. (31) are in Minkowski
space. Before we calculate the pion electromagnetic form
factor by using the Bethe-Salpeter bound-state wave func-
tions which have been obtained in the Euclidean region,
we must perform the Wick rotation analytically continu-
ing k and q into the Euclidean region so that the bound-
state wave functions which have been obtained in the Eu-
clidean region can be used directly.

Under the spacelike condition k )0, because of
Lorentz invariance, it is convenient to consider the fol-
lowing choice of kinematic variables:

, P,„&P, lz„(0)lP, &.
2(k +M )

(28) Pg Pi

We know, in the lowest order, the matrix element of
electromagnetic current between two bound states is

FIG. 2. The Feynman figure of the matrix element of the
electromagnetic current to lowest order.
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, [k(P, IJ, (0) P;)
2(k +M )

+i&k'+M'&Pfl J4(0)IP; &] .

When applying Eq. (4) to Eq. (34), it can be written as

X(p, g)= —X'"(p,p Q)y5+iX' '(p, p Q)y, y Q

+X'"(p',p Q)y~(y p —y+4) . (35)

X(p, g)=y4X (p,p(), g)y4 . (34)

(33)

X can be related to X by analytic continuation in po [11]:
When we apply Eq. (35) to Eq. (31) and perform the

Wick rotation analytically continuing q into the Euclide-
an region, we obtain the matrix element of the elec-
tromagnetic current:

1
i q

——P; @+m *(PflJ„(0)lP,. )= fd qTr X q k, —Pf —y X q, P;—

q +( )+( ) iq + p ~( )~( )~p ~( )~( & )~p ~( )~( )ppzq
(21r )

+X' 'X'"m (q —k) + —X' 'X' ' P P iq+ .P—1 — — — . 1—
p 4 fP i 2 i

(Pf P; )
—iq„+ P,„+P—;„P.f iq+ P, —1 — — — . 1—

+—X' X P q iq+ P —(P—q). iq + P+q —P iq+ P—1 —
2 3 . 1 — — . 1 — — . 1—

2 2' 2' 2

——X' 'X' ' (q —k) P iq+ P —(q k)—P iq —+ P—1— 1 — — — . 1—
2 P l 2 1 l P 2 lP

1—+P (q —k ) iq+ P;—
1——X' 'X' ' (q —k) q iq+ P — iq +— P(q —k) q—

1—
+q (q —k) iq+ P;— (36)

where

X"—=X"((q—k), (q —k). ,'Pf ), —

X"'=—X"'(q', q —,'P, ), where

(38)

4
F(k2) — f d4—[F(1)F(1) 2F(1)F(&) +g&F(2)F(&) ]4f 'q0 0 0 0 0 0

(q —k)—:(q, —k, q2, q3, —qo),

P, =( —ik, 0, 0, +M +k ),

(37) F"':F' [ l(q) k)'+ —q2+q3+q—o I ],
F":—F"(lqf+qp+q~3+qo'l ) .

(39)

Pf =—(ik, 0, 0, +M +k ) .

Because F' '&(10, we can ignore it. By combining
Eq. (33) with Eqs. (36) and a null dimension treatment,
we obtain the formula of the electromagnetic form factor
of the pion in the lowest-order approximation. It can be
shown that

Because qz, q3, and q0 are completely symmetric in the
integral (38), we can simplify the integral by the following
change of integration variables:

Q:—q', +q3+qO2 .

Then the form factor can be written as
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I. . 0 +q +q +q (42)

0. 8

0. 6

0. 4

0. 2

0. 0
0. 0 0. 4 0. 8 I. . 2

Now, based on Eq. (40), Eq. (41), and the wave func-
tions of bound states, we can obtain the electromagnetic
form factor of 0 meson by using the computer Vax
8700. It is shown in Fig. 3. Some experimental data of
Ref. [12] are used in Fig. 3. This result denotes that the
calculated result can give a good fit to the experimental
result in a large k region if we choose the appropriate
parameters in the phenomenological vector-vector-type
Aat-bottom potential.

I. . 0

K (Gev/c)
2 2

IV. CONCLUSION AND DISCUSSION

0. 8

O. 6

0. 4

0. 2

O. 0
0. 0 0. 4 O. 8 I. . 2

K (Gev/c )

FIG. 3. The calculated result of the electromagnetic form
factor of the pion corresponding to the wave function (a) and

(b), respectively. The parameters are the same as Figs. 1(a) and
1{b),respectively. The experimental data of Ref. [12] are used.

P (k2) dq dg g2[ F(l)F(1) 2P(1)F(2)
0 0 0 0

++2F(2)P (2)
]

where X is the constant of normalization:

(40)

~ =277 d [F'" —2/'"/I I+/ F' '
] (41)

0
qq 0 0 0

where

In order to find a better phenomenological model, first
the phenomenological vector-vector-type flat-bottom ha-
dronic potential which satisfies relativistic covariance,
gauge invariance, and chiral invariance is constructed.
Then, the numerical solutions of the wave functions of
the bound state of the 0 meson in Euclidean momentum
space are obtained by solving the Bethe-Salpeter equation
in the phenomenological model without using the instan-
taneous approximation or null-plane approximation
method. Finally, in order to check the phenomenological
model, the physical spacelike electromagnetic form factor
of the 0 meson, which is in very good accord with the
experimental result in a large k region, is calculated by
using the wave functions of the bound state in Euclidean
momentum space. From above, we regard that the phe-
nomenological vector-vector-type Aat-bot tom hadronic
potential model is successful in studying the system of
bound states of equal-mass quark-antiquark pairs. Actu-
ally, it is very important to find a better phenomenologi-
cal hadronic model to study the system and its properties
while we do not know what the real strong interaction is.
It is not only an important method for studying a system
with strong interaction and its properties but also a
powerful tool for solving actual questions; we can there-
fore research some other systems and their properties by
using the phenomenological model, for example, the Qq
system and qqq system, etc.
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