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We present a detailed discussion of the phase structure of hadronic matter with finite strangeness
content and discuss the thermodynamic conditions for the formation of metastable strange quark
droplets (“strangelets”) in relativistic nuclear collisions. We point out a very rich structure of the
phase diagram both at zero and nonzero temperature, and study the dynamical trajectories through

this diagram taken by an expanding strange fireball.
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I. INTRODUCTION

The possible creation of droplets of metastable cold
strange quark matter (“strangelets”) in relativistic nu-
clear collisions, which was suggested by Liu and Shaw
(1] and Greiner et al. [2] following ideas by Witten (3]
and Farhi and Jaffe [4], has recently attracted a lot of
theoretical [5, 6] and experimental [7] interest due to its
potential of serving as a unique and unmistakable sig-
nature for quark-gluon plasma formation in the labora-
tory. While in the early Universe the slow expansion
allows equilibrium to be maintained with respect to the
weak interactions, which convert strange into nonstrange
quarks and vice versa in such a way that the free energy
is always minimized, the situation in heavy-ion collisions
is quite different: the short collision time scales suppress
weak processes, and strangeness has to be considered as
a conserved quantum number. This difference is crucial:
in the early Universe adiabatic § equilibration leads to
the “boiling off” of any strange quark matter lumps pos-
sibly created in the hadronization phase transition [8]; in
heavy-ion collisions, strangeness conservation, together
with the mechanism of “s-3 separation” during the phase
transition [9, 10, 2] and via surface emission of hadrons
[5, 6], opens the possibility that metastable strange quark
matter droplets could survive the expansion and cooling
stages of the hot collision fireball (2, 6].

To properly plan strangelet search experiments, real-
istic estimates of their formation rates would be highly
desirable. Unfortunately, existing calculations [2, 6] of
the dynamical evolution of the hot collision zone and of
its strangeness content are still rather schematic and do
not even allow to reliably predict the correct order of
magnitude. One of the reasons is the strong sensitivity
of the relative stability of the strangelets and of their de-
cay rates on model parameters such as the bag constant
[2, 6]. On the other hand, too little is still known about
the phase structure of strange matter and the thermo-
dynamic path followed by the fireball through the phase
diagram during the expansion and cooling stage.

In this paper we present a comprehensive and careful
study of the phase structure of cold and hot strange mat-
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ter, which uncovers a rich structure in the strange sector
of the phase diagram and thus supplements the partial
knowledge on this subject documented in [2-6]. While in
this work we do not yet attempt to also improve on the
calculations for the dynamical evolution of the collision
zone, we believe that the work presented here can serve as
a complete and reliable thermodynamic basis for such cal-
culations in the future. The way in which we present the
results leads to an intuitive understanding of the condi-
tions which have to be met in order to dynamically create
cold strange quark matter. They helped us (and hope-
fully will do the same for the reader) to understand the
results obtained in [2, 6], and they should provide useful
consistency checks on future dynamical calculations.

We begin our discussion in Sec. II with a short sum-
mary of the equation of state which we employ. Sec. III
is dedicated to a detailed discussion of the phase struc-
ture at zero temperature. It exhibits some very interest-
ing and unexpected structures which to our knowledge
have so far escaped notice. In Sec. IV we extend the
phase diagram to nonzero temperature and show, in the
three-dimensional space spanned by the temperature and
the two chemical potentials associated with baryon num-
ber and strangeness, the regions of phase coexistence for
systems with varying degrees of strangeness. In Sec. V
we discuss the expansion trajectories of hot and dense
strange systems through the phase diagram. We will an-
alyze under which conditions the system will “get stuck”
in the phase coexistence region, thus never hadronizing
completely and giving rise to surviving (meta)stable cold
quark matter droplets. Section VI finally summarizes
our main results, while the Appendix provides the reader
with some useful expressions for the evaluation of the rel-
evant thermodynamic quantities.

II. THE EQUATION OF STATE
A. The quark-gluon plasma phase

The quark-gluon plasma (QGP) phase is assumed to
consist of free quarks and gluons. We will always set
as = 0 in the QGP phase; it has been shown in [11] that
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the effects of ay # 0 can to a large degree be absorbed
by a reparametrization of the bag constant B. We thus
take B as a phenomenological parameter which can vary
freely. We consider three quark species, i.e., massless up
and down quarks and massive (m, ~ 150 MeV) strange

J
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quarks.

All the thermodynamic variables can be easily ob-
tained from the thermodynamic potential Q. The pres-
sure P = —Q/V can be written in terms of temperature
and chemical potentials as
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Here B is the MIT bag constant which is needed to sim-
ulate the background confinement pressure; p, is the
light quark chemical potential and equals one third of
the baryon chemical potential, uq = up/3; and fis is the
chemical potential associated with the quantum number
strangeness. Since a strange quark carries both baryon
number 1/3 and strangeness —1, the chemical potential
for the strange quark, u,, can be written as ps = pq — fis.
The baryon number density is given by

1 /8P 1
pb-g(m)T—a‘(Pq"'ps) , (2)

where p, is the net light quark density while p, is the
net strange quark density (i.e., minus the strangeness
density) and given by

@@, o

or explicitly
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B. Hadronic matter

We consider hadronic matter as a weakly interacting
gas of pions, nucleons, and baryonic and mesonic reso-
nances. We add hard core repulsion, which is essential
for the existence of a phase transition in our model, via
a proper volume correction. The expression for the pres-
sure is

— 1 pt
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Here d; is the degeneracy factor, and the superscript “pt”
denotes the thermodynamic expressions for pointlike par-
ticles. The chemical potential of each particle ¢ is written

1
+ eﬁ(E"H‘q_ﬂs) -+ 1 ' (1)

as a combination of pg and pg:
(M

where (n? —nJ) is the net number of light valence quarks
and (n{ —n?) is the net number of strange valence quarks
contained in hadron species <.

The factor (1 + ePt/4B)~! is the proper volume cor-
rection [12] and limits the energy density to 4B, i.e., the
value inside a hadron according to the MIT bag model.

Using the relations (2) and (3), we can derive equa-
tions for the baryon and strangeness density. Through
the above relation between the chemical potentials, the
baryon density is related to the particle densities pft by

=2 b, ®)
[3

where b; is the baryon number of ith particle species.
Similarly, the net strange valence quark density (i.e., mi-
nus the strangeness density) is given by

t __ pt
o5 ——E Sip;
)

where s; is the strangeness of the ith particle species. For
later use, pft is written down explicitly as

pi = (nd = nd)ug + (0§ —n)p,

(9)
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The physical densities are obtained from the point par-
ticle densities through a proper volume correction:

1 bt
Pi= Tyert/aB P - (1)

III. THE PHASE DIAGRAM AT ZERO
TEMPERATURE

The system we consider has finite strangeness and un-
dergoes (by construction) a first order phase transition
from a QGP phase to the hadronic phase. The equilib-
rium phase diagram can be obtained from the two-phase
equilibrium conditions Py = Pg, Ty = Tq, tq,H = Kqe,Q»
and pg g = Us,. By setting the temperatures and chem-
ical potentials in the two phases equal, this leads to the
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usual pressure balance relation between the two phases:

PH(T:anﬂs) =PQ(T7/'Lq’/"’s>- (12)

We parametrize the finite strangeness through the
strangeness fraction

_ Ps(Ty ,Uq>llfs)
pb(T7 Hq, .us) ’

i.e., the net number of strange (valence) quarks per
baryon (or minus the strangeness per baryon).

For various values of the strangeness fraction f,, we
can determine the phase diagram by solving Eq. (12) at
fixed T for ug, and ps under the constraint Eq. (13).

As pointed out in Refs. [9,10], the phase diagram with
strangeness needs a little caution. The phase transition
takes place through the mixed phase, which is a mixture
of the two phases, and is parametrized by the volume
fraction o = Vi /(Vu + V) as the system converts con-
tinuously from QGP phase to hadronic phase. For exam-
ple, @ = 0 when the hadronization starts, and o = 1 at
the end of the hadronization. The equilibrium conditions
should be applied at any point in the mixed phase with
the constraint that the system as a whole maintains the
given strangeness fraction f;. (It is not appropriate to
constrain a certain value of f, separately in each phase.)
This procedure causes a smooth variation of the chemical
potentials p, and ps during the conversion from QGP to
hadronic matter.

Using the equations of state in Sec. II, the phase dia-
gram is obtained numerically from Egs. (12) and (13).
However, in the limit T — 0 the solution of these
equations is a little tricky, and a careful analysis re-
veals many interesting facts as to which particles dom-
inate the hadronic phase at small T' for various values
of the strangeness fraction f;. This will be discussed in
Sec. ITIC.

fs (13)

A. The line of phase coexistence in the limit T' — 0

We will consider only systems with
positive baryon number and positive values of fs (i.e.,
more strange quarks than antiquarks, resulting in nega-
tive strangeness). With the help of Eq. (2) the condition
fs = ps/pp can be rewritten as

__fs
ps—3_fqu. (14)

From this one sees that for f; > 3, pg < 0. If the system
is in the quark phase, f; > 3 thus implies that the light
quark chemical potential p? becomes negative, and at
the beginning of hadronization nonstrange antibaryons
would then be more abundant than nonstrange baryons.
For fs = 3, Eq. (13) is solved in the quark phase by
,qu = 0, and the first hadronic bubbles appearing during
hadronization will contain equal numbers of non-strange
baryons and antibaryons. Since such an extreme situa-
tion appears hard to realize in nature, we will limit our-
selves to the region 0 < f; < 3.

The solution of the pressure equilibrium equation (12)
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FIG. 1. Phase structure at 7' = 0. The three solid curves

are the phase coexistence lines for B*/4 = 145,195, 235 MeV,
respectively. Inside the region defined by the thick solid and
dashed lines no hadrons exist at 7" = 0. This region is di-
vided into 6 small regions, where (as indicated) certain parti-
cle species dominantly contribute to fs at low temperatures.

yields a critical line ps(py) in the T = 0 plane which
separates the QGP from the hadronic phase. It is easily
evaluated using the analytic form Eq. (A1l) of the T =0
pressure integrals. Since at T' = 0 only fermions con-
tribute to the pressure, and only do so if their chemical
potentials satisfy p; > m;, only very few particles play
a role on the hadronic side. In fact, if the light quark
chemical potential drops below p, = mpy/3 before p,
has reached the limit for a nonvanishing Fermi sea of hy-
perons, s > ma — 2/, the hadronic pressure collapses
to zero at this point, and in the region pg < my/3 the
pressure balance equation degenerates to the equation
Py =Py =0.

The resulting phase coexistence line at T' = 0, for f;
in the range 0 < f; < 3, is shown in Fig. 1 for three
values of the bag constant, BY/* = 145, 195, and 235
MeV, respectively, which roughly span the range usually
considered as realistic.! The phase coexistence line at
T = 0 for a specific value of f,; corresponds to a certain
section of these lines, as will be discussed in detail later.

The phase coexistence line shows characteristic kinks
and discontinuities which require a careful discussion.

For Bl/4 = 145 MeV, the phase coexistence line lies
entirely in the region puqy < mpy/3 where at T = 0 no
baryons survive. Thus the pressure in the hadronic phase
is zero, and the phase coexistence line is identical with
the curve Py = 0. Note that for Py = 0 the quark matter
is in mechanical equilibrium with the outside vacuum
pressure (B) and cannot expand; i.e., the QGP phase
15 mechanically stable. Since in this case this condition is
satisfied everywhere on the phase coexistence curve (i.e.,

!The other lines shown in Fig. 1 will be explained in
Sec. IIIC.
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for all values of f,), weak interactions which change f;
have no influence on the stability of the quark matter, i.e.,
in this case cold (strange and nonstrange) quark matter
is absolutely stable.

For BY/* = 195 MeV, there occurs a kink at p, =
mn /3, i.e., at the point where the pressure in the hadron
gas becomes zero. All points on the critical line to the
left of this value have again P = 0, i.e., correspond to me-
chanically stable quark matter with finite net strangeness
fs (see Secs. IIIB and IIIC). In this case weak interac-
tions could, in principle, move the system along the phase
coexistence region towards the right by reducing f, until
it reaches f; = 0 and begins to hadronize into a non-
strange hadron gas. Thus in this case strangelets would
in general only be metastable (i.e., stable with respect to
strong interactions, but not with respect to weak interac-
tions). In the region p; > my/3 the pressure along the
critical line is a continuously rising function of 4 until p,
drops below the strange quark mass m,. At this point the
phase diagram shows for all values of B another disconti-
nuity, which will be discussed in the following subsection.

Please note that a given pair of numbers (g4, 45) cor-
responds to different values of f; in the @ and H phases,
respectively, since the densities pgq, ps behave discontin-
uously in a first order phase transition. Hence, as o
changes from 0 to 1 during the hadronization, f,; changes
continuously if (g, us) are held fixed. In other words,
for hadronization at constant f,, the variables (uq, s)
evolve continuously, generating a trajectory in the phase
diagram. In the mixed phase these trajectories follow for
a while the phase coexistence line. This is seen in Figs. 2
and 3, where lines of constant strangeness fraction f; at
T = 0 are shown for BY/4= 195 and 235 MeV, respec-
tively. Details of the (fs=const) lines in each phase will
be discussed later.
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FIG. 2. Lines of constant strangeness fraction fs; for

B4 = 195 MeV. All trajectories with f; > 0 eventually
end up in a mixed phase at zero pressure, corresponding to
mechanically stable cold strange quark matter droplets. For
a detailed discussion see text.
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FIG. 3. Same as Fig. 2, but for B/* = 235 MeV. For this
bag constant the phase coexistence line stays outside of the
thick solid line in Fig. 1, and quark matter droplets with arbi-
trary strangeness content hadronize completely by expansion.

B. The boundary between QGP and mixed phase
in the limit T — 0

At the boundary between QGP and mixed phase (“QM
phase boundary”), i.e., for & = 0, all matter is still in the
quark phase, and thus fs; has to be evaluated using the
QGP expressions for the densities f; = ps,q/pp,0- We
will suppress the index @ in the following, but it will
always be implied in this subsection.

At T = 0 and for u; > m;, all the thermal integrations
can be done analytically (see Appendix A 3). For nonzero
values of f;, we obtain in this limit from p, = (2/7%)u3
and Eq. (14) the identity

ph =mi+apg, (15)

where a = [2f,/(3 — f,)]?/3. From this relation, it is easy
to check that for fs > 1 (@ > 1), us is always larger than
tq. For fo <1 (a <1), ps < pg when ps > my/+/1—a,
and ps > pg when pg < my/+/1 —a. This was used to
check the numerical results.

It is interesting to observe the discontinuous behavior
of us as a function of the strangeness fraction f,: In order
to have nonzero strangeness in the quark phase (f; >
0), us has to exceed m, for small values of 7. On the
other hand, for systems with zero strangeness (fs; = 0) us
vanishes identically at all temperatures T # 0 along the
QM phase boundary, in order to balance strangeness from
strange quarks and antiquarks. Hence it seems natural
to analytically continue this value us = 0 for f; = 0
also to T' = 0. Since, however, for yu; < m,, no strange
quarks remain in the QGP phase as T — 0, u (T = 0)
has then to jump from 0 to values larger than m, as soon
as the system acquires nonzero net strangeness f; > 0.
Similarly, ps(T = 0) jumps to values below —mg when
fs turns negative. Altogether, u,(T = 0) jumps by 2m;,
(namely from p; = —m, to ps = +m,) as fs passes in
the quark phase through zero from negative to positive
values. As seen in Fig. 1, for B/4 = 195 MeV this jump
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occurs at pug =~ 441 MeV.

The crossing points of f;=const lines from the QGP
phase with the critical line in Figs. 2, 3 show that, as f;
increases along the QM phase boundary, p, decreases and
s increases smoothly until the limit pg = 0 is reached
at fs = 3. This smooth variation of f; along the QM
boundary is seen explicitly in Fig. 4. [However, contrary
to the QM boundary, f,; at the hadron and mixed phase
boundary shows discontinuities, as will be discussed be-
low in Sec. IIID.]

Equation (15) holds also in the pure QGP phase and
can be used to understand the numerical results for lines
of constant f,; in the QGP phase shown in Figs. 2 and
3. The lines look nearly straight because a,ug is much
smaller than m? in Eq. (15). Since Eq. (15) is indepen-
dent of the bag constant B, the lines in Figs. 2 and 3
corresponding to the same values of f; are identical in
the. QGP phase.

C. Particle composition of the hadron gas near T' = 0
in the different regions of the pg -y, plane

In order to better understand the behavior of f; on the
hadronic side of the phase transition, it is necessary to
analyze the composition of the hadron gas at low temper-
atures before we discuss the hadronic and mixed phase
(HM) boundary in the following subsection.

(1) For kaons, which are bosons, Bose-Einstein con-

B'*=195 MeV

r (a)

1
1 0o A= T

100 200 300 400 50C

F (b) BY* =235 MeV

0 100 200 300 400 500 600 700
Hgq(MeV)

FIG. 4. Values of fs at the QM and HM boundaries along
the phase coexistence line for (a) B'/* = 195 MeV and (b)
B'/%* = 235 MeV. Please note in case (a) the discontinuous
behavior of f, as a function of 4 in the hadronic phase, which
accompanies the possibility of strangelet formation. The sin-
gularity of f, at small values of p4 is caused by kaon conden-
sation.
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densation occurs when ux = mg. Allowed regions for
the chemical potentials are

ps > g —myg (Mg = mg = 496 MeV), (16)
s < pg + MK (17)

At the borders of these regions, there will be finite den-
sities for K or K, respectively, in the limit T = 0. Our
idealized hadronic equation of state of pointlike parti-
cles does not exist outside of these borders; an exten-
sion beyond these limits would require the introduction
of particle-specific repulsive forces between the kaons [13]
rather than the across-the-board proper volume correc-
tion employed by us.

(2) For strange baryons, there are finite number den-
sities at T' = 0 when u; > m;:

A ts = —2pq + ma (mp = 1116 MeV), (18)
T ts > —2pq +my (my = 1189 MeV), (19)
=: ts > (—pq + mz)/2 (mz = 1315 MeV), (20)
Q: s >ma/3 (mo = 1672 MeV). (21)

In Fig. 1 we show these limits which separate regions
of finite and vanishing densities for the various strange
particle species in the limit 7" = 0: The thick solid line
is a combination of Egs. (16)—(21); it separates those re-
gions, in which no strange particles survive at all in the
limit 7' — 0, from those where at least one strange par-
ticle species has finite density at T = 0.2 A cold hadron
gas with f; > 0 and nonzero density can only exist to
the right of the thick solid line.

This has important consequences: If throughout the
region to the upper right of the solid line the pressure
in the quark phase happens to be larger than in the
hadronic phase (this is the case for B/ < 180 MeV,
see Fig. 1), strange quark matter with f; > 0 will be
the stable ground state at 7' = 0. A hypothetical cold
strange quark matter droplet created somewhere in the
upper right of Fig. 1 will expand due to its Pauli pressure,
following one of the fs=const trajectories of Figs. 2 and 3
until it reaches the phase coexistence line. At that point
it will begin to hadronize, thereby moving along the co-
existence line to the left until it reaches the kink, i.e., the
point at which the pressure vanishes. At this point the
expansion and hadronization process stops, and whatever
fraction a of quark matter is still left will stay there for-
ever. Thus, if the phase coexistence line at T' = 0 passes
through the region left of the thick solid line, strangelet
formation is (in principle) possible. If this is not the case
(i-e., if B is sufficiently large, B 2 208 MeV in our case),
strange quark matter will always hadronize completely
[2].
The thick dashed line in Fig. 1 includes also non-
strange particles: since for uy < my/3 no nucleons can
exist at T' = 0, the region left of the thick dashed line is

2Equation (19) is not shown since its validity automatically
implies Eq. (18), which is thus the stronger condition.
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completely empty of particles at T' = 0, and a cold hadron
gas of any type (fs = 0 or fs; # 0) can only exist with
non-zero density in the region right of this line. Thus,
if B is chosen so small that the phase coexistence line is
entirely in the region p, < my/3 (as seen in Fig. 1, with
our equation of state this is true for B < 148 MeV), then
even non-strange quark matter will be stable at T'= 0.

To the left of the thick dashed line particles only exist
at nonzero temperature. To understand the behavior of
fs (which is in this region given by a ratio of densities
which both vanish in the limit 7' — 0), we will now dis-
cuss which particles dominate as T' approaches 0. This
is done using the low-temperature expansion of the Bose
and Fermi distributions in the region p; < m; as given
in Appendix A2. Since in this limit only the leading
Boltzmann term (n = 1) of the expansion contributes,
it is quite easy to find out for each pair (4, 4s) which
particle species has the largest density: all densities go
~ exp[—B(m; — p;)], and one only needs to compare the
magnitude of (m; — p;).

(1) K dominates over A as long as s — pg — mg >
2pq + phs — ML

te < %(m,\ —mg) = 207 MeV. (22)

(2) A dominates over Z as long as 2ug + ps — mpy >
Hq + 245 — mz:

ts < g + 199 MeV. (23)

(3) E dominates over Q as long as g + 2pu, — mg >
3ps — ma:

fis < piq + 357 MeV. (24)

(4) K dominates over E as long as pus — ptg — mg >
,uq + 2[115 — m=:

s < —2uq + 819 MeV. (25)

(5) K dominates over Q as long as pus — g — mg >
3us — mq:

Ms < —%uq + 588 MeV. (26)

(6) K dominates over K as long as ps — fig — mg >
Mg — Hs —MK:

s = K- (27)

Finally, it will also be interesting to compare with nu-
cleons. _
(7) Nucleons dominate over K as long as 3ug — mpy >

Hs — Hg —MK:
s < 4pg — 443 MeV. (28)

(8) Nucleons dominate over A as long as 3y, — my >
s+ 2pg — ML

ps < g + 177 MeV. (29)

In this region A dominates over E and €2, so nucleons are
also more abundant than these multistrange baryons.

(9) Nucleons dominate over K as long as 3u, — my >
Hq — Hs —MK:

fts > —2f1q + 443 MeV. (30)

These results are drawn in Fig. 1 in thin short-dashed
lines. They divide the region below the thick lines into
6 smaller regions, where (as indicated) certain particle
species dominantly contribute to f,.

As strange particles we consider K (= K° + K™), A,
3, E, Q in the sector of negative strangeness, and K (=
K° + K) in the positive strangeness sector. Compared
to baryons, all antibaryons can be safely neglected in p;
or pp near T' =0, as long as f, < 3. Then

Ps = Pr +pa + ps + 2p= + 3pa — px - (31)

Since in the limit T — 0 for each point (uqg,s)
the hadronic phase is dominated by one single particle
species, it is (at least in the region to the left of the thick
solid line in Fig. 1) quite easy to figure out which value
fs is assumed:

Since nucleons possess no strangeness, the N-
dominated region corresponds to f; = 0. Similarly, the
A-, -, and Q-dominated regions correpond to f; = 1,2,
and 3, respectively. The K- and K-dominated regions
correspond to fs = 400 and —o0, respectively. Any other
values of f; have to correspond to lines separating these
regions in Fig. 1. For example, systems with f; = 2.5
have to be either on the line separating E from 2 or the
one separating E from K. A system with f, = 3 is either
in the 2-dominated region, or on the line separating =
from K (with equal = and K densities), or on the line
separating A from K (with twice as many K as A).

The resulting lines of constant f, in the hadronic phase
at zero temperature are shown in Figs. 2 and 3. We
see that, as a function of g and u,, fs behaves quite
discontinuously in the hadronic phase at T' = 0.

D. The boundary between hadronic and mixed phase
in the limit T — 0

The analysis of the previous subsection can now be
applied to the boundary between hadronic and mixed
phase (“HM phase boundary”), where o = 1 and f, has
to be evaluated with the hadron gas expressions for all
particle densities.

In Fig. 4, values for fs; are shown as a function of g
along the HM and QM phase boundaries. The discon-
tinuous behavior of f; in the hadronic phase reflects it-
self in the steplike function labeled H in Fig. 4(a) for
Bl/4 = 195 MeV. In contrast to this, f, behaves quite
continuously in the quark phase.

For B/4 < 180 MeV, the phase coexistence line never
crosses the thick solid line in Fig. 1 into the region with
finite A density. Systems with f; > 0, moving during
hadronization along the phase coexistence line towards
the upper left, thus automatically end up in the region
left to the thick dashed line of Fig. 1 where the pres-
sure is zero. They thus end in a mixed phase state with
mechanically stable quark matter droplets.

For BY/4 = 195 MeV, the phase coexistence line spends
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a short interval in the region with finite A density, but f;
never exceeds a value of about 0.174 there. In this case,
an expanding cold quark system with 0 < f; < 0.174
suffers a very strange fate: while it expands under its
Pauli pressure and begins to hadronize, it first moves
along the phase boundary until it reaches the region just
mentioned, at which point hadronization is complete. As
shown in Fig. 2 for the specific cases f, = 0.05 and 0.1,
further expansion occurs inside the hadronic phase along
an fs=const contour. However, the system soon reaches
again the phase coexistence line, i.e., quark matter bub-
bles again begin to grow inside the hadronic phase. The
system then expands along the phase coexistence line un-
til it reaches at py = mpn /3 the region of zero baryon den-
sity where the hadronic pressure is zero, thus ending up
in a state where part of the matter remains in the form of
mechanically stable strange quark droplets (strangelets).
For this value of B, cold systems with f; > 0 thus never
possess a stable pure hadron phase; such a state will ex-
pand, and some part of the material will spontaneously
convert back into quark matter.

In order for cold systems with finite strangeness to be
able to hadronize completely, the phase coexistence line
should stay outside the thick solid line in Fig. 1. As
mentioned above, the minimum value of the bag con-
stant, for which this occurs with our equation of state, is
B/% ~ 208 MeV.

In Fig. 4(b) we show the behavior of f; along the phase
coexistence line for B1/% = 235 MeV, i.e., a bag constant
above this critical value. Now the behavior of f; is con-
tinuous both in the quark matter and hadronic phase,
because the particle composition in the hadronic phase
at T' = 0 changes continuously in the region outside the
thick solid line of Fig. 1.

As seen in Fig. 1, for B1/4 2 180 MeV the phase coex-
istence line reaches at low values of ug the threshold for
K condensation in the hadronic phase. At this point f,
goes to infinity, as can be seen in Fig. 4. Since for the
ideal hadron gas which we employ (and which does not
specifically include repulsive interactions between kaons
[13]) the region left of the line p, — g = mg is forbid-
den, this implies that for sufficiently large values of B
and strangeness fractions near f; = 3 the chemical po-
tentials behave in a discontinuous way during hadroniza-
tion, jumping from near the u, axis directly to the an-
tikaon condensation line. An analogous phenomenon
with kaons, which occurs in strangeness neutral systems
at low temperatures near the g, axis, if B is sufficiently
large, was observed in [10]. Thus, if conditions are such
that the strangeness of the system can in the hadron
phase only be absorbed by an (anti)kaon condensate, the
Gibbs condition requiring continuity of the chemical po-
tentials cannot be satisfied. Fortunately, it appears very
unlikely that such conditions can be reached in a heavy
ion collision, and therefore we will not deal with this
problem any further.

E. Strangeness neutrality near T = 0

To complete this section, we will discuss the HM phase
boundary near 7' = 0 for strangeness-neutral systems
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(fs = 0). This is necessary because there is a discontinu-
ity of ps in the hadronic phase as strangeness is added
to a strangeness-neutral system, in a similar way as for
the quark phase (see Sec. III B). For B1/4 = 195 MeV, at
the HM phase boundary (g, ts) lies in the region domi-
nated by A’s and nucleons, and the negative strangeness
from the A’s can only be balanced by kaons. The ex-
act location of the critical pg-u, line at T' = 0 depends
on the choice of B, and larger values of B will shift it
to larger values of pu, and/or ps. As p, increases we go
in the hadronic phase from the K — K dominated region
through the K — A dominated region, eventually reaching
the region with finite hyperon density at 7" = 0. In this
latter region strangeness neutrality at 7' = 0 can only be
ensured by the presence of a K condensate.

As discussed in [10], the line of zero strangeness in the
hadronic phase is given by

#s = #q (32)

for pg < (ma — mg)/3, ie., in the region where the
system is dominated by kaons and antikaons, and by

s = —%uq + 310 MeV (33)

for (ma — mg)/3 < pg < (ma + mg)/3. Finally, for
g > (ma + mg)/3, the kaon condensation threshold is
reached [u; is large enough to support a finite density of
A’s at T' = 0, whose strangeness can only be balanced by
a kaon condensate, see Eq. (16)]:

Hs = g — MK .

The heavier multistrange baryons play no role in the
strangeness balance for zero-temperature f; = 0 systems
since they are always dominated by hyperons.

The combinations of these three conditions for f; =0
are also shown in Figs. 2 and 3.

IV. THE PHASE STRUCTURE
AT FINITE TEMPERATURE

To obtain the phase diagram at finite temperature,
Eq. (12) together with the constraint Eq. (13) have to
be solved numerically. In the (T, uq, ts) space, the phase
coexistence region describes in general an igloolike sur-
face. By fixing the strangeness fraction f, one cuts a
strip from this surface; this is shown in.Figs. 5(a)-5(f) for
B1/% — 180 MeV and various values of f;. The strip cor-
responding to the phase coexistence region is projected
on each of the three coordinate planes. The intersections
of the whole igloo with the coordinate planes are also
shown as dashed lines for orientation.

If a system with f; = 0 hadronizes at fixed tempera-
ture, pq stays nearly constant while u, increases rapidly,
cutting a nearly vertical strip from the lower part of the
igloo wall [10]. As f, begins to take on positive values,
1tq also begins to change appreciably during hadroniza-
tion, usually decreasing from larger initial values in the
quark phase to lower final values in the hadronic phase.
As one approaches the extreme value f, = 3, however,
this tendency reverses: in the quark phase the net quark
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excess (i.e., the net baryon number) is purely strange,
and at the onset of hadronization the baryon chemical
potential pg, is zero, building up to positive values dur-
ing hadronization [see Fig. 5(f)]. For intermediate values
of fs (> 2), we observe a turning over of the magnitude
of pg during hadronization: in Fig. 5(e), uq is larger at
the quark boundary than at the hadron boundary, if the
temperature is small, while at high temperatures the sit-
uation is exactly opposite.

V. ISENTROPIC EXPANSION OF STRANGE
MATTER DROPLETS AND FORMATION
OF COLD STRANGELETS

In this section we discuss the implications of the struc-
ture of the phase diagram, as it was discussed in the two
preceding sections, for the expansion trajectories of hot
and dense strange systems. This allows us to analyze the
conditions under which the system will “get stuck” in the
phase coexistence region, i.e., not hadronize completely,
giving rise to surviving (meta)stable cold quark matter
droplets. We will not embark here on a fully dynamical
investigation of the fireball expansion, which should in-
clude, at the very least, the effects of surface evaporation
(which can change the entropy and strangeness content
of the system (2, 5, 6]) and the kinetics of the freeze-out

140. h .
HqfMeV) T (Mev)
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FIG. 5. The phase diagram of strongly
interacting matter in (T, pq,ps) space for
B'/4 = 180 MeV. The igloo-type surface de-
scribes the phase coexistence region (mixed
phase) between quark matter (outside) and
hadronic matter (inside). Figures (a) through
(f) show various sections through this sur-
face corresponding to systems with fixed
strangeness fraction fs;. Also shown are the
projections of the mixed phase region onto
the three coordinate planes.

400

process; instead we will try to obtain first qualitative in-
sights by assuming smooth hydrodynamic expansion at
constant entropy S/A and strangeness fraction f;.

In Figs. 6 and 7 we show isentropic expansion trajecto-
ries through the phase diagram for B/¢ = 180 and 235
MeV, respectively, for various strangeness fractions f,.
The representation differs from those in the previous sec-
tions in that we now use a two-dimensional projection of
the phase diagram, with the baryon density pp (T, tg, tts)
on the horizontal and the temperature on the vertical
axis. In this representation, even for strangeness-neutral
systems the mixed phase corresponds to a rather wide
gap separating the quark and hadronic phases; this is due
to the discontinuity of pp in the first order phase tran-
sition. For systems with nonzero strangeness, however,
the mixed phase becomes even more prominent; for the
specific case of a bag constant B1/4 = 180 MeV, which is
shown in Figs. 6, it extends, for a large range of temper-
atures below T, ~ 123 MeV and for all nonzero values of
fs, all the way to zero baryon density.

After the elaborate discussion of the zero tempera-
ture limit in Sec. III, the reason for this is clear: for
B'/* = 180 MeV, the T = 0 phase coexistence line runs
always to the left of the thick solid line in Fig. 1 where at
T = 0 no strange hadrons exist. Systems with finite net
strangeness f; > O therefore can reach zero temperature
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FIG. 6. Isentropic expansion trajectories
and pion freeze-out in the (7', ps) plane for
various f, values, for B4 = 180 MeV.
Curves at low specific entropy S/A, which
do not exit from the mixed (M) into the
hadronic (H) phase, indicate strangelet for-
mation. Pion freeze-out is indicated by full
and open circles for fireball radii of 4 and 8
fm, respectively.
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only by infinitely expanding to zero baryon density.

At non-zero temperature there exists a sometimes
small, but finite gap of (strange) hadron gas between the
T axis and the mixed phase. If the expanding quark-
gluon plasma reaches this region, it hadronizes com-
pletely. The curves in Figs. 6 show that, depending on
the entropy content of the system, this does not always
occur: for large values of f, and/or low values of S/A
the system stays inside the mixed phase all the way to
T =0, pp = 0.2 This phenomenon sets in quite discon-
tinuously as the system acquires finite strangeness: while
for f; = O the fireball always completes the hadroniza-
tion process [see Fig. 6(a)], already at f; = 0.1 all sys-
tems with S/A < 3 follow expansion trajectories which
get trapped inside the mixed phase.

For BY/4 = 235 MeV, on the other hand, the baryon

8Since at T' = 0 the entropy density vanishes, systems with
finite specific entropy can reach zero temperature only by ex-
panding to zero density and infinite volume.

05 06 07

density at the HM coexistence line is always nonzero
(see Fig. 7), and an isentropically expanding fireball will
therefore always hadronize completely. The formation of
cold strangelets is thus impossible for such a large value
of the bag constant.

Thus, within the context of isentropic, hydrodynamic
expansion, the formation of cold strangelets requires a
sufficiently low value for B and the expanding fireball
to either possess a large strangeness fraction f, or a low
specific entropy [2]. As pointed out in Ref. [2], this is
not necessarily a requirement for the initial conditions of
the collision fireball, but these characteristics can, under
certain conditions, be acquired dynamically, via parti-
cle radiation from the surface of the fireball in the early
expansion stages. Despite the first attempts reported
in [2, 5, 6], however, a convincing dynamical simulation
of these phenomena does not yet exist, and we hope to
return to this problem at a later point. If we assume,
for example, B/4 = 180 MeV, we see from Fig. 6 that
without an efficient loss of specific entropy (i.e., entropy
radiation without loss of baryon number) the fireballs
from present-day heavy-ion collisions at the Brookhaven
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Alternate Gradient Synchrotron (AGS) or CERN Super
Proton Synchrotron (SPS), which have been estimated to
possess specific entropies in the region between S/A = 15
and 30 [14], would have to acquire a strangeness fraction
fs 2 2 to make strangelet formation possible. For smaller
bag constants* lower values of f, might be sufficient [2].

In Fig. 8 we summarize these findings by showing, for
B/4 = 145 and 195 MeV, respectively, the maximum
specific entropy S/A compatible with the formation of
cold strangelets, as a function of the strangeness frac-
tion fs in the fireball. While for the low value of B the
window in S/A for strangelet formation is appreciable
even for moderate strangeness fractions, in the case of
the larger value for B the conditions on S/A are so re-
strictive that strangelet formation in nuclear collisions of
the type presently studied appears quite unlikely. A de-
tailed dynamical study of the fireball expansion would be
needed, however, to make this statement more quantita-
tive.

Of course, hydrodynamic expansion all the way to
T = 0 is not a realistic assumption, since for sufficiently
low temperature and density the mean free paths of the
hadrons become larger than the system size, and the

“Note, however, that with our equation of state B1/4 2 150
MeV is required to ensure the stability of cold nonstrange
nuclear matter against conversion into quark matter.

FIG. 7. Same as Fig. 6, but for B/* =
235 MeV. In this case all isentropic expan-
sion trajectories exit again from the mixed
phase, i.e., the fireball hadronizes completely
irrespective of its specific entropy.

hadrons decouple. The point where this happens can
be estimated from the condition [15]

A =R, (34)
where
<Uj>thermal
Aj = 35
T Y i{0i5Vij) thermalPs (35)

is the mean free path of particle species j in a thermal

50
B" % =145MeV
40
30|
S/A
20
10 8% =195 Mev
o T T N T S B N
o] 7.0 3
f.

FIG. 8. The critical specific entropy for strangelet forma-
tion as a function of the strangeness fraction in the fireball,
for two values of the bag constant. Only fireballs with S/A
below these lines have a chance to produce surviving cold
strangelets.
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system, and R is the fireball radius. The sum in the
denominator is over all the particle species in the fireball,
weighted with their respective densities and interaction
cross sections. We have evaluated Eq. (35) for pions as
described in [15], and solved Eq. (34) for two fireball
radii, 4 fm and 8 fm, respectively. For illustration, the
corresponding freeze-out points are indicated by circles
in Fig. 6.

For those trajectories in Figs. 6 which do not exit
from the mixed phase, the computation of the “freeze-
out point” where the hadrons outside the quark matter
bubbles decouple is less straightforward. In general it
requires a detailed geometrical and dynamical picture.
Inclusion of the freeze-out phenomenon is, however, very
important, since at this point the pressure equilibrium
between the two phases is broken, and further cooling and
hadronization will occur by blackbody radiation from the
remaining plasma droplets [5] rather than by equilibrium
phase conversion as assumed in our figures. This will be
the subject of future work.

VI. SUMMARY AND CONCLUSIONS

We have presented a detailed analysis of the phase
structure of cold and hot strange matter, which uncov-
ered a rich structure in the strange sector of the quark-
hadron phase diagram. Its purpose is to serve as a com-
prehensive and reliable thermodynamic basis for future
dynamical studies of strange quark matter creation in
relativistic nuclear collisions.

The thermodynamic criterion for stability of cold
strange quark matter against hadronization can be
phrased as P = Py = 0 within the region of phase
coexistence; near T' = 0 this is equivalent to u; < m; for
all hadronic particle species in the hadronic subphase.
This condition for stability of cold strange quark matter
strongly depends on the model parameters (in our case
the bag constant).

Using the simple model assumptions of isentropic ex-
pansion and equilibrium hadronization, we have esti-
mated the regions in parameter space where hot and
strange quark matter could (via expansion) end up within
these regions of stability, thus giving rise to strangelet
formation. Thermodynamic equilibrium considerations
show that strangelet formation requires relatively large
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net strangeness charge combined with low specific en-
tropy. For increasing bag constants, the window for
strangelet formation closes above B1/4 = 200 MeV. Since
the stability of cold, nonstrange nuclear matter against
quark droplet formation requires B4 2> 150 MeV, the
parameter range for strangelet formation is not very
large. Whether the relevant regime for the thermody-
namic parameters S/A and f, can actually be reached
in heavy-ion collisions must be decided on the basis of
future detailed dynamical studies.
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APPENDIX A: EVALUATION OF THERMAL
INTEGRALS IN THE LOW-TEMPERATURE
LIMIT

1. Low temperature, u; > m;

The integrals to be evaluated in the low T limit are of
the form

_ [T _JE)

At low temperatures, and for u; > m;, the Fermi dis-
tribution under the integral approximates a 6 function
and thus can be expanded around this limit [16]. One
finds [16]

Hi ﬂ.2 f/ 77r4 f’”
I= f(E)dE + — = + — =1

mi 6 (2 360 B4
where the derivatives of f are taken with respect to F
and evaluated at E = p;.

For the pressure integration f(E) = (E?—m?)%/2?  and

+ N (A2)

© (E? - m%)gﬂ AP, 2\3
RSl WA = _ m?2)3/2
/ A 1 4= | (E® —=m;)*?dE
2 1 2 o1 7t 1 p(2u? — 3m?)
T L2 - m2y/2 T 2 Bk = Oomy) A3
+ 2 ﬁZﬂ"L(ﬂ‘z mz) 120 ﬁ4 (u?_m%)S/Z + : ( )
For the density integration f(E) = E (E? —m?)1/2? | and
e8] E(E2 _ m?)1/2 i
LB =mi) e 2, 2\1/2
., A 41 4P= [ BE -m) tdE
+7r_2 1 2uf-3mi | 7rt 1 m} + (A4)
e e vl ) T
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2. Low temperature, p; < m;

When u; < m;, we expand 1/(e® £ 1) = e~*/(1 £ e~%) into a power series in e~® and integrate.

I = < f(E) dE = i(:F)n+1 ® f(E) e~ "B(E-w) B (A5)
mi eﬁ(E—I»‘i) +1 — s .

The pressure thus becomes

d; 00 (Ez _ mz)s/z d; (:F)n +1 B

= S T E =53 \2 Ka(nfm;) enPhi (A6)
and the density

d; o E(E2 _ m%)l/Z (-_-F)'n+1 B

33 |, e 4= ,rz;sZ Ka(nfma) ", (A7)

where Ko(nfBm;) is the second order modified Bessel function.
In the limit T' — 0 (8m; — 00), the asymtotic form of this Bessel function is

i 1
. —nfBm;
Ko(npm;) — ,/—2 T e . (A8)

When p; < m;, the above series converges rapidly in the limit 7' — 0, and higher order terms can be neglected.
Keeping only the first (Boltzmann) term with n = 1, we have, for m; > u;,

3/2 4
P=d; [ 24 L —Bmi—po) (A9)
1 2 27Tﬁ ﬁ k)
3/2
P / o—Bmi—ps) (A10)
“\2np

3. Zero temperature

For completeness, we evaluate the Fermi integrals at 7' =0 for u; > my, ie., for ; = pi/m; > 1:

d.
Py [ (B2 = m®/2ap

d.
= ﬁz-m? [ln (wz +4/x2 — 1) —ziJT2 -1+ %—xz (z? - 1)3/2 ; (A11)

di * 2 2\1/2
mq

d.

= md (a7 - 1) ; (A12)
di 2 (2 2y1/2

€i=33 E (E2 —m2)Y2dE

d.
= 16;2m§ {— In (xi +4/xZ - 1) +zi4/2? — 1+ 2z (27 — 1)3/2] (A13)

At T = 0, bosons do not contribute to the pressure. They do contribute to the energy density if a Bose condensate
exists:

eboson boson

i =m; p; ) (A14)

where pPos°n is the density of condensed bosons. The expressions for £ are needed for the Hagedorn proper volume
correction factor.
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FIG. 5. The phase diagram of strongly
interacting matter in (T, pq,ps) space for
B'% = 180 MeV. The igloo-type surface de-
scribes the phase coexistence region (mixed
phase) between quark matter (outside) and
hadronic matter (inside). Figures (a) through
(f) show various sections through this sur-
face corresponding to systems with fixed
strangeness fraction f,. Also shown are the
projections of the mixed phase region onto
the three coordinate planes.
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FIG. 6. Isentropic expansion trajectories
and pion freeze-out in the (T, ps) plane for
various f, values, for BY* = 180 MeV.
Curves at low specific entropy S/A, which
do not exit from the mixed (M) into the
hadronic (H) phase, indicate strangelet for-
mation. Pion freeze-out is indicated by full
and open circles for fireball radii of 4 and 8
fm, respectively.
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FIG. 7. Same as Fig. 6, but for B'/* =
235 MeV. In this case all isentropic expan-
sion trajectories exit again from the mixed
phase, i.e., the fireball hadronizes completely
irrespective of its specific entropy.



