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Remarks on flavor-changing neutral currents in walking technicolor
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We point out that since the running coupling c7(q ) in walking technicolor (WTC) can be rather strong
at the extended technicolor (ETC) scale q -AETc, the standard consideration of Aavor-changing neutral
currents (FCNCs) in WTC based on the lowest order in perturbation theory in a is not fully conclusive.
We reanalyze this problem and conclude that FCNCs can indeed be suppressed in WTC if ETC interac-
tions are chosen in an appropriate way. The crucial point is that the factor of enhancement of the
masses of pseudo Goldstone bosons in WTC is just that which is sufficient to suppress FCNCs. FCNCs
in the so-called strong ETC are also briefly discussed.

PACS number(s): 12.50.Lr, 11.30.Qc, 11.30.Rd, 12.15.Mm

Walking technicolor (WTC) [1] was proposed as a pos-
sible resolution of the flavor-changing neutral current
(FCNC) problem [2] in the extended technicolor (ETC)
scenario [3] for electroweak symmetry breaking. It has
led to a recent resurgence of model building in ETC [4,5].

The dynamical toy model that WTC is based on is the
quenched planar gauge theory with a nontrivial ultravio-
let stable fixed point a=a., —1 and a large anomalous di-
mension y = 1 of the composite operators FF and Fy 5F
(F,F are technifermion fields) [6,7]. The conventional
viewpoint is that such a large y is responsible for an
enhancement of the ordinary fermion masses without
(and this is crucial) a simultaneous enhancement of
FCNCs.

The purpose of the present note is a critical examina-
tion of this conventional wisdom. The point is the fol-
lowing. The conclusion about the absence of the
enhancement of FCNCs in WTC is based on the analysis
of the famous box diagrams leading to M -M mixing0 —0

I

(M =K, D, or B mesons) (see Fig. 1). However, these
diagrams correspond only to the lowest order in pertur-
bative theory in the technicolor (TC) coupling. While
this approximation is justified in the case of QCD-like dy-
namics with a small running coupling ct(q )~, , &&1

+ETC

(AETc is the ETC scale), it is unclear why it is also ap-
propriate for WTC with the walking coupling
cr(q )~ 2 ~2 being rather strong: a(q )~ 2 & &a, —1.

+ETC +ETc C

To the best of our knowledge there has never been a fully
conclusive analysis of this problem.

In the present work, we shall analyze this problem and
the conditions under which the absence of the FCNC
enhancement in WTC is guaranteed. In the low-energy
region (q «AETC), the general form of ETC interactions
is [3]

L =LI.~ +LL,I. +LR~,
with

. [u;Ly„Ukt. +d; y„DkL][1',J „Uk/ty„u~/i+I, ', „Dktt y„dJJ/ ]
+ETC i,j =1 r= 1 k=1

+[VLy/ Ukr+e/I 3 /DkL, ][I";z.„Uk/ty&vJ/i+ I';z „Dktt y&eJJ/ ]+H. .c.

' [u/I y„UkL, +d;I y„Dkt ][I,~ „UkL y„uJI +I,J „Dkt y„d&1 ]
ij =1 r=1 k=1

+ [v Ly UkL + Lye DkL ]['I i', Ukly v'I, +I '', DkL, y e ]+H.c. (3)

and an analogous structure for Ltttt. Here we consider three families of fermions, and n (1V„-dimensional) irreducible
representations of the TC group. The matrices I "'"' ', I "'"' ' are determined by ETC couplings and by the mass ma-
trix of ETC vector bosons.

Since the detailed structure of the matrices I, I is not essential for our purposes, we will use the following schematic
notations for LL+, LLL, and I zz .
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In the second order in gETc, one finds the amplitude leading to M -M mixing:

2 p&,pz d &d+T &y & pub pFxy F&F+ybFy - p, ,p
+ETC

(4)

where a, b =S,P, VL, Vz with pg=1 pp =1'gg

=yz(1 —ys)/2, y v =y&(1+ys)/2. The factor y in-

cludes Cabibbo-like mixing angles.
Neglecting SU(3), X SU(2)L X U( 1)r interactions, the

amplitude A can be rewritten as

~ = —.X, (2~) '&'(pi+p~ —pi —p~)
ETC

X u (p i )y, u (p2 )u (p2)ybu (pi )h, b(p i +p2 ),

where

b,,b(q) =—f d xe'i (0~ T[F(x)y,F(x)F(0)ybF(0) j ~0),

(8)

and u (u ), u+(u ) are wave functions of outgoing (in-
coming) quarks and antiquarks, respectively.

Thus, the problem is reduced to studying the propaga-
tor of the composite operators Fy, F in TC theory. The
general method for calculating Green's functions of com-
posite operators was elaborated on in Ref. [8]. We shall
use the technique discussed in this reference in the fol-
lowing.

One can show that the equation for b,,b(q) takes the
form [8]

d4k
b,,b(q)= —f Tr[G(k)1, (k, k+q)G(k+q)y&]

2l

+(q~ q, a~b), —

where G(k)=i[A( k)y. k —g(k )] ' is the technifer-
mion propagator and I, is the proper vertex connecting
the composite operator Fy, F with F and F:

i(0~T[F(x)F(y)F(z)y, F(z)J ~0) = f d k d p e '"'" '+'i'~~ 'G(k)I, (k,p)G(p) .
1

(2~)

The graphic representation of Eq. (9) is Fig. 2. The vertex 1,(k, k+q) satisfies the Bethe-Salpeter (BS) equation:

(10)

P.(I, ) &(k, k+q)=i(y, ) &+ E & s(k, k+q;r)[.G(r)I, (r, r+q)G(r+q)] &,
(2ir )

where E~p;&g is the BS kernel.
Since q =(p, +p2) «Arc«AErc,2= 2 2 2

approximation b, ,b(q) =A,b(0).
The crucial point for FCNCs is that the Green's func-

tion b,,b in Eq. (9) is quadratically divergent in a free field
theory. Then A,b-A&Tc and therefore the amplitude 2
(7) is A —1/AErc (and not A —1/AErc), which is the
well-known result for the box diagram in perturbation

I

theory. This result leads to the usual bound AETc~ 100
TeV for fermions in the first two families. Notice that if,
naively, one were to consider the effect of WTC as an
enhancement factor (AErc/Arc) on top of the estimate
for a free field theory, the result would be disastrous since
then 2 —1/ATc and FCNC operators would be unac-
ceptably large. As we shall see this is not the case.

The question we want to answer is what is the behavior
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2I

F
f j

F + (q ~ -q, a ~ b)

FIG. 1. The box diagrams leading to M -M mixing. The
wavy lines correspond to ETC vector bosons. F stands for tech-
nifermion and f for ordinary fermion.

FIG. 2. Graphic representation of Eq. (8). See text.

of 6,b in WTC7 I et us start the analysis by considering
Eqs. (9) and (11) in QCD-like TC dynamics. Since we are
interested in finding the leading divergence in A, b which
appears from the uv region ~x

~
'))ATC, one needs to

determine the uv behavior (k ))Arc) of the vertex
I,(k, k).

Let us first consider the Green's functions b,,b(0) with
a, b =S,P. Assuming that TC interactions are vectorial,
one finds that b,,b (0)=5,b b,„.At k ))A~zc, the kernel
K &. & takes the following simple form in the Landau
gauge [9,10]:

E i3 S--. g ((k r) )(y ) (y—i)bg q(k —r),iC(F) 2 z

(2m) r

2)ln(k /ATC)j ', b is the first coeKcient of the tech-
nicolor /3 function, C(F) is the value of the Casimir
operator of technifermions, and d & is the technigluon
propagator d„&(p)=[g &

—(p,pz/p )]/p . In the lead-
ing logarithmic approximation [10] one can take
g ((p —k) ) as

g'((p —k )') =g'(p')&(p' —k')+g'(k')0(k' —p').

This is the so-called improved ladder approximation (see
Fig. 3).

The solutions of Eq. (11) with cuto6' A=AETC and
a =S,P then are' [8]

I (k, k)=iC (k ), I (k, k)=ir C (k ), (13)

where g is the running coupling g (k ) = [(b/ with

—
f 3C {,F) /8Mb j

Cz(k )-Z ' In
T2c

for k ))ATc, (14)

' —(3C(r)raab)
Cl, (k )-Z ' In

ATc

3C(F) {{FF) )2 I k2 —1+(3c(F)/8m b)

+g 2 2 2 2+Fb +Tc~.
,

k ~Tc
for k ))ATc, (15)

where XF is the dimension of the representation of the
TC group for F, Z ( lnA2ETC/A2 )

—
( c(f) ls db )

renormalization constant for the composite operator I'I',
and (FF )„„-ATC is the condensate relating to the scale
p=ATc. (FF)„„=Z (FF); g; means summation over
all pseudo Goldstone bosons.

The physical meaning of expressions (14) and (15) is
clear. C~ contains two parts: one corresponds to the per-
turbative contribution of technifermions and the other to
the nonperturbative contribution of the lightest tech-
nihadrons (the contribution of heavier technihadrons is
omitted). Since no light technihadrons are expected in

the s-channel, we retained only the perturbative piece in
Cs(k ).

Substituting I, (k, k) in Eq. (9), and noticing that in
this approximation A(p) =1 and X(p) is a monotonically
decreasing function of p, one can see that it is just this
perturbative (slowly decreasing) piece in I, that leads to
the quadratic divergence in b,„ in QCD-like theories.
Expression (15) for I ~ also implies that the contribution
of pseudo Goldstone bosons in b,il is suppressed (with
respect to the perturbative one) by the factor
ATc/m AETc. This, in turn, means that the condition

m~ ATc/AETc is sufficient to suppress FCNCs con-
l

FIG. 3. A typical diagram summed up in the improved
ladder approximation. The blobs represent the loop contribu-
tion in the technigluon propagator.

~The simplest way of obtaining these solutions is to use the re-
lations [8] C, (k )=OX(k )/Bm' ', C (k~)=X(k~)/m' ', where

X(k ) is the mass function of technifermions and m ' ' is an aux-
iliary bare mass of technifermions imitating explicit chiral sym-

metry breaking so that m = —2(FF)m '/ Frc(Frc —Arc is
the decay constant of pseudo Goldstone bosons).

~See Refs. [9,10] for the exact expression.
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nected with the exchange of pseudo Goldstone bosons.
Since AETc)) ATc, this restriction for I„ is rather mild.

I

The situation with the Green's functions h~ ~ and
L L

is even simpler: since the anomalous dimension of
R R

vector and axial currents is equal to zero, their depen-
dence on AETC should be similar to that in free theory
(quadratically divergent). Let us consider now FCNCs in
WTC. The main difference from the previous case is the
behavior of the running coupling g (k ): now it is a slow-

ly changing ("walking" ) function of the momentum. The
toy model [6,7] of such dynamics is the ladder approxi-
mation for the kernel:

K f3. s= 3 a(y ) r(y )s+„2(k r),— (16)
4 3

with a=g C(F)/4m being close to the critical value

a, =n/3 (for a justification of this approximation see
Ref. 11). Such a large value of a leads to a large anoma-
lous dimension y = 1 of the composite operators FF and
FysF [6,7]. It will be, however, useful to consider all
values of a from a =0 to a =a, =m/3, when

y = 1 —( 1 —3a /ir )
' is changing from zero to one.

First of all, we note that the anomalous dimension mani-
fests itself only in the Green's functions Ass and kpp' the
behavior of Az v and h~ v in WTC should be nearly

L L 8 R

the same as in the case of QCD-like dynamics.
Let us consider the Green's functions Ass and App.

The solutions of Eq. (11) with the kernel (16) are [com-
pare with Eqs. (14) and (15)]

2 ~rn /2

C (k')-ZS m
TC

for k2»AT2, , (17)

CF(k )-Z
&m /2

2
ATC

4 2y ((FF) )2
'

k2
' (y —2)/2

2 2 2 2
i FTCm vr;+F ATC ATC

(18)

( WTC) ( AF TC/ATC) m ( QTC ) (19)

where m „(WTC) and m (QTC) relate to WTC and
i l

QTC, respectively. ' It is crucial that this enhancement
factor in m (WTC) exactly coincides with the one that

l

appears in WTC as the result of the action of ETC four-
fermion operators leading to the explicit breakdown of

Strictly speaking one is not really allowed to use partially
conserved axial-vector current (PCAC) relations, as we did, to
derive Eq. (18) when Eq. (19) makes the pseudo Goldstone bo-
son too heavy. Our analysis only shows under what cir-
cumstances one does not run immediately into trouble with
FCNCs.

4The contribution of the pseudo Goldstone bosons to FCNC
processes can be simply estimated by assuming they couple to
light fermions with a Yukawa coupling of order mf/ATc and

using the relation mf = (FF ) /AEroi AEro/Aro)

with Z ' —(AETc/ATc) and y = 1 —(1—3a/m. )'/ .
Note that, unlike Eqs. (14) and (15), there are no loga-

rithmic factors in expressions (17) and (18). This is, of
course, due to the present approximation with a constant
A. —y /2

Concerning the perturbative piece (k /ATc) in

Eqs. (17) and (18), one can see that its contribution to 6„
exactly compensates the enhancement factor Z ' yield-

ing a final 1/AETc dependence as in the QCD-like case.
However, the contribution of pseudo Goldstone bosons in

happ dePends on AETC in an essentially different way from
that case. In fact, comparing this contribution with that
in QCD-like TC (QTC), one finds that the suppression of
FCNC's in WTC is sufficient if

~pp m~pp & ~SS m~SS (20)

[as is well known [14], there is no multiplicative renor-

I

chiral symmetry of technifermions (and therefore to the
generation of m ). [1]This enhancement mechanism was

j

used before to avoid problems with unobservable light
pseudo Goldstone bosons. What we have shown is that
just the same enhancement of m is sufficient to avoid

l

the problem with FCNCs in WTC.
Using experimental information on FCNCs in the

K -K system one can get a bound on the pseudo Gold-0 —0

stone boson mass, m„~ 05 TeV, where 8 is a Cabibbo-
type mixing angle. With 0-0.2, the pseudo Goldstone
boson mass is of order a typical technihadron mass. Such
a heavy mass for a pseudo Goldstone boson raises serious
doubts as to the validity of the chiral-Lagrangian ap-
proach for describing its dynamics in WTC.

Let us note that the case with y =1(a=a, ) is rather
special. In this case, the power of k in the perturbative
and nonperturbative terms in Cp(k ) (18) is the same
[12,13].This implies that one cannot clearly separate per-
turbative and nonperturbative physics in this case. The
reason for this is the following: while in QCD-like TC the
dynamics forming technihadrons is connected with the
infrared region wherein k —ATc, in WTC (with y = 1)
both infrared and ultraviolet regions with strong-
coupling dynamics are responsible for the formation of
technihadrons.

From a physical viewpoint it means that App can be
accurately approximated by the contribution of the light-
est technihadrons in WTC. From a formal viewpoint,
this implies the multiplicative renormalizability of
Green's functions of the local composite operators FF
and Fy5F [12]:
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malizability (MR) of these Green's function either in free
theory with Z =1 or in QCD-like dynamics. In both
cases, MR takes place only for Green's functions contain-
ing one composite operator and any number of elementa-
ry ones].

This point can be relevant for FCNCs in the so-called
strong-ETC scenario [15]. Since the coupling g ETC is
strong in that case, the present consideration treating the
ETC interactions perturbatively cannot be directly ap-
plied to such dynamics. The toy model of strong ETC is
the gauged Nambu —Jona-Lasinio (NJL) model [7] con-
sidered in the so-called ladder-bubble approximation
wherein the TC gauge interactions are treated in the
ladder approximation and the four-fermion interactions
(corresponding to ETC) are treated in the bubble approxi-
mation (see Fig. 4).

For our purposes one needs to know that in the gauged
NJL model, as in WTC, the contribution of the lightest
technihadrons dominates the corresponding Green's
function in the low-energy region (see the second paper in
Ref. [12]). This, in turn, leads us to the conjecture that,
as in WTC, the enhancement factor in m„will also be

1

sufhcient to suppress FCNCs in strong ETC.
We conclude that the FCNCs problem can be solved in

WTC if AETc~ 100 TeV (for the first two families) and

FIG. 4. A typical diagram corresponding to the ladder-
bubble approximation.

the ETC interactions contain four-fermion operators
leading to large enough masses for pseudo Goldstone bo-
sons. The %'TC dynamics provides just such an enhance-
ment factor in I which is sufticient to suppress

t

FCNCs. We have serious doubts whether chiral-
Lagrangian analyses can be applied to such pseudo Gold-
stone bosons. Although these conclusions are not new
[1,2], we feel they are now based on a self-consistent
analysis of a simple model of WTC.
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