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Universal evolution of Cabibbo-Kobayashi-Maskawa matrix elements
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We derive the two-loop evolution equations for the Cabibbo-Kobayashi-Masakawa (CKM) matrix.
We show that to leading order in the mass and CKM hierarchies the scaling of the mixings

I V„b I, I V,b I, I V,d I, I V„ I
and of the rephase-invariant CP-violating parameter J is universal to all orders

in perturbation theory. In leading order the other CKM elements do not scale. Imposing the constraint
A, b =A,, at the grand unified theory scale determines the CKM scaling factor to be =0.58 in the minimal
supersymmetric standard model.

PACS number(s): 12.15.Ff, 11.30.Er, 12.10.0m

The weak interaction quark eigenstates and the quark
mass eigenstates differ in the standard model as described
by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In
this paper we show that the scaling of the CKM matrix
follows a universal pattern to leading order in the mass
and CKM hierarchies: namely, the CKM mixing ele-
ments that involve the third generation and CP-violation
scale together, while the other components of the CKM
matrix do not scale to leading order. This makes it much
simpler to consider the form of the quark mixings at any
other scale, in particular, at the scale of a grand unified
theory (GUT). The common scaling is a model-
independent feature of the evolution, but the amount of
scaling can vary between theories.

The Yukawa matrices U and 0 can be diagonalized by
biunitary transformations

Udiag yI.U yR f
Q

Ddiag OLD yR)
d d

The CKM matrix is then given by

The Yukawa matrices evolve with energy scale as deter-
mined by renormalization group equations (RGE's). This
in turn determines an evolution equation for the "run-
ning" CKM matrix V(p).

The renormalization group scaling to leading order in
the mass and CKM hierarchies can be represented
schematically in the following way:

S„(p)k„(p)
U "s(MG)= 0 S„(p)A,,(p)

0 S, (p)A, ,(p)

Sd(p)4(p)
D "s(M )= 0 Sd(p)A, ,(p)

0 Sb(p)A, b(p)

E "s(M )=G

S,(p)k, (p)
0 S,(p)&„(p)

0 S,(p)&,(p)

I v.d I'(p)
I V., I'(p)

I V, I'(p)
I V„I'(p)

s(p) I v«l'(p) s(p)l v„l'(p)

s(p) I v.b I'(p)

s(p) I v,b I'(p)

I v,b I'(p)

where the scale p is the range m, ~ p ~ MG with MG the
GUT scale. The CP-violating rephase-invariant parame-
ter J

I I] also scales as J(MG)=S(p)J(p) to leading or-
der. We have defined our scaling factors to be unity at

the GUT scale, but one could equally well choose any
convenient scale.

The two light generation quark and lepton Yukawa
couplings evolve in a common manner determined by the
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gauge couplings and traces of the Yukawa matrices,
while the third generation Yukawa couplings receive ad-
ditional Yukawa contributions. This implies that the ra-
tios A, „/A, „A,z/A, „A,, /A. „do not evolve. The scaling pat-
tern in Eq. (7) violates unitarity of V, but only at sublead-
ing order. For example the relation

~ V„z ~

+
~ V„, ~

+
~ V„b~ =1 is violated by terms that are neglected to

leading order in the evolution of
~ V„z~ and

~ V„, ~
. The

elements
~ V„z~ and

~ V„, ~
must evolve to subleading or-

der to preserve unitarity. A practical strategy is to
evolve the small mixings X=

I V„„I, Y=
I V„,I,

Z =
~ V,b ~, and J which completely determine the other

entries in the CKM matrix.
In terms of t =in(p, /MG) the two-loop RGE's can be

written as

(x, I+xzUU +a„DD )+ x31+x&UU +xz(UUt) +b„DD +c„(DDt)
16~' 16~

+d„UU DD +e„DD UU U,

(x6I+x7DD +agUU )+ x8I+x9DD +xio(DD ) +bqUU +cg(UU )
16772 16m

+d&DD UU +e&UU DD D,

dE
dt

1 x„I+x,~EE +
~ [x,3I+x,4EE +x,5(EE ) ] E,1 2

16m 16m
(10)

where the coefficients x;, a;, etc. depend upon
the particle content of the theory and are functions
of the gauge and Yukawa cou lings, i.e.,
a;=a;(gi, gz, g3, Tr[UU ],Tr[DD ],Tr[EE ]) and
Higgs quartic couplings. The coefficients x; do not enter
into the running of the CKM matrix but do infi. uence the
diagonal quark Yukawa evolution; only terms involving a
factor of DD can rotate the U matrix, and only terms
with a factor of UU can rotate the D matrix. In the
minimal supersymmetric standard model (MSSM) the
other coefficients are

a„=a&=1,

In the standard model they are given by

a =a9

b„== —43g, + 96gz —16g3 —2A, + —,
' Y2(S),

bz = = —
Bog i + —,', g2 —16g3 —2A, + —,

' Y2(S),

Cu =cd —
4

1
d —d ———

Q d 4

e„=e&= —1,

(17)

(18)

(20)

(22)

b =—'g —Tr[3DD +EEt],
bz =—', g i

—Tr[3UU ),
c =c = 2

(13)

(14)

where

Yz(S)=Tr[3UU +3DD +EE"] . (23)

dg 2

e„=e&=0 .

(15)

(16)

The coefficients x; can be found in Refs. [2,3].
Following Ma, Pakvasa, Sasaki, and Babu, [4,5] we find

the CKM evolution equation

2dqA, A.p+e~(A, +A,p)

Xp
A. VpV Vp

d V; 1 A, ,-+A. k~+ Xp
', A,pV, ~V,~V,.+, g, , Z,'V,* V,.V,

16m p; A, ,
—A.

2d„k.;X +e„(A,, +k )

2 2 ~ 2 2 8 ~P~JO J~(16m ) pj~; A, ;
—k

(24)
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where where

b„+c„Ap1+
16m a„

bd+cd A,

1+
16~ ad

Xp Xp
The full evolution equations for X, F,Z, and J are given in
the appendix. Keeping only the leading terms in the
mass (A., /l„k„/A, „A,, /A, l„kd/1, , &(1) and CKM
(X,Z, J (&1) hierarchies, these equations simplify consid-
erably [3] and a universal scaling is found

(26)

Here i,j,k=u, c, t, . . . ; a,g,y=d, s, b, . . . . We hence-
forth restrict our considerations to the three-generation
case. I3efining the four independent quantities

param««
J=Im V„„V„V„*,V,'„which can completely ~p~~~fy a u»-
tary CKM matrix, the other elements are given by [5]

(adR, +a„Rb)+ (ed+e„)A,, Aq8' (16m )

(34)

E= [XYZ (1 —X —Y)(1—X —Z) —J (1—X) ]'i . (33)
(25)

/
V„„)'=1—X —Y,

[XYZ+ (1—X —Y)(1—X —Z) —2K]
(1 —X)

[XZ ( 1 —X —Y)+ Y!1 —X —Z) +2' ]
(1—X)

f
V„i'=I —X —Z,

[XY(1 —X —Z) + ( 1 —X —Y)Z +2K]
(1—X)

[X( 1 —X —Y)( 1 —X —Z) + YZ —2K]
(1—X)

(27)

(28)

(30)

(31)

(32)

d 8'2 =0,
dt

not need the mixing between the first two generations to
be small ( Y«1) which makes the universality an espe-
cially good approximation. To leading order it is only
necessary to include the third generation Yukawa cou-
plings in A, , and R~b. Notice that Eqs. (34) and (35) violate
unitarity of V, but only at subleading order. The solution
of Eq. (34) is

W, (MG ) = W, (p)S(p),
where S is a scaling factor defined by

M~
S(p)=exp —,I (ad&', +a„~b)+, (ed+e„)&',&b d»Jfl'

8'TT p (16~ )
(37)

MG

adX, p' dlnp'
16m p

This reduces [3,6] to the scaling factory (p) in the one-loop semianalytic treatment (neglecting A, b and A,,), with
T

y(p) =exp (38)

The general behavior of S (p) is determined by the sign of ad (and perhaps also a„ in models where tan@ is large). In the
standard model the scaling factors are greater than one since the one-loop coeKcients a„and ad are negative.

One might naively have expected there to be contributions to the scaling of the 8'& that are not proportional to 8'&,'

for example, a contribution to the running of
~ V„b ~

of the form X, ~ V,& ~
on the right-hand side of Eq. (34) can be of the

same order as the contribution X, ~ V„b ~
. We conclude that no such terms arise. We find the following RGE's for the

Yukawa couplings:

x, +X&A,, +a„g A,
~ V, ~

+ X3+X4A,;+X5A,;++ [b„A, +c„A, +( „d+e)X;X ]~ V,. ~
(39)

dX~
X6+X7A, +ad g A, , ~ V, ~

+ xs+X9A, +X,OA, +g [bdi, , +cd',; +(dd+ed )iL A, , ]~ V, ~
(40)

dA'

dt
0 1 2X[]+X)21 + [X/3 +X]4Ag +X]5Ag ]

16m 16m
(41)

where a =e,p, ~. Including only the third generation in the sums, these equations reduce to the leading-order expres-
sions for A, „A,&, A, yielding

Mg
S,(p) =exp I16

x, +X~A, , +a„Ab+ (X3+X4A,, +X5A, , +[b„kb+c„kt+(d„+e„)A,Ab ]) ding, ' (42)
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MG

Sb(p) =exp .
16~ p

+x &2+a &2+ {x +x9A2b+x, oAq+[bdA, , +cd', , +(dd+ed)Lb', , ]I ding' .
,6 7 b d 7 16 2 8 9 b 10 b (43)

MG
S (p)=exp.

16~ p
x +x tel, + [x)3+x)4A, +x)sA, ] dlnp11 12 7 (44)

respectively. For the first and second generations the
corresponding expressions are

1 M 1
S„(p,) =exp . x1+ x3 dlnp' . ,

16m p 16~
(45)

MG
Sd(p) =exp .

16~ p

1x,+,x, dlnp' -,
16~

(46)

MG 1S,(p)=exp f x&&+ x&3 ding, ' . . (47)
16m. p 16m

0.8

0.6
2

0.4

In Fig. 1 we show contours of constant S(m, ) in the
MSSM versus the values of the Yukawa couplings A,

7
and

kb at scale m, and also at the GUT scale. The contribu-
tion to the scaling from A,

7
can be traded off against the

contribution for A, b as indicated by Eq. (37). These con-
tours are shown versus m, and tanP in Fig. 2. The con-

I

tour satisfying the constraints mb(m&)=4. 4 GeV and
A.b(MG ) =A.,(MG) is plotted as well. The evolution equa-
tion for Rb& = A, b /k, at one-loop in the MSSM is given
by

dRb~ Rb~,
dt 16m

—g d, g,2+k, +3k,~
—3A,, (48)

where d, =( —4/3, 0, 16/3). For small tanP the bottom-
quark and ~ Yukawa couplings can be neglected, and the
scaling of Rb&, factorizes into scaling due to the gauge
couplings and the scaling factor S due to the top-quark
Yukawa coupling. Given a fixed gauge sector scaling, the
m contours and the contours of constant S coincide forb

small tanP. Note that mb ——4.4 GeV implies
S ( m, ) =0.5 8.

The numerical calculations performed here are similar
to those described in Ref. [3]. The input values are
a&(Mz) '=58.89, a2(Mz) =29.75, and a3(Mz)
=0.116 for the gauge couplings and mb(mb) =4.4 GeV,
m, (m, )=1.2 GeV, m, (1 GeV) =0. 15 GeV, md(1 GeV)
=0.008 GeV, m„(1 GeV) =0.005 GeV for the running
fermion masses. We take the lepton masses to be
m, = 1.7841 GeV, m„=0.10566 GeV, and
m, =5.1100X10 GeV. The GUT scale M& is deter-
mined as the scale at which unification of a, and a2 is
achieved. Given an input value for tanP the input masses
and the gauge couplings determine the Yukawa couplings
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FIG. 1. Contours of constant S' (m, ) in the MSSM are
shown for values of A, , and A, & at (a) p=m, and (b) p=MG. We
have taken a3(Mz) =0.116.

FIG. 2. Contours of constant S' (m, ) in the MSSM are
shown in the m„tanP plane for a3(Mz)=0. 116. The dashed
line is the mb(mb) =4.4 CxeV contour obtained from the GUT
scale condition A, b (MG ) =A,,(MG ). The X marks the spot at
which ~, (MG) =~b(MG) =k,(MG) for this mb contour. In the
small tanp region a linear relationship exists between m, and
sinP for each contour.
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at the scale m, . We integrate the two-loop RGE's for the
gauge and Yukawa couplings as well as the evolution
equations for X, Y, Z, and J given in the appendix. Our
results are not sensitive to the values of the first and
second generation fermion masses or to the input CKM
magnitudes

~ V,b(mt )~ =0.043,
~ V„b(m, )

~

=0.0045,
~ V„,(mt)~ =0.221, J(mt)=1.95X10 . For experimen-
tally acceptable values of the quark masses and CKM
matrix elements, the exact scaling as given by the equa-
tions in the appendix differ from the universal behavior
described by Eq. (34) by 5 0. 1%%uo.

A good approximation for evolving the CKM matrix is
I

to use Eq. (34) to evolve
~ V„b ~, ~ V,b ~, and J and leave

~ V„, ~
constant as in Eq. (35). Then calculate the remain-

ing magnitudes
~ V; ~

using Eqs. (27)—(32).
One can show that the universal scaling behavior de-

scribed by Eqs. (34) and (35) is maintained to all orders in
perturbation theory. However the quantitative effects of
the three-loop contribution are generally smaller than the
sub-leading contributions in the mass and CKM hierar-
chies.

We now give a sketch of a proof of the universal behav-
ior at an arbitrary order in perturbation theory. A
higher-order contribution will be of the general form

[fmn .
OP( DDf)m( UUt) n. . . (UUt)o(DDt)P]U+

dt (16qt2)q
(49)

dV;

dt fmn op ~ ~ ()(2mg2n. . . g2og2pg2+ g2g2~g2o. . . g2ng2m)
2)q u ~ g2 g2 ~ P k i b j i P k i S

jWi I j P, k, y, . . . , 1,5

where q ~ m+n+ . +0+p represents the loop order. There is an analogous contribution to dD/dt. The exponents
m and p could be zero. The coefficient f„" 'p is calculable in perturbation theory but can be obtained only with tedi-
ous effort; it is a function of the gauge couplings g; and the sum of the eigenvalues of the Yukawa couplings matrices,
Tr[UU ],Tr[DD ],Tr[EE ], and possibly other couplings such as the quartic Higgs coupling in the standard model.
The term in Eq. (49) generates a new contribution to Eq. (24):

r

X V;PV~PVkyV(y
.

VJ~VJ
' + (50)

(51)

Then to leading order,
~ V,b ~

= 1, and one has

The only terms that contribute to leading order in dX/dt, dY/dt, dZ/dt, dJ/dt are those in which the indices in the
second sum above involve the third generation:

dV; 1 A +A, -fmn . op ~ ' & (g2mg2n. . . g2og2p) V Vo V Vo. . . Vo V
( 16 2)q u ~ g2 g2 b t t b tb tb tb tb jb ja

JWI I j

dV,.

dt

k';+A'fmn . . op ~ ' & (g2(n+ . +o)g2(m+ +p))V Vo V
2)q u ~ ~2 ~2 t b ib jb ja

JWI I j

which has the same form as Eq. (24). Consequently conclusions about the scaling of the CKM elements have
been obtained at the one-loop level by Babu and Shafi [7].

d8]
dt

28')
[fmn . . op(g2(n + +o)g2(m + +p)

) ]
(16qr )q ACKNOWLEDGMENTS

(52)

A similar argument applies to the cases m =0 and/or
p =0.

A summary we have shown that there is a universal
scaling pattern in the evolution of the CKM matrix
when the only the leading-order terms in the mass and
CKM hierarchies are kept. This is a very good approxi-
mation given the observed hierarchy of the quark masses
and CKM matrix elements. This scaling behavior per-
sists to all orders in perturbation theory. Imposing a
GUT scale constraint Ab(MG)=k, (, MG) constrains the
amount of scaling. For mb(m&)=4. 4 GeV the scaling
factor of the CKM matrix is S=0.58.

After this work was completed we learned that similar
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APPENDIX

The evolution equations for
~ V, ~

can be derived from
Eq. (24) using the substitutions in Eqs. (27)—(32), as per-
formed by Babu [5] at the one-loop level. At the two-
loop level one obtains
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g2 ~g2 g2 g2a„'(A.b
—A.d )XZ+ (XYZ K—)

'

16~' 1 —X

~u +~t Xd-k,'+a '(R —R )X(1—X —Z)+ [XY(1—X —Z)+K] '
u ~2 2 b d

1 —Xu t

+ad (R„—A, , )XY+ (XYZ —K) '

~b +~d ~t ~c+a ' (X~ —k~)X(1 —X —Y)+ [XZ(1—X —Y)+K] '
d 2 2 u t

1 —Xb d

+ 2

(16' )

2dA, A, +e(A, +I, ) A, —
A,

'
(A, g

—
A,d )XZ+ (XYZ —K) '

A2 —A2 1 —Xu c

2d„A,„X,+e„(A,„+A,, ) Ad
—A,

'
+ '

'(Ag —
Ad )X(1—X —Z)+ [XY(l—X —Z)+K]

1 —Xu t
r

2dA, A, +e(A, +A, ) A, A,
—

'(A,„—X, )XY+ (XYZ —K) '

1 —Xb s

2ddi, bk, d+ed(A, b+A, d ) ~t ~c
'(A.„—k, )X(1—X —Y)+ [XZ(1—X —Y)+K] '

b d 1 —X

dY 2 ~u+~c ~d ~b k,' —kda„(XYZ—K)+ Y[XYZ+(1—X —Y)(1—X —Z) —2K]
1 —X (1—X)

(53)

g2 g2 g2 g2+a„' [XY(1—X Z)+K]+ — Y[XY(1—X —Z)+Z(1 —X —Y)+2K] .
u g2 g2 1 X (1—X)

+ad 2 2
'(A,„—A, , )XY+ (XYZ K) '—

~$ ~b 1 —X

$ +~d+a ~ (A, —A. )Y(1—X —Y)
$

+ [XYZ(1—X —Y)—Y(1—X —Y)(1—X —Z) —K(1—X —2Y)] '

(1—X)

+ 2
(16m. )

2d„A,„A,, +e„(A,„+A,, ) Ad Ab-
(XYZ K)—

k. —kd+ Y[XYZ+(1—X —Y)(1—X —Z) —2K]
(1—X)

2d„z'„X', +e„(X'„+X', )+ ' [XY(1—X —Z)+K]
A,

2 —2.2 1 —X
u t

+ Y[XY(1—X —Z)+Z(1 —X —Y)+2K] .

(1—X)

2dAA, +e(A, +A, )+ '
(A,„—A, , )XY+ (XYZ —K)

1 —Xs b
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2d, z,'X', +e, (X,'+ X', )+ (A,„—A, , ) Y(1—X —Y)

+ [XYZ(1—X —Y)—Y(1 —X —Y)(1—X —Z)
(1—X)

—K(1—X —2Y)] '

QZ

dt

x'+'a„'(X~b—Rq)XZ+ (XY'Z K) —'
16 2 u g2 g2 b d

1 —X

A,, +k, i —
Ad+a„'(Xb—Aq)Z(1 —X —Z)+ [XYZ(l —X —Z)

(1—X)

—Z(1 —X —Y)(1—X —Z) —K(1—X —2Z)] '

kb + Ar5,

+Qd
A b

kb +Ad
+Qd 2 2

kb

k2 k2

(1—X)

(K —XY'Z)+ Z[XYZ+(1 —X —Y)(1—X —Z) —2K]
1 —X (1—X)

[XZ (1 —X —Y)+K]
1 —X

[XZ (1—X —Y)+ Y'(1 —X —Z)+2K]

+ 2

(16~ )

2d„A,,A, „+e„(A,, +A,„) Az
—

A,,
'(A, —X )XZ+ (XYZ K) '—

1 —Xc u

2d„A.,A, , +e„(A,, +A, , )+ (A, —A, )Z(1 —X —Z)b d
c t

k. —
Ad+ [XYZ(1—X —Z) —Z(1 —X —Y)(1—X Z) K(1—X——2Z—)] '

(1—X)

2dgkbA, , +e~(Lb+A, , ) A,„—A, , ~c ~t+ ' (K —XYZ)+ Z[XYZ+(1 —X —Y)(1—X —Z) —2K] '

Ab 1 —X (1 —X)

2d„z'„X'„+e„(X',+X'„)
+ [XZ (1—X —Y)+K]

A2 —A2
b d 1 —X

+ Z [XZ(1—X —Y)+ Y(1—X —Z)+2K]
(1—X)

(55)

dJ —(J/2) ~i~+ ~J )+
16 T p j~1. A,

z kj j p~(z k~ kp

—(J/2) 2d~A(. A, +e~(A( +A, )

(16~ ) p J.~;
2dgk Ap+eq(A, +Ati)

j,pea kp
(56)

Replacing R;~A, ;,2 ~A, and omitting the second contributions proportional to (16m. ), one recovers the one-loop
results of Babu [5] (our definitions of X and Z differ from Ref. [5]). The two-loop equations have the same overall struc-
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ture as the one-loop equations because both contain the same factor V;PV &V in Eq. (34). Eqs. (53)—(56), together with
the evolution equations for the gauge couplings g; and the Yukawa couplings k, , form a coupled set of differential equa-
tions that can be solved numerically. In their full form these equations together with Eqs. (27)—(32) preserve the unitar-
ity of the CKM matrix to all orders in the hierarchy.
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