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Magnitude of Higgs-boson-exchange CP violation in two-doublet models with large tanP
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CP violation in neutral Higgs-boson exchange is studied in two-doublet models in an expansion in
1/tan P). The typical magnitude of various CP-violating quantities is found for large tanP. In particular
the electric dipole moment (EDM) of the electron and the coefficient c& of the CP-violating electron-
nucleon scalar-pseudoscalar operator are examined and it is found that in a simple class of two-doublet
models cs/d, is typically O(tan p). Therefore cs is more important than d, for the EDM's of diamag-
netic atoms and molecules (Hg, Xe, T1F) typically if tanP & 5, and for paramagnetic atoms (Cs, Tl) if
tanp 15. The dependence on tanp of the various contributions to the neutron EDM including the
Weinberg three-gluon operator, and the dependence on tanP of the top-quark EDM are also discussed.
Supersymmetric and three-doublet models are also considered.

PACS number(s): 11.30.Er, 12.15.Cc, 13.40.Fn, 14.80.Gt

I. INTRODUCTION

It has been found that in models in which the exchange
of neutral Higgs fields mediates CP violation the electric
dipole moments of the neutron [1—3] and electron [2,4]
are typically quite large —large enough to have a good
chance of being seen with present methods. In practice,
bounds on the electron electric dipole moment d, are in-
ferred from experimental bounds on the electric dipole
moments of large atoms (such as Tl, Cs, Hg, and Xe) or
diatomic molecules (such as T1F). Atomic electric dipole
moments may also arise from neutron or proton electric
dipole moments (EDM's) or from dimension-6 four-
fermion operators that violate P and T. Of particular in-
terest are dimension-6 electron-nucleon T- and P-odd
operators, which, though negligible in most models, can
be large enough to be observed and to compete with or
dominate over d, in models with Higgs-boson-mediated
CP violation if tanP is large [5,6].

Moreover, various other CP-violating quantities that
have been studied in the literature, such as the top-quark
EDM, the Weinberg three-gluon operator, and the
chromo-EDM's and EDM's of the light quarks, have
different dependences on tan/3. It is therefore interesting
to study CP violation of multi-Higgs-boson models in an
expansion in 1/tan p. That is what is done in thts paper.

There are three types of multi-Higgs-boson models that
will be studied here, which for convenience will be called
class I—III models. Class I models will be those two-
doublet models in which the CP-violating phase in the
Higgs potential, VH, arises from the interplay of one
non-Hermitian term quartic in the Higgs doublets,
(P&+(()2), and one non-Hermitian term quadratic in the
doublets, (P,+$2) or (P,+$2)o., for example. (Note that if
only one of these terms were present the phase in its
coefficient could be rotated away by redefining the rela-
tive phase of P& and $2.) Class II models consist of those
where CP violation arises in VH from the presence of
more than one term quadratic in the doublets, such as

(P,+$2)o and (P,+$2)o.'. Important examples [7] arise in
the context of supersymmetry, where typically the
(P& P2) term is absent. Class III models are those in
which CP violation arises in VH due to the interplay of
several quartic terms. This can happen in models with
three or more doublets. Of course, in complicated mod-
els all three mechanisms could contribute.

In previous papers [8], maximal values of CP-violating
quantities in multi-Higgs-boson models have been derived
in terms of the parameter tanP. Generally, these maxi-
mal values also give a reasonable order-of-magnitude esti-
mate of the typical values of these parameters. One of the
main points of this paper is that class I models are a
counterexample to this. How this happens can be seen by
contemplating the function (a +b cot p) '/, where
a —1 and b —1. (Henceforth —will mean "is of the same
order of magnitude as.") Typically, this expression —1

for tanp)) l. But its maximal value is b tan/3. Howev-
er, to achieve values approaching this maximum, a must
be "fine-tuned" to be 0 (1/tan /3).

An important consequence of this is that in class I
models the dimension-6 electron-nucleon operators are
enhanced relative to d, by 0(tan P) rather than by only
0 (tanP). Thus these operators may in class I models give
the dominant eff'ect in diamagnetic systems for tanP 5
and in paramagnetic systems for tanp) 15 (rather than
for tanp&25 and tanp) 250, respectively, as given in
Ref. [5]; the conclusions of Ref. [5] apply to general two-
doublet models that are not of class I).

This paper is organized as follows. In Sec. II the re-
sults obtained in previous calculations of d, and of the
coefficients of the electron-nucleon operators are summa-
rized and the relevant CP-violating parameters that will
be estimated later are introduced. In Sec. III the simplest
class I model, namely, two Higgs doublets with softly
broken natural fiavor conservation (NFC), is analyzed in
an expansion in 1/tan P. In Sec. IV, the next simplest
class I model, which has two doublets and a real Higgs
singlet with NFC, is similarly analyzed and similar (and
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remarkably simple) results are found. In Sec. V other
efFects such as the Weinberg three-gluon operator and the
EDM of the top quark are discussed and the typical
values of the relevant CP-violating quantities are given.
Section VI deals with class II models, specifically with su-
persymmetric models. Section VII deals with class III
models, specifically a three-doublet model with NFC. Fi-
nally, Sec. VIII collects our conclusions.

II. REVIEW OF d,
AND ELECTRON-NUCLEON CP-VIOLATING

OPERATORS IN TWO-DOUBLET MODELS

Natural flavor conservation can be implemented in
several ways. Here it will be assumed that the up quarks
(u, c, t) derive their masses from one doublet of Higgs
fields, Pz, and the down quarks (d, s, b) and charged lep-
tons (e, )((,, ~) derive their masses from another ()()). (This
pattern is suggested both by low-energy supersymmetry
and by the group theory of grand unification). Under this
assumption the EDM of the electron arising from neutral
Higgs-boson exchange, which has been computed by
several groups [2,4] can be expressed in the form

d, —=g 2 (M)i /m„)(sin P ImZo „)/m„

++8 (m, /m„)(ImZO „)/m„

+QC(m, /m„)(ImZO „)/m„.

tor mn and the sum over n will be retained. Then Eq.
(4) becomes

d, =—k (m, , mH )sin PXO(10 e cm),

where

X() =—g
2

mH

m n

ImZo, n .

If the lightest Higgs boson ( n =8) dominates, it can be
proved [7] simply that the maximal value Xo can achieve
in a two-doublet model is

X()( ) =(ImZ()) = ) tang/sin P

This parameter Xo will be studied carefully in the next
two sections where it will be found that in class I models
it is, to leading order in (1/tan P), typically —1 and not
of 0 (tanP) and is, in fact, typically —

—,'.
There are six T- and P-odd electron-nucleon

dimension-six operators that can contribute to the
EDM's of atoms:

GF
—[cs(i)N, ¹iy&e+cp( )N pgN;ee

/ =P, ll

+cr(;)N;o"¹iy5cr„. e ] .

In Ref. [5], cs, the coefficients of the scalar operators,
were computed in two-doublet models of CP violation to
be

' 2GGZo, .T.
U2U1 q n q +mn

26GZ() „
q +m„2 2

(2)

The m„are the mass eigenvalues of the neutral Higgs
fields. A, 8, and C are logarithmically varying functions,
and Zo n and Zo „are defined by

cs(p] —-cs(n)

4 ImZ, „—tan P ImZ2 „
m, m g

n mn

where Z; „(i= 1,2) is defined [7] by

2GpZ; „
U; q n q +mn

(10)

The first term in Eq. (1) comes from a plethora of two-
loop diagrams involving Wbosons. The second and third
terms come from a diagram with a top-quark loop, which
contributes with opposite sign and smaller magnitude.
For z~ oo, C(z)/B (z)~0, and so C will be neglected.
To leading order, then, in 1/tan P, d, can be expressed as

2 2~w mr
d, =QIC, — (sin PImZO„) .

n mn mn mn
(3)

Often, the simplifying assumption is made that the light-
est Higgs eigenstate, denoted henceforth by index n =H,
dominates the sum. Then one finds, numerically,

Then

cs =(6.6X 10 )(m)(~) Y,
where m)oo=mH/(100 GeV) and

2

Y=g (ImZ) „—tan P lmZz „) .
n mn

(12)

If the sum over n is dominated by the lightest neutral
Higgs boson (n =H), it may be shown that the maximal
value of F is given in two-doublet models by

l Y,„—= l
ImZ, —tan f3 ImZ2

l

d, —=k(m, , mH )sin PimZO(10 e cm), (4)
=

—,'(tan /3+1) . (13)

where k is a dimensionless number of order 1. For
m, =2M)i, , k(mH=120 GeV) =1, k(m~=160 GeV) =—„
and k(mH ~ 320 GeV) = —,'. In this paper the somewhat
less crude simplifying assumption will be made that mn
may be replaced by mH in the function K in Eq. (3)
(which is a logarithmically varying function), but the fac-

It will be seen in Secs. III and IV that this indeed is
also a good estimate of the typical size of Y in two dou-
blet models. Therefore

2

lcsl-(3. 3X10 ) '",
m 100
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Thus, for tanp=10 and mH =100 GeV or for tanp=20
and m~=200 GeV, le+I-3. 3X10 . This should be
compared to the experimental limit [9] from Tl of
cs=( —2.7x8.3)x10 '.

In Ref. [5] the conditions required for the electron-
nucleon operators to dominate over d, in their effects in
atoms were stated in terms of a parameter that was called
there F. In terms of the parameters being studied here,
F = Y/2XO. Generally, one finds that IFI -tanp. But for
class I models, as will be seen in the next two sections,
FI-tan p. In Ref. [5] it was found that for IFI ~ 15—25

(depending on the atom) the effects of cs are comparable
or larger than those of d„ for diamagnetic systems (Xe,
Hg, and TlF), while for paramagnetic systems (Cs and Tl)
IFI would need to be ~ 250.

III. CLASS I MODELS: TWO HIGGS
DOUBLETS WITH SOFTLY BROKEN NFC

In order to study the properties of the Higgs sector in
an expansion in (1/tan p), it is convenient to express the
Higgs potential in terms not of masses and couplings, but
of the vacuum expectation values and couplings, by ex-
panding about the minimum of the potential. The most
general two-doublet potential with softly broken NFC
can be written as

I')'+ ,'g (y.'0-
+g(W'0 —lv I')(0+0,—

I v, I')

+g'lki'6 —v i u2I'+«[h(Pi+02 —v i u2)']

+glu2ki —
vi&21 (15)

The sole CP-violating phase in VH is arg(hu*, u2 )—:2g.
In the unitary gauge, one can write the neutral com-

ponents of the Higgs doublets as

0

It is a simple matter to expand Eq. (15) in terms of
4; —= iI&; —(iIi; ), extract the (mass) matrix, and compute
R„and m„ to leading order in (1/tan p). It is then
found after laborious but straightforward algebra that

(m, —m3)mH2 2 2

Xo =
—,'sin2il (1 —h2/m 22)+0

m)m3

(m, —m3)mH2 2 2

Y = —
—,'(tan P)sin2r) +const,

m m1 3

Y = —tan p(1 —b, /m )+const,

1

tan p

(RH„RH2, RH3) = cosP sinP 1

v'2 ' V'2 ' u'2

to give Xoi,„i= —,'(tanp/sin p). However, from the actu-
al (mass) matrix derived from Eq. (15), one finds that, in
an expansion in (1/tan p), R,2 and R23 are O(1/tanp),
while the remaining R „are —1. Thus (tanPRH2RH3) is
always —1, whichever is the lightest Higgs boson. The
maximum value of X0 is achieved only if some ratio of
the dimensionless parameters (g„g2,g, g', h, g) is suitably
tuned to be O(1/tanP).

In order to gain confidence that this result is not pecu-
liar to the specific potential of Eq. (15), another class I
model where NFC is broken spontaneously rather than
softly is studied in the next section.

where b, =2(g —g)u and m2—=2g2u . 6 can be either
sign. One expects that typically 5 /m 2 is of order 1.

From Eq. (17) it can be seen where Eq. (7) comes from.
By orthogonality, g, (RH ) = l. If the sum is re-
placed by the contribution of the lightest Higgs boson
(n =M),

XD =
—,'(sinp) '(RH, +tanpR&2)RH3,

and this is clearly maximized by

V2 V)
42= ~

I I

2
'

3

(16)

IV. CLASS I MODELS: TWO DOUBLETS
PLUS A SINGLET WITH NFC

2

Xo = —,'(sinP) ' g z [R„,+tanPR„z]R„3
mn

2
mHY= —(tan P/sinP) g

n mn

(17)
1[R„,+ R„2]R„3.

tan

where u =(lu, I
+ u2I )' and the N; are real fields with

(C, )=3/2lv, l, (42)=3/2luzl, and (C3)=0. In the
limit of vanishing CP violation, +, 2 are scalars and 43 is
a pseudoscalar. Denoting the mass eigenstates by N„,

,R„4 . It can be shown straightforwardly
that

Natural flavor conservation in this case will mean that
VH is even under $0~ —$„$2~+$2, and o ~—o
(and/or under P, —++/„$3~ —$3, and o.~ o) ois—a.
real singlet field. There is a slight technical dif5culty in
writing VH in terms of vacuum expectation values as in
Eq. (7) while preserving the NFC symmetry. For exam-
ple, the term m, ~ p i+ /acr would lead to the term
m, 2(p,+$3—v*, u2)(o —w), which has cross terms o and

Pi Pz that both violate NFC and are linear in 5,. and o
(w—:(o ) ). This problem is easily solved in this case by
introducing redundant terms into V~ to cancel the
off'ending o and Pi+$2. The coefficients of the redundant
terms are therefore solvable in terms of the other parame-
ters of the potential. The most general potential can then
be written as
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VH= —,'gi(Pi+Pi —luil ) + —,'g2(gz 4z
—

lu21 ) +g(p, p, —lu, I
)(p+p —Iv I )

+g'I Pi+6 —v i v2 I'+g "(4i'AA'4i —
0» 0 iA'42)+Re[h (4i'6 —v i v»']

+a (o —w )+—,'p (o.—w ) +Re[m, 2(P,+$2 —u,*vz)(o.—w)]

+k, (Pi++, —fu, I')(o' —w')+k, (@~++,—fu, I')(o' —w'), (19)

where the redundant parameters p and g' are given by

p w+Re[mizv', v2]=0,

g'Iuiu2I +h(v*, v2)+ —,'m, 2(v*, u2)w=0 .
(20)

Note that there is only one CP-violating phase
2i)=arg[h(u*, u2)], the phase of m, 2u*, v2 being fixed by
Eq. (20). As in the last section, the (mass) matrix can be
diagonalized and R „and mn found to leading order in
1/tan P. In spite of the greater number of free parame-
ters (13 versus 9) and the larger matrices (4 X 4 versus
3 X 3), the final results are remarkably simple and similar
in form to those found in the last section:

(m, —m, )mH
Xo = —sin2i) [ 1 —5 }+0 (1/tan P),

4 m m1 3

(m i m3 )mH
2 2 2

I'= ——tan Psin2i) +const,
2 m m1 3

doublet models to be measurable at future colliders such
as the Superconducting Super Collider (SSC), CERN
Large Hadron Collider (LHC), and Next Linear Collider
(NLC). The largest contribution to the top-quark EDM
in these models arises from the one-loop diagram. The
EDM is given in Ref. [10] to be

d, (q ) = GFm, e g ImZ2 „f2&2
3(4'�)

2 2mn q

m mt

in the notation of this paper. (Note the labels of P, and

P2 are interchanged in Ref. [10] with respect to this pa-
per. ) f is a function which for small q /m, and large
m„/m, goes as

T

ln
m mn t

One can obtain a reasonable estimate of d, (q ) by replac-
ing

I' = —tan P [ 1 —5 I +const,

g2 Q2 +&2
5=cos2$ +sin g +2singcosg

m2 m4

+&2

2m4

2 2m qf
m mt 7

Note that for sing~0 these reduce to the forms given in
Eqs. (18). here m are the mass eigenvalues, 44 =cr —w, —
b, :—2gu, b—:&2k, (vw), g is the C&2

—44 mixing angle,
and g is the CP-violating phase as well as the +,—@3
mixing angle. One expects, as in the simpler example of
the last section, that the factors (m i

—m 3 )mH /m, m 3

and b, /m 2
—=g/g2 will be of order unity typically. Here,

however, there is a feature that did not arise in the previ-
ous example. The vacuum expectation value m of the
singlet field o. is not necessarily of the order of the weak
scale. And since u, /v2—= I/tang is being assumed to be
small, it is not clear what the "typical" value of m should
be assumed to be. However, it turns out not to matter. If
w »u, 6 /m„-(u/w), b, /m~-(u/w), 6 /m2
-(w/u), and sing-(u/w), so that 5 remains of order
unity. The same holds if m ((U. Thus the conclusion of
the previous section remains true as well here: Unless
some ratio of the dimensionless couplings is tuned to be
0 (1/tanP), one has the results XD —

—,'sin2i),
F- —,'tan Psin2i), E-tan P.

V. TYPICAL MAGNITUDES
OF OTHER CP-VIOLATING EFFECTS

AND PARAMETERS IN TWO-DOUBLET MODELS

In several recent papers [10,11], it has been suggested
that the top-quark EDM may be large enough in two-

2
'

2
mH mH q2f
m m mn

then

mII q2
d, (q ) = G~m, ef, X2,3(4~)' m,' m,' (23)

2

X2—=g
m

ImZ2 „, (24)

so that, if the lightest Higgs boson dominates the sum
over n,

lxp I( .,)=-
2 tanP sinP

(25)

Thus, typically, in multi-Higgs-boson models, one expects
that X2 —

—,'(tanP) '. However, in the models of Secs. III
and IV,

in analogy with the definition of Xo given in Eq. (6). One
Ands

1 m~2
Xp= . „g 2 R2R3,

tanp sinp
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(m, —m3)mH2 2 2

X2 = sin2q 6+const,
2tan p m im3

(26)

where 5 is given by b, /mz and by Eq. (21), respectively,
for the two models. So that, typically, in class I models,
in contrast to the general case, one expects

1X—
2tan P

(27)

Another quantity of great importance is the neutron
EDM. There are three kinds of operators that are ex-
pected to give the largest contributions to d„: the Wein-
berg three-gluon operator [1], the EDM's [2,3] of the u
and d quarks, and the chromo-EDM's [2,3] of the u, d
and s quarks.

A. Three-gluon operator

The largest contribution in two-doublet models to the
Weinberg three-gluon operator comes from a diagram
with a top-quark loop. It is easily seen that in the kind of
approximation used above the coefficient of this operator
is proportional to Xz and therefore by Eq. (25) is general-
ly of 0 (1/tanp), but by Eqs. (26) and (27) is of
0(1/tan P) in class I models.

1 tan P
lXI l(max)=+

2 2
~

p
1 tanP

lX0 l (max) 4 sinp

(29)

So that generally, X, —
—,'tan p and X0-—,'tanp. In the

models of Secs. III and IV, however,

(m1 —m3)m~2 2 2

X, = ——tan psin2II +const,
2 m m1 3

(30)

(m, —m3)mII
X0 =—sin2I) [ 1+6] +0 (1/tan p),0

m m1 3

where 5 is given by b, /mz or Eq. (21), respectively, for
the two models, so that in class I models typically, for
tanp»1,

X, —
—,'tan P,

2
tan p mH

X, = — . g 2 R„,R 3,sin

1 mH
2

X0= . g 2 [R I„—tanpR2„]R3„.2 s111 „m
So that if the lightest Higgs field dominates the sum over
P1,

B. EDM's of the light quarks
X --'

0

(31)

The EDM of the d quark has the same dependence of
the Higgs parameters as does d, and so goes as
sin pX0=—X0 [see Eqs. (4)—(6)], which is 0 (tanp) general-
ly, but in class I models is typically —1 by Eqs. (18) and
(21). The EDM of the u quark, on the other hand, goes
as cos pX0=(1/tan p)X0, which is typically of
0 (1/tanp), but in class I models is 0 (1/tan p).

C. Chromo-EDM's of the light quarks

The chromo-EDM's of the d and s quarks have the
same dependence as the top-quark-loop contribution to
the electron EDM and so, for large mH, are proportional
to Xp. The chromo-EDM of the u quark, on the other
hand, is proportional to X2.

For large tanP, then, both in the general case and in
class I models, the dominant contributions to d„come
from the EDM and chromo-EDM operators of the down
quarks. The other contributions including the Weinberg
three-gluon operator are down by 0 (1/tan p).

For completenesses, one can define

2
mH

X, —:y, ImZ, „,
(28)

mH
X()=g ImZ() „.

n mn

One can show that

Note that, in general, X()+X0 = —cot2pX I

X0 —X0=tan pX2, as can be verified by Eqs. (18), (26),
and (30).

VI. CLASS II MODELS: SUPERSYMMETRY

The simplest supersymrnetric extension of the standard
model that can have CP violation in the Higgs sector is
discussed in Ref. [7] (where, however, CP was imposed).
In addition to the two doublets H, and H2 (which will be
called here (t, and pz), there is a singlet superf1eld N. The
superpotential is chosen to be purely cubic and contains
H, H2N and N terms. This gives rise in the ordinary po-
tential to (pI(())zN) and p(pz(N') terms as well as an N
term. This gives three complex coefficients. Two phases
can be rotated away by rephasin~ P„P2, and N. But one
phase remains. There is no (QIQ ) term in VH. This
then is an example of a class II model.

This model can be compared to the class I model of
Sec. IV, which also had a singlet field o. that mixed with
the two doublets. There the mixing of 42 =—o —(cr ) with
the pseudoscalar @3 arose from the term in Eq. (19),

Re[m)z($, $2
—u(u2)(o —w)] .

This term gives

'- [Im(m„u) u, )lu(u2l][@3@4] .
2

However, the phase of (m)zu(u2) could be rotated away
were it not for the presence of the quartic term
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Re[h (pipz —u iu2) ]. Thus it happens that there is a rela-
tion

Im(m, 2u*, u2)= —21m[h (u*, u2) ]/iv, (32)

as can be seen from Eq. (20). Therefore the mixing of
34 4 is given by

[1m[iI (U I UI )']/luiu2l ] [& 3@4]

and is 0(ui ), which is to say 0(1/tanP). Now consider
the expression for X2..

'2
PPl HX,= R„2R„3 .

tanP sinP „m„ (33)

VII. CLASS III MODELS: THREE-DOUBLET MODELS

Consider a three-Higgs-doublet model where NFC is
enforced by a discrete symmetry which ensures that V~ is
even in each of the fields $„$2,$3. There are then three
terms in VH that have complex coefficients:
c J(P;P. ) +H. c. , where iWj. Since the two relative
phases of the P; can be redefined, there is one genuine
CP-violating phase in VH. Expanding

1

I

(@,+i II;),

The term with n =4 contributes 0 (1/tan P) since
R43=0(1/tanp), as was just shown. [The other terms
also contribute 0(1/tanp) since R,2 and R33 are also
0 (1/tanP). ]

Now consider the supersymmetric model. Calling the
scalar part of N also by N4, one sees that the N4 —N3
mixing arises from both the terms itiip2N and p&$2(N*) .
Calling the coefficients of these terms m &2 and m ', 2, this
mixing, as in the class I model, goes as

[Im(m i2u I u2 )/I v
& v2 I ][(4344)

or similarly with m &2. The crucial difference is that the
phases Im(m, 2viv2) and Im(m', 2u*, u2) are related to
each other rather than to a term higher order in u, as in
Eq. (32). Thus R 43

—1 and Xz =0 ( 1/tang) rather than
0 (1/tan P).

For class II models, which include the generality of su-
persymmetric models, the typical values of the CP-
violating parameters X; are of the same order in tang as
the maximum values stated in Eqs. (7), (25), and (29).

eluding all of the Imc;, were of the same order, then the
conclusions with regard to the order in 1/tan P of the
quantities Xp, Xp, X], and X2 would be the same as stat-
ed in the preceding sections for two-doublet models.
However, the dependence of the phases on tan P given in
Eq. (34) vitiates those earlier conclusions for three-
doublet models.

In unitary gauge one can write

Ulu3i—
2 UUp

p 1 U) V2V3
iII2+ i 44+i

2 Vp UUp

p 1 . u
Ci3 i-

Up

in the basis where the v; are real. u = (u I + v z + u 3 )
'

up —=(vi+u2)' . Then one can show that

U
2

Cs ~
2 g (U, R„I+U2R„,)

U )U2

V2 U)U3
R„4+ R„5

UupVp

(36)

VIII. CONCLUSIONS

In general two-doublet models, one has, for large tanP,

IX I
--,'(tanP)",

IX I
--,'(tan@)",

IX, I
--,'(tanP)',

IX, I

—
—,'(tanP)

I
I

I

= IX, —tan'PX,
I
--,'(tanP)',

where for class I models, in particular,

(37)

The scalar-pseudoscalar mixing is given by

+2(lmc, )u;u~(II;Cij. ) (sinI))v, uzu3e~z(11, @~uk ),
1J

where II,. are the imaginary parts of P; given in Eq. (35)
and are linear combinations of N4 and @5. From these
equations it can be seen straightforwardly that
cz —(ui) -(tanP) . This is in contrast with the two-
doublet models in general and class I models in particular
where c&-tan P.

IIII( C;i ) = S111 "gE';i ( Uk ) (34)

This implies that for v2/vi ))1, Imcz3 —(1/tan p)lmc3f.
If one were to assume that all of the quartic couplings, in-

where (@;) =I/2lu,
I

and (II; ) =0, one finds that there
are linear terms for the H,- of the form

—g 3/2(lmc;~ )v;u, (v;IIJ —ujII;),
lWJ

in the basis where the u; are real ~ In that basis it must
therefore be that

IX, I
--,'(tanP)',

IX, I
--,'(tang)',

IX, I

—
—,'(tanP)

IX, I
--,'(tanP)-',

I
I I--,'«anP)'.

The EDM of the electron can be written

d, =k(m,2, mH )Xp(10 e cm),

(38)

(39)
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c~=(6.6X10 )(m, oo) Y,
m, oo=mH/100 CxeV, so that

(40)

cs —(3.3X10 )(tanp/mt)~ . (41)

Finally, in two-doublet models, whether or not class I,
the dominant contributions to the neutron EDM are the

where for m, =2M~, k (mH = 120 GeV) = 1, k (mH = 160
GeV) = —,', and k (mH ~ 320 GeV) = —,'. [See discussion
after Eq. (4).] The scalar e N—operator has a coefficient
given by

EDM and chromo-EDM operators of down-type quarks.
The other contributions including the three-gluon opera-
tor are relatively suppressed by O(1/tan p). The top-
quark EDM, which is roughly proportional to Xz, is
suppressed by 0 (1/tanp) generally and by O(1/tan p) in
class I models.

The most significant result is that in the simple type of
models that have been called here class I, the e —N, T-
and P-odd operators are enhanced relative to d, by
O(tan p) and can therefore give the dominant contribu-
tion in atoms for tanp~ 5 (diamagnetic) or tanp~ 15
(paramagnetic).
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