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The experimental measurements of the 7-lepton lifetime suggest that it might be a few percent
longer than the standard model prediction. One of the simplest ways of obtaining a slightly longer
T-lepton lifetime is to assume that the 7 neutrino mixes with another neutral particle which is more
massive than the 7 lepton. We examine the possibility of implementing this simple idea by adding
only a right-handed neutrino to the minimal standard model. We find that the resulting model has
a range of parameters in which the lifetime is longer than the prediction of the standard model by
more than 1%. We show that this range of parameters implies that the 7-neutrino mass must be
greater than 10 MeV. Hence the model will be tested when the measurements of the mass of the 7

neutrino are improved.
PACS number(s): 14.60.Gh, 12.15.Ff, 13.35.+5

The standard model relates the T-lepton lifetime to the
branching fraction

L(T — ev,7,)

B(r — ev,;le) = T(r S all) (1)
and the y lifetime as follows:
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The experimental measurements of the 7-lepton lifetime
suggest that it might be a few percent longer than the

standard model prediction, Eq. (2) [1].

Motivated by a possible discrepancy between the the-
ory prediction equation (2) and the direct measurements
of the lifetime, there have been some ideas for modify-
ing the standard model to obtain a longer lifetime [2—4].
Perhaps the simplest idea that we are aware of is the ob-
servation of Wirbel and others [3]. In this scenario, the
standard model is modified by the addition of a fourth
generation and the neutrino of the fourth generation is
assumed to be heavier than the 7 lepton. The weak eigen-
state 7 neutrino (v;) may then be a Cabibbo-type mix-
ture of the mass eigenstate 7 neutrino (¢2) and the heavy
fourth generation neutrino (v9):

v, = cos gV + singp ). (3)

If m,9 > m, then on kinematic grounds the 7 lepton can-
not decay with v in the final state. This means that the
decay rate of the 7 lepton is smaller than in the standard
model by a factor of cos? ¢. For the lifetime to be longer
by 1%, it is required that sin ¢ = 1/10. (We will take this
value for definiteness. Later in the paper we will consider
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longer 7 lifetimes which are in fact favored by the data
[1].) The idea that the weak eigenstate 7 neutrino is a
mixture of a heavy neutrino and a light one provides a
simple physical explanation assuming that the 7-lepton
lifetime is really slightly longer than the standard model
prediction. The fourth generation model of Ref. [3] is not
the only model with this mechanism. Any heavy neutral
particle will do, as long as it mixes with the 7 neutrino [4].
What we wish to examine is whether or not we can imple-
ment the idea by only minimally extending the standard
model by adding only a right-handed neutrino (and not
a fourth or exotic generation).

In addition to the motivation from a possible discrep-
ancy with the 7-lepton lifetime, there are also other rea-
sons to modify the lepton sector of the standard model.
In particular, there are general arguments from electric-
charge quantization which suggest that the lepton sector
of the standard model should be modified [5]. Previous
work [5] has shown that if the Lagrangian describing a
gauge model contains gaugeable U(1) global symmetries,
then electric charge is not quantized in general. The stan-
dard model has gaugeable global U(1) symmetries (asso-
ciated with differences of the global lepton numbers) and
thus there is no explanation for electric-charge quantiza-
tion in the minimal standard model. The model that we
will consider has in general no gaugeable U(1) symme-
tries, and electric charge is necessarily quantizated (cor-
rectly).

We add a right-handed neutrino (i.e., gauge singlet
Weyl fermion field) to the standard model and assume
that it has both a Dirac and a Majorana mass term:

Lumass = Mgy, + Mvr(vr)® + Hec., (4)

where v}, is in general a linear combination of the three
weak eigenstate neutrinos (Ver,Vur,v-r). We will as-
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sume that v} =~ v, for definiteness [6]. Equation (4)
implies the neutrino mass matrix:

Lumass = XL M X, (5)
where

(), ()
and

M= (_(jn ﬂ) . )

Diagonalizing this mass matrix, and expanding the eigen-
values in a power series assuming that m < M, then the
mass eigenvalues are of the usual seesaw form

m? m?2
me =57 [1+0 (7))

2
m,,2=M[1+0<—A”;—2)].

We can also obtain the weak eigenstate fields in terms of
the mass eigenstate fields as follows:

8)

vrL = cos ¢v0 — sin p(v§g)°,

9
(var)® =sin pvl; + cos p(¥IR)¢,
where
tan ¢ = -A’% (10)

If m,9 > m, and tan ¢ = 1/10, then the 7-lepton lifetime
will be longer than in the standard model by about 1%
(as the decay rate is suppressed by cos? ¢). From experi-
ment, we know that m,o < 35 MeV. Thus, from Egs. (8)
and (10) we have

myo ~ M tan® ¢ < 35 MeV. (11)

Thus we have obtained an upper bound for m,p. For
tan® ¢ ~ 1/100, M ~ m,9 < 3.5 GeV.

What is the lower bound on m,o? For sing = 1/10,
m,e > m, is sufficient to get a 1% increase in the 7-
lepton lifetime. When m,¢ < m,, the decays involving
v in the final state can now contribute. To get a 1%
increase in the 7-lepton lifetime, sin? ¢ will have to be

bigger than 1/10. Including the effect of the mass of the

12 and v§ neutrinos, then the ratio in Eq. (2) will be

P reles = 2 [cor® 6P (n) + s 6F(m)]
(12)
where
F(n) =1-8n+8n° —n* - 129%1Iny, (13)

and my = m2,/m2, n; = mﬁg/mf. Note that if m,o <
35 MeV, then F(n;) = 1 to within 0.3%. Hence the

R. FOOT AND H. LEW 47

kinematic effect of the 7-neutrino mass cannot be the
source of any presently observable discrepancy [and we
subsequently set F(n1) = 1 in Eq. (12)]. The condition
that the lifetime is longer by 1% implies from Eq. (12)
that

sin? {1~ F(m)] = o5 (14)

Using sin? ¢ ~ myo /my,g, Eq. (14) implies that

_ 1 _mg
M2 =100 1— F(na)’
! Moy (15)

" 100 87, — 873 + 7 + 12nZ Inmy

Solving this equation numerically assuming that m,o <
35 MeV, we find that m,p > 120 MeV. Thus we conclude
that we can obtain a 1% increase of the 7-lepton lifetime
for m,g in the range

120 MeV < mye < 3.5 GeV. (16)

Having established the range on m,g to obtain a 1%
increase in the 7-lepton lifetime, we now examine the
corresponding range for the 7-neutrino mass m,o. As
m,g ranges from 3.5 GeV to m, ~ 1.8 GeV, m,o ranges
from 35 to 18 MeV. For mye < Mg, myo is related to
m,g through Eq. (15). Numerically solving this equation,
we find that as m,g ranges between its allowed range
120 MeV < myy < My, the minimum value of m,o is
10 MeV. If there is a greater than 1% discrepancy in the
length of the 7 lifetime then the minimum value of m,o
must be greater than this value. Thus we find that

myo > 10 MeV, @amn

to have a 7-lepton lifetime longer than 1% in the model.
This should be a testable prediction of the model.

It might be that the 7 lepton is longer lived than 1%.
In Table I, we show the allowed ranges of the physical
parameters to have the 7 lepton longer lived by 2% and
3%. If the 7 lepton is longer lived by more than 3.5% of
the standard model prediction, then our model is ruled
out from the 35 MeV limit on the 7-neutrino mass.

To fully test the model the new neutrino v will have
to be discovered. Its dominant decay mode is expected to
be via a flavor-nondiagonal coupling to a virtual Z boson

[7):
v — 2+ Z*. (18)

Note that the flavor-changing vertex exists because of
the absence of a Glashow-Iliopoulos-Maiani mechanism.
When the virtual Z* goes to a ete™ or uTu~ pair then
this should lead to an observable signature. However the
v neutrino tends to have a relatively long lifetime so that
it will not decay inside a detector unless m,g 2 1 GeV
(assuming that the v is relativistic). Thus, there is only
a limited range of the mass of the vJ which is accessible
to collider experiments.

In conclusion, we have examined the possibility that
the 7-lepton lifetime is slightly longer than the standard
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TABLE I.

Table showing the allowed range for the mass of the 7 neutrino (¢2) and the mass

of the right-handed neutrino (§) in the model to obtain a 1%, 2%, or 3% increase in the standard

model prediction of the 7 lepton lifetime.

AT (%) m,g

m,0

1% increase
2% increase
3% increase

120 MeV < m,g < 3.5 GeV
260 MeV <m0 < 1.8 GeV
480 MeV <m,p < 1.1 GeV

10 < m,o < 35 MeV
20 <m,o <35 MeV
30 < m,e < 35MeV

model prediction. We have argued that the simplest way
to achieve a slightly longer 7 lifetime is to add one right-
handed neutrino to the minimal standard model. We
then analyzed the resulting model and showed that to get
a lifetime increase of greater than 1% in the model im-
plies that the 7-neutrino must have a mass greater than
10 MeV. The results for our model are summarized in
Table I. The experimental upper limit on the 7-neutrino
mass is 35 MeV so that the model will be tested when
measurements of the 7 neutrino mass improve. Finally,

we note that for a significant range of parameters of this
model, the lifetimes of the massive neutrinos are compat-
ible with the bounds imposed by the standard cosmolog-
ical model [8].
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u.,-»e‘+W'—>e_+e++ue,,,.

The lifetime is given by

—3\ 2 5
Ty, (3 x 10 ) (10 MeV) x 3 x 10* sec,
« My,

where o is a mixing parameter of the leptonic charged-
current interaction matrix which is the analogue of the
Kobayashi-Maskawa matrix for the quark sector. This is
obtained by diagonalizing the full neutrino mass matrix
and so on. These details will be given elsewhere. From
neutrino experiments [see Particle Data Group, K. Hikasa
et al., Phys. Rev. D 45, S1 (1992)],

a S 0.05 for m,, < 20 MeV,

a S 0.003 for m,,. > 20 MeV.
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case of the v4 neutrino its dominant decay mode is via the
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ve = vr + Z¥ > v + f + f,

where f denotes light fermions. The lifetime of v4 is given
by

L L 2x107 (GeV®
va = Sil’l2 ¢ Myy ’

Hence, v4 has a lifetime which is easily compatible with
the standard cosmology model.



