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We calculate the Nvr decay amplitudes of baryon resonances in a semirelativistic version of the
Po model of hadron decays. We use relativized wave functions for the baryons and mesons, and
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I. INTRODUCTION

In the past 20 years, the nonrelativistic constituent
quark model (NREM) has experienced some measure of
success. Much of this success has been in the area of
spectroscopy. The interplay between quark model spec-
troscopy and experimental observation has contributed
much to our understanding of low-energy phenomenol-
ogy. In models of the type that concern us here, the
relevant degrees of freedom are constituent quarks, and
gluonic degrees of freedom are not excited.

Despite the success of these models, many problems,
such as the significance and treatment of the relativistic
motion of quarks within a hadron, still persist. Some of
these problems are discussed in Sec. II. It is possible to
correct the models by including some relativistic eKects
and other refinements, as has been done in Ref. [1] and
as briefiy described in Sec. II. However, none of these
refinements is likely to oKer a solution to the important
problem of the "missing" baryon states, i.e. , states that
appear in the model but which have not been seen in ~N
partial-wave analyses.

One approach that has been used in dealing with the
missing states is that of diminishing the number of ef-
fective degrees of freedom within the baryon. This is
done by replacing the three-quark system with a quark-
diquark system [2], with the result that the predicted
spectrum contains fewer states. This approach raises
the question of whether there is any diquark clustering
within a baryon, and if so, to what extent. Indeed, po-
tential model [3] studies and lattice simulations [4] show
that there is little evidence for such clustering in baryons
consisting of light quarks (unless they have large orbital
angular momentum).

Current address.

If the three-quark description of the baryon is retained,
a possible solution to the question of missing baryon res-
onances is ofFered by considering the couplings of pre-
dicted states to formation channels. Koniuk and Isgur [5]
find that the pattern of experimentally observed states
matches that of states predicted to couple strongly to
formation channels. These results indicate that consid-
eration of spectroscopy alone is not enough in evaluating
the utility of a model. Indeed, it is expected that in addi-
tion to the usual mixings (such as hyperfine, spin-orbit,
etc.) observed in spectroscopic calculations, there should
be mixings and mass shifts associated with couplings to
decay channels [6].

This suggests that a model calculation of hadron spec-
tra and strong couplings should be an iterative process A.
successful model should provide at least a reasonable de-
scription of both the masses and couplings of the hadrons
it claims to describe. Ideally, a calculation of a spec-
trum would automatically include some description of
couplings, as these do afFect the masses (and vice versa).
Clearly, attempts to describe both sets of phenomena
simultaneously are necessarily involved. The approach
adopted here is to treat the problem as a step-by-step
process. As an initial step, the wave functions from an
existing model of the baryon spectrum are used to pre-
dict strong couplings. In this way, we hope to get an in-
dication of the strengths and shortcomings of the model,
which may provide us with insight for possible improve-
ments,

This article is organized as follows. The rest of this sec-
tion is devoted to general comments on models of strong
hadron couplings, together with a brief synopsis of con-
stituent quark models, with emphasis on the work of Is-
gur and Karl. In Sec. II we discuss the relativized model
of baryon resonances used here. Section III describes the
decay model, while our results are presented in Sec. IV.
Section V contains our conclusions and an outlook, and
some calculational details are relegated to an appendix.
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A. Hadron transition models M ~

While the study of hadron spectra is a well-developed
Geld with many competing models, especially for the
baryon spectrum, there are far fewer models for
strong hadronic transitions. The Okubo-Zweig-Iizuka-
(OZI-) allowed [7] strong decays of hadrons which we con-
sider here have been examined in three classes of models
described below.

The "hadrodynamic" models, illustrated in Fig. 1, in
which all hadrons are treated as elementary pointlike ob-
jects, do not lend themselves easily to decay calculations
of the kind we are carrying out here. This is understand-
able, since each transition is described in terms of an in-
dependent phenomenological coupling constant g~~lM.
While the use of SU(2) or SU(3) flavor symmetry argu-
ments would give relationships among some of these cou-
pling constants, the overall situation would nevertheless
be largely unworkable.

A second class of models treats the baryons as objects
with structure, but the decay takes place through elemen-
tary meson emission. Such an approach may be taken in
bag models. Some potential model calculations have used
a similar approach, as, for instance, the work of Koniuk
and Isgur [5]. In these models, the mesons are emitted
from quark lines (Fig. 2), and one replaces the set of
g~~ M coupling constants with a smaller set of g~~ M's.
In addition, one may use SU(2) or SU(3) flavor symme-
try to relate the coupling constants for mesons within a
single multiplet, as well as those for different quarks.

A third class of models may be referred to broadly as
pair creation models. In such models both the baryons
and mesons have some structure, and the decay of the
baryon, say, is facilitated by the creation of a quark-
antiquark pair somewhere in the hadronic medium. The
created antiquark combines with one of the quarks from
the decaying baryon to form the daughter meson, while
the quark of the created pair becomes part of the daugh-
ter baryon. This is illustrated in Fig. 3.

There are several types of pair creation model. In
the sPO model popularized by I.eYaouanc et aL [8], the
quark-antiquark pair is created anywhere in space with
the quantum numbers of the @CD vacuum, namely, 0++.
This corresponds to sPO, hence the name of the model.
While the pair, in principle, may be created very far away
from the decaying hadron, the wave-function overlaps re-
quired naturally suppress such contributions to the decay
amplitude. This model has been quite popular in descrip-
tions of hadron decays and has been applied to baryon
decays [8], meson decays [8, 9], and even the decays of
fictitious four-quark states [10].

e gqq M

PIG. 2. Process 8 —+ 8'M, as an elementary meson emis-
sion from a quark.

Other pair creation models include the string-breaking
models of Dosch and Gromes [ll] and Alcock, Burfltt,
and Cottingham [12]. In these models, the lines of color
flux between quarks have collapsed into a string, and the
pair is created when the string breaks. This is illustrated
in Fig. 4. In the Dosch-Gromes version of this model, the
created pair has the quantum numbers sPO, while in the
version of Alcock, Burfitt, and Cottingham, the quantum
numbers of the created pair are S~.

Several authors have used similar ideas in describing
decays of hadrons in flux-tube breaking models [13—16].
Here, the pair still has quantum numbers 3PO, but is
constrained to be created somewhere within the flux tube
connecting quarks. The string-breaking picture arises in
the zero-width limit of the flux tube.

B. Nonrelativistic quark model spectroscopy

The nonrelativistic quark model as applied to the
baryon spectrum and decays owes its origins to many
authors. We intend to focus on the model of Isgur and
Karl [17, 18], which evolved from the pioneering work of
others, and refer the reader to the literature for a discus-
sion of the origins of the model [19].

The choice of dynamical degrees of freedom used to
represent a baryon depends on momentum transfer; at
low Q2 they can be taken to be constituent quarks, which
are dressed quarks with effective masses of 200—300 MeV
for u and d. In this model the gluon fields acct the quark
dynamics only by providing [20] a confining potential in
which the quarks move; the eKects of the quark motion
on the gluon dynamics are neglected. At short distances
one-gluon exchange provides the spin-dependent poten-
tial. This model will obviously only be applicable to
"soft" (low-Qz or coarse-grid) aspects of hadron struc-
ture and is best applied to low-mass baryons where glu-
onic excitation is unlikely. It also ignores mass shifts [21,
6] and mixings from couplings to decay channels. One
of the purposes of this paper is test the model's limit

M

0

~~ gBB'M

I"IG. 1. Process B —+ O'M, as an elementary meson emis-
sion from a pointlike baryon.

I'IG. 3. OZI-allowed process B ~ B'M, in a quark pair
creation scenario.
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FIG. 4. Process B ~ B'M in the string-breaking picture.

of applicability by extending the calculation of spectra
and strong decays to highly excited states where these
approximations are expected to break down.

In the Isgur-Karl (IK) model [17, 18] the Schrodinger
equation H@ = E4' for the nonrelativistic three-valence-
quark system is solved for baryon energies and wave func-
tions. The Hamiltonian is

where the spin-independent potential V'~ has the form
V'& = Cqqq/3+ br, z/2 —2a, /3r, z, with r,z

——~r, —rz ~. In
practice, V & is written in terms of a harmonic-oscillator
potential Krz /2 plus an anharmonicity U,~, which is

treated as a perturbation. The hyperfine interaction Vh~

is the sum

as 8'
S, S~b (r,, )3m, m

low-lying negative-parity excited resonances ("Pwaves")
have N = 1 spatial wave functions with either l~ = 1 or
tp ——1; the positive-parity excited resonances have N = 2
wave functions with radial excitations in one of the two
oscillators or "orbital excitations" with l~ + lp = 2 and
L=0, 1, or2.

The Schrodinger equation is then solved for the en-
ergies and compositions of the resonances by first-order
perturbation theory in U and Hhyp The anharmonicity
is treated as a diagonal perturbation on the energies of
the states and so is not allowed to mix the N = 0 and
N = 2 band states. It cannot cause splittings within the
N = 0 and N = 1 bands of nonstrange states, and in
first order it splits up the N = 2 band states in a pattern
which is independent of the exact form of the potential
U. The hyperfine interaction is treated to first order in
both the energies and wave functions. To a large degree
it is the contact interaction (responsible, e.g. , for the 6-
N and Z-A splittings) and the anharmonic splitting in
the N = 2 band which determine the coarse features of
the spectrum,

The main features of the spectrum of the low-lying
baryon resonances [17—19] are then quite convincingly
described by this model. Just as importantly, the mix-
ing of the states caused by the hyperfine interaction is
crucial in explaining their observed strong and electro-
magnetic [5] decays. There are more states predicted by
the model in the N = 2 band than exist in the partial-
wave analyses; the Koniuk-Isgur [5] strong decay analysis
established that the states whose hyperfine-mixed wave
functions allow them to couple to the vrN production
channel largely correspond, in both energy and number,
with the observed states.

II. RELATIVIZED-MODEL WAVE FUNCTIONS
AND SPECTROSCOPY

of contact and tensor terms arising from the color-
magnetic dipole-magnetic dipole interaction. Spin-orbit
forces are neglected, as their inclusion spoils [17] the
agreement with the spectrum (the resulting splittings
tend to be too large). The relative strengths of the
Coulomb, contact, and tensor terms are as determined
from the Breit-Fermi limit of the one-gluon-exchange po-
tential.

Nonstrange baryon states are then written as the prod-
uct of a totally antisymmetric (under the exchange group
Ss) color wave function |~ and a sum PQgP. The
spatial (Q) and fiavor (P) wave functions are chosen to
represent Ss, and the usual quark-spin wave functions
(ys, with 8 = z, z from z S z z) automatically do
so. The sum is arranged to be totally exchange sym-
metric and also implicitly includes Clebsch-Gordan co-
efBcients for coupling the quark orbital angular momen-
tum L = lz + lp with the total quark spin S. The spa-
tial wave functions g are, in zeroth order in the per-
turbations U and Hhyp the harmonic-oscillator eigen-
functions Qiv~M(p, A), where p = (ri —rz)/~2 and
A = (ri + r2 —2rs)/v 6. Positive-parity ground states
[such as N(938) and A(1232)] are described by wave
functions with N = 2(nz + ng) + lz + ti, = 0. The

Although successful, the above approach to baryon
spectroscopy can be criticized on a number of grounds.
In strongly bound systems such as the baryons, where
p/m 1, the approximation of nonrelativistic kinemat-
ics and dynamics is not justified. For example, if one
forms the one-gluon-exchange T-matrix element ioith-
out performing a nonrelativistic reduction, factors of m,
in Eq. (2) are replaced, roughly, with factors of E;
gp2+m2. In a potential model picture there should
also be "kinematic" smearing of the interquark coordi-
nate r,z with a characteristic size given by the Compton
wavelength of the quark 1/m~.

Neglect of the scale dependence of a cutoff field the-
ory has resulted in nonfundamental values of parame-
ters such as the quark mass, the string tension (implicit
in the size of the anharmonic perturbations), and the
strong coupling a, 2. A consistent theory with con-
stituent quarks should give them a commensurate size,
which would also smear out the interactions between the
quarks. The model should use a string tension consis-
tent with meson spectroscopy, and the relation between
the anharmonicity and the meson string tension is unex-
plored. If there are genuine three-body forces in baryons,
they are neglected. The neglect of spin-orbit interac-
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tions in the Hamiltonian is also inconsistent, independent
of our choice of ansatz for the short-distance and con-
Bning physics. There is some evidence in the observed
spectrum for spin-orbit splittings, e.g. , that between the
states 6'2 (1620) and 6*2 (1700).

The model also carries out a first-order perturbative
evaluation of large perturbations. The contact term
is formally infinite unless the above smearing is imple-
mented. The size of the Brst-order anharmonic splitting
of the N = 2 band must be larger than the zeroth-order
harmonic splitting, to get the lightest N = 2 band nu-
cleon [identified with the Roper resonance N(1440)] be-
low the P-wave nonstrange states. This calls into ques-
tion the usefulness of first-order perturbation theory. It
also means that the wave functions of states such as the
Roper resonance should have a large anharmonic mixing
with the ground states. Some of these flaws of the nonrel-
ativistic model are inessential and can be corrected. The
relativized model [22, 1], briefly described below, puts the
ideas of many authors together in an attempt to correct
as many of these deficiencies as possible.

A. Details of the relativized model

The Schrodinger equation is once again solved in a
Fock space made up of valence quarks, with a Hamil-
tonian now given by

H = ) ptz+m2+V,

where V is a relative-position- and -momentum-
dependent potential which tends in the nonrelativistic
limit (not taken here) to

V ~ Vstring + VCoul + Vhyp + Vso(cm} + Vso(Tp} (4)

Here V,&„„z is the potential generated by adding the
lengths of the gauge-invariant (Y'-shaped) string con-
figuration and multiplying by the meson string tension
~o. The string is assumed to adjust instantaneously
to the motion of the quarks so that it is always in its
minimum length configuration; this generates an adia-
batic potential for the quarks [23] which includes genuine
three-body forces. Here Vc „i, Vhyp, V, (, }, and V, (Tp}
are color-Coulomb, color-hyperfine, color-magnetic spin-
orbit, and Thomas-precession spin-orbit potentials, re-
spectively. The color-Coulomb and hyper6ne potentials
are as in the Isgur-Karl model, except that the inter-
quark coordinate r,~ is smeared out over mass-dependent
distances, and the momentum dependence away from the
p/m ~ 0 limit is parametrized.

In practice this smearing is brought about by convo-
luting the potentials with a function

The ~,~ are chosen to smear the interquark coordinate
over distances of O(l/Mq) for Q heavy and approxi-
mately O. l fm for light quarks. The potentials are made

momentum dependent by introducing factors which re-
place m, by, roughly, E;. For example the contact part
of Vh„p becomes P,.&. V,'~„t, with

(m, m, l,
'".""16~ S, . S,

cont

r~ 1

(m, m, l '+" "'
(6)

Here s, „t is a constant parameter, and or, (r,~) is a
running-coupling constant which runs according to the
lowest-order @CD formula, saturating to 0.6 at Qz = 0.

The color-magnetic and Thomas-precession spin-orbit
potentials are smeared and allowed to depend on mo-
mentum in a similar way; in the nonrelativistic limit,
they also tend to the spin-orbit potentials which are cal-
culated (but not included) in the Isgur-Karl model.

Nonstrange baryon states are then written as

Qr, Mn, i,n„i„=) C(lp, lz, m, M —m; L, M)

x ~np lp m) ~nq li, M —m),

where

~np l p m)
1

= JV„,i,o.&(nP)' e P ~ L„', z(n P )Yi, (Ap), (9)

and similarly for ~np lp M —m), where JV„i
2n!/I'(n+ l + s2).

The wave functions of baryon states with given total
spin J and parity P can be expanded in a basis of (implic-
itly L-S coupled) states @g; the energies and wave func-
tions of the baryon states are then formed by diagonaliz-
ing the Hamiltonian H in this basis. Note that the basis
mixes N (I = z) and 6 (I = z) states; the m„= mg
symmetry of H ensures that the eigenvectors are either
6's, with linear combinations PQg totally symmetric
under Ss, or N's, with mixed-A symmetry. The basis ex-
tends to at least N = 6 for positive-parity states [24] and
N = 7 for negative-parity states, giving of the order of
100 substates for each J . Energies are minimized, state
by state, by coarse variation of the oscillator size param-
eter n; however, in a calculation of transition amplitudes
it is necessary to have all states expanded with the same
o, for orthogonality. A measure of the convergence of the
expansion is the n dependence of the energies, which is
relatively weak, and of these amplitudes, which will be
discussed later.

The resulting spectroscopy is comparable to that of
the Isgur-Karl model, with some improvements and some

+=&~4).4x,

where P is one of uuu (6++), uud (p or 4+), ddu (n or
60), or ddd (E ), and the sum is performed so that the
result is only symmetric under exchange of quarks 1 and
2. The spatial wave functions g are made up of solutions
of the two three-dimensional oscillators
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deterioration. This is a nontrivial test, as the model is
much more tightly constrained; various quantities which
were fit in the Isgur-Karl model (such as band centers of
mass) are now predicted, and the same set of parameters
[25] fits alt mesons and baryons. Spin-orbit interactions
are small but not neglected in this model; this is mainly
due to the use of a smaller o,„although there is, as ex-
pected, a partial cancellation of the color-magnetic and
Thomas-precession spin-orbit terms, and the spin-orbit
interactions are suppressed relative to the hyperfine con-
tact term by the choice of e,»i ( e». This smaller n,
yields the same contact splittings when the smeared con-
tact interaction of Eq. (6) is evaluated without resorting
to wave-function perturbation theory (apart from basis
truncation beyond N = 6).

The wave functions which result from this process dif-
fer substantially from those of the Isgur-Karl model, due
to the more realistic treatment of the spin-independent
potential and inclusion of the eonfiguration mixings that
it causes. Since a nonsingular contact interaction with a
smaller eI, is used, and all of the spin-dependent inter-
actions are evaluated more precisely, we can also expect
difFerences in the wave-function mixings due to the hy-
per6ne interaction.

A convenient notation which we will use throughout
this work is to label a quark model state with the oscilla-
tor band at which, by counting arguments, such a state
first appears in the pure-oscillator spectrum. However,
if we refer to an N=3 band state, say, we are not imply-
ing that the state has its wave function confined to the
N=3 band of the oscillator; all oscillator states of a given
flavor, spin, and parity mix with all others (up to some
maximum N) in the model of Ref. [1]. It is likely that
such a state has a large part of its wave function made up
of N=3 band states, but this labeling should be thought
of as merely a convenient way to visualize the counting
of quark model states.

Problems which remain unsolved in the spectroscopy
of the N & 2 nonstrange baryons are the overestimate
of the masses of the Roper resonance N z (1440)Pii and

the Pss state 6z (1600). Although the Roper resonance
is naturally significantly lighter than the other states in
its band, its mass is still overestimated by 60 MeV even
if the N=2 band center of energy (predicted to be 40
MeV too heavy) is adjusted downwards. Richard [26] has
shown that, in a broad class of models, it is impossible for
the mass of this state to become less than that of the P-
wave states. The situation for the two-star Az (1600) is
worse, with the adjusted mass about 150 MeV too high.
There are also discrepancies between the model predic-
tions of the photocouplings of these states [27] and those
extracted from the data. Models exist which describe one
or both of these states as hybrids [28] (or with significant
mixings with hybrid states). It is therefore of interest to
examine their Nvr couplings in a model with the above
relativized-model wave functions.

B. Beyond the N=2 band

One of the advantages of the relativized model of Ref.
[1] is that it can be extended to states which, by count-

ing arguments, must correspond to states which first ap-
pear [29, 30] when the basis is extended beyond the N=2
band. The spectroscopy of some of these states was ex-
amined in Ref. [1], but comparison wi'tll Che data was
limited because an ab initio strong decay calculation was
not performed. This meant that it was only possible to
list the quark model states, but was not possible to make
assignments of these states to those seen in the Nx (for
nucleon and 6 states) or AK production channels. This
deficiency is corrected here for the ¹rstates by calcu-
lating their production amplitudes in the Po model de-
scribed below.

There are several well-established states which corre-
spond to quark model states which first appear in the
N=3 band. The lightest of these are [31] the three-star
6 states A~ (1900)S3I [Che notation ls flavoi'/J /IIlass

(MeV)/Nvr partial wave] and 4& (1930)Dss. Quark
model predictions for the masses of these states are con-
sistently high [29, 30, 1,32] by about 150—250 MeV. There
are two four-star nucleon states which have no N=1 ana-
logues, Nz (2190)GI7 and Nz (2250)GIs whose masses
seem to be quite well described in the spectroscopic mod-
els [29, 1]. There are also two two-star candidate nucleon

resonances Nz (2080)DIs and Nz (2200)DIs, which
are N=3 band recurrences of the familiar light negative-
parity nucleon resonances, and a two-star candidate 4
state Ds2 (2400)Gsg.

If the lightest model state in each flavor and J+ sector
is assigned to these experimental states, a roughly con-
sistent picture of their spectroscopy emerges. In some

cases, as for the two J+ =
z states, this exhausts the

model states in this band, making such an assignment
natural. In other cases there are many light; model states
which could correspond to the observed states and it is
necessary (if we are to determine which states are conven-
tional three-quark states and which are not) to determine
which states couple to Nm.

This necessity becomes even stronger for the states
which first occur in the N=4 band (and above); Chere
are three nucleon states (with a two-star rating or bet-

ter) with J = ~, 2, and 2 which cannot be N (3
band states since they must have L ) 4. Similarly there
are four such 6 states with J = 2, 2, z, and

In Ref. [1] the spectroscopy was limited to states
with J & z, here the masses and wave functions of states
with 2

& J & z are estimated in this model, and as-
signments of quark model states to these experimental
states and candidates are made. At this level of excita-
tion it is likely that gluon dynamics, and decay-channel
mixings and mass shifts play an essential role in the spec-
troscopy of these states. This study, which neglects these
effects, may allow us to pinpoint states which are not eas-
ily explained with simple three-quark model assignments.

III. DECAY' MODEL
A. The model

Our starting point ln modeling the N~ transitions of
the baryons is the ansatz that the operator T responsible
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for the transition is

dpdp6(p;+p)C F e "(' »)~

x ) (1,m; 1, —ml0, 0)

A: s = Jp. +1/2;
J, =s, +Lp„

(:S, = j./2+1/2;
J, =S,+L,

B:st, —Jp, +1/2;
Jg = st + L)„

BC:J~, —J~+J,;

J, = Jq, +E

I IG. 5. Schematic diagram of the decay I3 —+ B'I in the
I0 model. The angular momentum notation is shown. The

decay proceeds through B(123) —+ 12(44)3 ~ B'(124)M(43).

(p' —p )t,'(p')dt(p, )
(10)

Here, C,~ and F;~ are the color and flavor wave functions
of the created pair, both assumed to be singlet, y,z is the
spin-triplet wave function of the pair, and gq(p, —p~)
is the vector harmonic indicating that the pair is in a
relative p wave.

For the transition A —+ BC, we are interested in eval-
uating the transition amplitude M, given by

M = (BClrlA).

The wave functions of the states involved must be written
in comparable second-quantized form in order to evaluate
M. All of the details of this calculation are given else-
where [33]. Our full transition amplitude is given in the
Appendi~. In arriving at this form, we use the notation
illustrated in Fig. 5, and we denote I p = 8, with a sim-
ilar definition for baryon B. We have also assumed that
the decaying baryon is at rest and that the final baryon
has three-momentum k.

There are two phenomenological parameters in our de-

cay model. These are p, the usual Po coupling strength,
and A, which is a new parameter that we have introduced.
In the usual version of this model, A is zero. We have in-
troduced the exponential factor to serve primarily as a
cutoK that can be used to regulate the higher-momentum
components of the created pair's wave function. In prin-
ciple, one may take the Gaussian parameter o, of the wave

functions as a parameter as well, but if our expansion of
the wave functions has converged, our results should be
independent of this choice, which amounts to a choice of
basis. We will demonstrate this insensitivity below.

B. Phase space

To obtain a decay width from the amplitude we have
evaluated, we use

I'(A ~ BC) = ) IM~~~~(Jgci ~~ kp)l @(ABC)

C(ABC) = 2vr
ma

(14)

In their calculation of meson decay widths, Kokoski and
Isgur [14] use the prescription

O(ABC) = 2x
ma

where the m's are effective meson masses, evaluated with
the spin-independent interaction. They argue that this
is valid in the weak-binding limit, where p and vr are
degenerate and rn = 5.1m .

In our calculation of the baryon decay widths, there
are some features that are similar to the Kokoski-Isgur
calculation of the meson decay widths: (i) The baryon
wave functions we are using [1] were obtained in the
same spirit as the Godfrey-Isgur [22] meson wave func-
tions used in the Kokoski-Isgur calculation, and in fact,
many of the parameters of both spectroscopic calcula-
tions were chosen to be the same or similar; (ii) we use
a single-Gaussian wave function for the pion with a size
parameter [34] P = 0.4 GeV, which is one of two values
used by Kokoski and Isgur. We would therefore argue
that it makes sense for us to use Eq. (15) in our calcu-
lation of the decay widths. For the decays R ~ Nn, .

we take m~ = 1.1 GeV, rn =0.72 GeV, consistent with
Kokoski and Isgur, and mR ——mR.

IV. RESULTS AND DISCUSSION

Our approach is to fit the two parameters p and A of
our decay model to the Nvr decay amplitudes of the non-
strange resonances with Particle Data Group [31] (PDG)
ratings of two stars or better. We include only the low-
lying states in the fit, i.e., those with quark model ana-

(12)

where C is the phase space for the decay. Here, a number
of options are available to us. The usual prescription is
to use

( )
Eb(kp)E, (kp)kp

ma

with Eg(kp) = gkz~+rnz~, E,(kp) = gkp2+mz. This
is a "semirelativistic" prescription, since it is usually
used with a matrix element calculated nonrelativistically,
while Eb and E, have been calculated relativistically. A
fully nonrelativistic prescription consists in using
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logues in the N=O, 1, or 2 bands, ~here both experiment
and the model are the most trustworthy. The reader is
reminded that in the relativized model the labeling of
states by oscillator bands is a matter of notation and
does not imply that their wave functions are restricted
to those bands. In order to test for sensitivity to the
harmonic-oscillator size parameter, we have performed
fits for n = 0.5 and 0.6 GeV. The fit is strongly sensi-
tive to p since all amplitudes are simply proportional to
this parameter. With the value of P adopted above, our
best fit gives A O. The optimal value of A is, how-
ever, correlated to the pion size. For example, using the
Godfrey-Isgur effective P = 0.63 GeV requires A 2.0
GeV i for the best fit; for this value of P the momentum
spread in the pion wave function is large and a nonzero
A is required to cut ofF the high-momentum components.

Once these paraineters have been fixed, the model that
results is used to calculate the ¹t.amplitudes of all other
model states for which there are experimental candidates.
Since there are already many states in the N=2 band
which are "missing" in the N~ analyses, it is not inter-
esting to do a complete survey of N=4 band recurrences
of the positive-parity states with J & 7/2, although there
are some exceptions as noted below. However, al/ %=1
band nonstrange states predicted by the quark model are
well established in ¹r,and as we have seen above, there
are several states in the N=3 band which are given good
ratings. Accordingly, for each J & 9/2, we have cal-
culated the ¹ramplitudes for all negative-parity N=3
band model states, up to a given cutoK mass. This mass
is chosen to exceed the mass of the heaviest resonance of
this J+ reported by the PDG. In some cases there are
a small number of states of a given J in the %=3 band,
and so we simply calculate all of their Nvr amplitudes,

A similar procedure is used to limit the calculation
of amplitudes to a workable number of model states in
the case of the X & 4 band states. For all resonances
reported by the PDG we have, as we shall argue below,
assigned reasonable model analogues based on both the
masses and the predicted Nvr amplitudes of the model
states.

Although the signs of these Nx amplitudes are not
experimentally accessible in pion production exerirnents,
the combined signs of the Na vertices and those of the
Np vertices in single-pion photoproduction are. These
photoproduction amplitude signs are examined in the rel-
ativized model in Refs. [35, 36], using the signs of the Nvr
amplitudes calculated here. In most cases the calculated
signs from our Pp model agree with the signs fit to those
of the single-pion photoproduction amplitudes (by their
choice of the signs of reduced ¹ramplitudes) by Koniuk
and Isgur [14]. There are some difFerences, however, and
the ¹t.signs of some states are sensitive to mixings; for
details see Refs. [35, 36].

Ae gNNvr

Since we are attempting to describe the couplings of
baryons to mesons in our model, we should be able to
reproduce a reasonable value for g~~„. In de6ning this
quantity, however, we have to be careful since the usual

definition arises from a completely relativistic treatment
of the nucleon and pion, while the description we have
may best be described as "relativized. " This is crucial
when we consider how the states should be normalized.

In essence, our calculation resembles that of Miller [37].
Our ansatz is to evaluate the amplitude for scattering of
an on-shell pion and an on-shell nucleon into an oiF-shell
nucleon, both in our model and using the usual hadrody-
namic prescription. In order to account for difFerences in
normalizations in the two calculations, we evaluate a "de-
cay rate" for this process, since the choice of phase space
is dictated by the normalization of our states. Equating
the two decay rates and de6ning the amplitude calculated
in our model as

Aiviv = Ap(kp) kp, (16)

wliei e kp is the three-momentum of one of the nucleons
in the rest frame of the other nucleon, we obtain

giviv = vr ~ QMm~m Ap(0).
3

(17)

Here M = m~ + m, and m~ and m have the values
noted in Sec. III.

With this ansatz, we obtain a value of 17.3 for g~~,
in reasonable agreement with the accepted value of 13.4
and consistent with the deviation that we expect in our
model.

B. N' &2 states and our f.ttt

With relativized-model wave functions expanded in
bases with o.=0.5 GeV, and with p = 2.6 and A = 0.0
GeV i, we obtain the fit to the two-, three-, and four-
star nonstrange resonances up to the N=2 band illus-
trated in Tables I and II and Figs. 6 and 7. The data
for the amplitudes are obtained from the total widths
and ¹rbranching fractions quoted by the PDG with
the exception of those of two Pii resonances, the Roper
resonance, and Nz (1710)Pii. In a recent reanalysis]+
of two difFerent sets of Pii partial-wave data, Cutkosky
and Wang [38] have reported total widths for the Roper
resonance of roughly 550—650 MeV, with at least a 30%%uo

uncertainty in their estimate. This is considerably larger
than the 200 MeV "best guess" quoted by the PDG [31].
We have adopted their ¹rpartial widths for these two
states, taking an average of their two Qts. In addition,
the partial-wave analysis of Neer carried out by Manley
and Saleski [39] supports this picture of a broad Roper
resonance.

The resulting y is roughly 76 for 18 degrees of free-
dom. Note, however, that a large part of y arises from
our overestimate of the amplitude of N2 (1720)Pis.
With this state excluded, the same parameters give a
considerably smaller y of 46 for 17 degrees of freedom.
Following Forsyth and Cutkosky [29], a simple measure
of the "theoretical error" of our model is the value of r
which gives a g2 per degree of freedom of 1.0, when added
in quadrature with the experimental errors for each state
i,. For our problem, 7 is defined by
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N
2( ) ) ( 2 i)

g2 +i=1
(18)

where (A, ) are the theoretical predictions and (E, + cr, )
are the measured amplitudes. If Nz (1720)Pis is left
out of the fit, the theoretical error is 1.9 MeV&; with this
state included the error increases to 2.8 MeV&.

In our fit and the predictions that follow, we have used
the wave functions expanded in bases with a harmonic-
oscillator size parameter can=0. 5 GeV. A measure of the
convergence of the expansion of the wave functions is the
sensitivity of the predictions to n. When the amplitudes
are calculated with a=0.6 GeV (and p and A are refitted),
the theoretical error increases slightly to 2.1 MeV& when

(1720)Pis is omitted from the fit and to 3.0 MeV&
when this state is included.

In all of the tables of results that we show, we have in-
cluded an uncertainty with each of the amplitudes. This
is completely distinct from the theoretical error we have
estimated above and arises from taking into account the

uncertainties in the masses of the decaying states. For
two-, three-, and four-star states, the uncertainty in mass
is that quoted by the PDG [31]. For one-star states and
missing states, we use an uncertainty in mass of 150 MeV.
It is gratifying to note that with the exception of a very
few cases, the amplitudes that we present are largely in-
dependent of the masses we use, at least within the range
of masses we have mentioned above.

From the pattern of the sizes of these amplitudes a sim-
ple picture of the contrast between states which are seen
in the Nvr partial-wave analyses and those which are not
(the "missing" states) emerges. The pattern we observe
is similar to that reported by Koniuk and Isgur [5]. In
all cases the states which are missing have smaller am-
plitudes than the (usually lighter) states with the same
isospin and J which are seen. In the case of the two-star
state N2 (2000)Fis, we have made a rather arbitrary
assignment to the lighter quark model state which has a
slightly larger ¹ramplitude. States such as these which
are close in mass and which have similar couplings to the
Nm production channel in our simple model are likely to

TABLE I. Absolute values of the ¹ramplitudes for all ¹ resonances in the N=1 and N=2
bands. Notation for model states is C [J ]„(mass [MeV]), where 4 is the Aavor, J are the spin
and parity, and n is the principal quantum number. States from the partial-wave [31] analyses are
listed (along with their overall rating) in the same row as our model state assignment. "Missing"
states are those with no experimental analogues. Data sources and theoretical errors are discussed
in the text.

Model state

[N 2 ] i (1460)

[N 2 ]2(1535)

[N 3
] i (1495)

[N 2 ]g(1625)

[N ~ ]i(1630)

[N 2 ]2 (1540)

[N-,'+],(1770)

[N 2 ]4 (1880)

[N 2i+]s (1975)

[N 2 ]i (1795)

[N ~~]2(1870)

[N ~~+]s (1910)

[N 2 ]4 (1950)

[N 23+]s (2030)

[N ~ ]i (1770)

[N 2 ]2 (1980)

[N ~ ]s(1995)

[N —,"+]i (2000)

1
(MeV2)

14.7 + 0.5

12.2 + 0.8

8.6 + 0.3

5.8 + 0.6

5.3 + 0.1

203+ '—0.9

4.2 + 0.1

2 7+0.6—0.9

2 p+0.2-0.3
14.1 + 0.1

6 1+0.6—1.2

1 0+0.1—0.2

4 1+0.4—0.7

1.8 + 0.2

6.6 + 0.2

1.3 + 0.3

0.9 + 0.2

2.4 + 0.4

¹t.state

assignment

N 2 (1535)

N 2 (1650)

N~~(1520)

N 2 (1700)

N 2 (1675)

N 2 (1440)

N 2 (1710)

N ~~+ (1720)

N 2 (1680)

N 2 (2000)

N I2+ (1990)

Rating

8.0+2.8

8.7+1.9

8.3+0.9

3 ~ 2+1~ 3

7.7+0.7

19.9+3.0

4.7+1.2

5.5+1.6

8.7+0.9

2.0+1.2

4.6+1.9
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TABLE II. Absolute values of the N~ amplitudes for all D resonances in the ¹=0,1, and 2
bands. Notation as in Table I.

Model state

[a-,' ],(1555)

[a-,' ],(1620)

[b ~+]i(1835)

[a-,'+],(1875)

[A ~+] i (1230)

[4~+]g (1795)

[&-,"].(»»)
[b, —,'+],(1985)

[b,-+] (1910)

[A-, +]g(1990)

[b —,+]i (1940)

1
(MeV&)

5.1 + 0.7

4.9 + 0.7

3 9+0.4—0.7

9.4 + 0.4

10.4 + 0.1

8.7 + 0.2

4.2 + 0.3

3 3+0,8—1.1

3.4 + 0.3

1.2 + 0.3

7.1 + 0.1

Nm state

assignment

~-,' (1620)

(1700)

(1910)

(1232)

(1600)

b, $ (1920)

(1905)

(2000)

(1950)

Rating V'I't t(~R) iv

(MeV&)

6.5+1.0

6.5+2.0

6.6+1.6

10.7+0.3

7.6+2.3

7.7+2.3

5.5+2.7

5.3+2.3

9,8+2.7

mix in the presence of many open decay channels. Such
mixings could easily make one state more likely and one
less likely to be produced (and hence missing), which
would correspond to the results of the partial-wave anal-
yses. A similar mechanism may be in eeet in the case
of the third and fourth Pss model states, for which there
is one experimental analogue 6z (1920)Pss with under-
estimated couplings (see Fig. 7).

For the majority of the resonances in Figs. 6 and 7,
the model gives a reasonably good quantitative Gt to the
production amplitudes. For example the relative sizes
of the Nm amplitudes of the 6& (1232)P33 and its pre-

dominantly radially excited partner Az (1600)P33 are
quite well explained. Our model gives a large amplitude
for the Roper resonance N& (1440)Pii, in keeping with
results of the recent analyses mentioned above. A large
part of y~ arises from our overestimate, by a factor of
about 2.5, of the amplitude of Nz (1720)Pis. In or-
der to establish the source of the large amplitudes for
these states, we have examined their Nm amplitudes in
the sPO model with pure-oscillator and hyperfine-mixed
Isgur-Karl model wave functions [40, 35]. The Roper res-
onance amplitude goes from 10 to 16 MeV& when the
initial and final states are mixed [the overall strength p
is fixed by normalizing to the K(1232) amplitude] in the
manner outlined in Ref. [35]. This result is insensitive
to the choice of smearing parameter A. This amplitude
increases further to 20 MeV& when the relativized model
wave functions expanded with a=0.5 GeV are used.

The Nn amplitude for N z (1720)Pis is quite sensitive
to mixing, going from 14 to 11 MeV~ when the Isgur-
Karl model wave functions are hyperfine mixed and back
to 14 MeV& when calculated with the relativized-model
wave functions. In all cases the Po model overestimates

this amplitude by a factor of at least 2. This overestimate
seems to persist for the other Pis ¹ model states, two of
which are predicted to have widths similar to that of the
observed width of the Nz (1720)Pis, meaning that they
should have been seen in the analyses. Similar results for

both the Roper resonance and Nz (1720)Pis are found
by Stancu and Stassart [16] in the version of their model
which most closely resembles ours.

C. iV=3 band states

The results of applying this model with the fitted
parameters to the Nn' amplitudes of the N=3 band
negative-parity baryons are shown in Figs. 8 and 9 and
Tables III and IV. A striking pattern in the sizes of the
amplitudes emerges in the predictions for the N=3 band
¹ states; the lightest model state of a given J almost
always couples the most strongly to ¹t., and there is
rapid falloK of the amplitudes as the model masses of the
states increase. If, as in Fig. 8, we assign these light-
est model states to the experimental states, we obtain
good agreement between the ¹rwidths extracted from
the data and the model. In all but one case there is a
clean separation, in both mass and the size of the Nvr

amplitude, of the lightest state and the next heaviest. In
the case of the two lightest Nz model states at 2080
and 2095 MeV, it seems unlikely that these states will
be resolved in the partial-wave analyses given their prox-
imity in mass and similar couplings. There is the possi-
bility that decay-channel mixings of these nearby states
cause one state to couple significantly more strongly
than its neighbor. These assignments demonstrate that
the relativized-model predictions for the masses of these
states are too low by roughly 100 MeV.

The situation for the A states at this level of excitation
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FIG. 6. Absolute values of the N~ amplitudes for all N'
resonances in the N=1 and N=2 bands. For each model
state the nominal model mass is listed along with its total
spin, parity, and principal quantum number on the right axis.
States from the partial-wave [31] analyses are shown on the
left axis (along with their overall rating from Ref. [31])aligned
with our model assignment, and the extracted experimental
and theoretical amplitudes are plotted along a line parallel
with the bottom axis for each such state. "Missing" states
are those with no experimental analogues. expt.
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FIG. 8. Absolute values of the N7r amplitudes for the
lightest few negative-parity nucleon resonances of each J in
the N=3 band. Legend as in Fig. 6.
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FIG. 7. Absolute values of the Nor amplitudes for a/l A
resonances in the N=O, 1, and 2 bands. Legend as in Fig. 6.

FIG. 9. Absolute values of the ¹t.amplitudes for the
lightest few negative-parity E resonances of' each J in the
N=3 band and for the lightest few A resonances for J val-
ues which 6rst appear in the N=4, 5, and 6 bands. Legend
as in Fig. 6.
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is more complicated, and the data are less certain. For
the states given two- or three-star ratings by the PDG,
our model predictions for the ¹ramplitudes are some-
what underestimated, but again the lightest state of each
J is the one which couples. In the case of the Az and

states, the two lightest N=3 band states have sim-
ilar (underestimated) couplings in our model, but once
again only one state is resolved in the partial-wave anal-
yses. The consequences for spectroscopy of the model-
state assignments illustrated in Fig. 9 are interesting;
for the lightest two well-established states 6 z (1900)S3$
and 6 z (1930)Dss the model masses are too high by 135
and 225 MeV [41], respectively, in contrast with the 100-
MeV underestimate of the N=3 band N' masses. The
overestimate of the mass of Az (1930)Dss in either the
nonrelativistic or relativized models has led to sugges-
tions that it might be a hybrid baryon (a state with ex-
cited glue) [42]. Although in nonrelativistic models the

[56,1 ] SU(6) supermultiplet to which this state belongs
is lighter than the other N=3 band supermultiplets [43],
suggesting a conventional interpretation of this state, it
is not a particularly light state when a more realistic po-
tential and a more sophisticated treatment of the wave
functions are used [30, 1], and this problem persists [32].

D. More massive states

Figure 10 and Table V illustrate the result of applying
this model to ¹ model states which have I & 4 and so
must first appear when the oscillator basis is extended to
the N=4 to N=6 bands. The pattern established in the
N=3 band is repeated, and we see that the lightest states
in each J+ sector couple the most strongly to N~, with a
rapid falloK in coupling strength as the masses increase.
There is a remarkable agreement, given the necessarily
approximate nature of the model for such highly excited

v'I'~. ~ (BR)n
1

(MeV & )

Nvr state

TABLE III. Absolute values of the N7t. amplitudes for the lightest few negative-parity nucleon
resonances of each J in the N=3 band. Notation as in Table I.

Model state Rating

(MeV& ) assignment

[N ~ ]3(1945)

[N ~ ]4(2030)

[N-,' ]5(2070)

[N-,' ).(2145)

[N ~ ]y(2195)

[N ~ )3(1960)

[N ~ ]4(2055)

[N ~ ]5(2095)

[N-, ]6(2165)

[N ~ ]y(2180)

[N ~ ]g(2080)

[N- ] (2095)

[N ~ ]4(2180)

[N ~ ]g(2235)

[N ~ ]8(2260)

[N ~ ]y(2295)

[N ]s(2305)—
[N ~~ ) g (2090)

[N ~ ]g(2205)

[N ~ ]3(2255)

[N 2 ]4(2305)

[N ~~ ]5(2355)

[N-, ]z(2215)

5 7+0.5—1.6

3 7+0.5

2 1+0.8
~ —1.5

0.4 + O. l

0.1 + 0.1

8 2+0.7

6.2+"
0 2+0.1—0.2

1 5+O. l—0.2

1 7+0.1—0.2

5 1+0.2—O. S

5 2+0.4—1.0

1 9+O. l—0.3

2 0+0.1—0.3

0.4 + 0.1

0.2 + 0.1

0.3 + O. l

6.9 + 1.3

4.0 + 1.1

0.8 + 0.2

0.4 + 0.1

1.1 + 0.3

2.5 + 0.3

N ~ (2090)

(2080)

N- (2200)N

(2190)

N ~ (2250)

7.9+3.8

5.0+2.5

4.5+2.3

7.0+3.0

5.9+1.9
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states, between the predicted couplings for the lightest

N~, N ~, and N ~ states and those extracted from
the partial-wave analyses for resonances with these spins
and parities. The model predictions of the masses of the
positive-parity states are only approximately correct (to
within roughly 100 MeV) given these assignments.

We have included in this comparison the lightest two
N=4 band N z states (the sixth and seventh Pqq states),l+

since there is some weak evidence for a Nz (2100)Pqq
state with a mass considerably higher than the model pre-
dictions for the missing states in the N=2 band. Our pre-
diction for the coupling strength of the sixth Pqq model
state N z (2065) is considerably larger than those of the
N=2 band missing states, making this a natural assign-
ment for this candidate resonance. Our results for the
lightest N=4 band N z states indicate that there should
be a state at roughly 2400 MeV in the F~7 partial wave
which couples relatively strongly to Nx. The model also
has a natural explanation (in contrast with the situation

for the 6 states) for the absence of ¹ resonances with
J+ = z, z~, and z~, the lightest of which all have
quite weak coupling to Nm.

Figure 9 and Table IV also show our results for the
lightest few model 6 states for J values which first ap-
pear in these higher bands. The lightest 6 z model
state (the next lowest state is considerably more massive)
has approximately the right mass and coupling to be as-

signed to the well-established 4 ~ (2420)Hs qq, and the

same is true for the lightest b, z and 6 z model states
and the two-star candidate resonances 4

& (2750)Is gs

and 6 z~ (2950)K3 $s ~ The situation is less certain for

the two-star 6z (2300)H39 although once again the

lightest A~& model state couples the most strongly. The
two lightest model A~~ states above the N=2 band cou-
ple quite weakly to Nvr and so our assignment to the
one-star candidate in this sector is quite arbitrary. In

TABLE IV. Absolute values of the ¹ramplitudes for the lightest few negative-parity 4 reso-
nances of each J in the %=3 band and for the lightest few A resonances for J values which first
appear in the %=4, 5, and 6 bands. Notation as in Table I.

Model state

[A ~ ]g(2035)

[b, ~ ]3(2140)

[b, ~ ]g(2080)

[b. ~i ]3(2145)

[A ~ ] g (2155)

[b, ~ ]g(2165)

[E~~ ]3(2265)

[b, ~~ ]4(2325)

[b, ~~]g(2230)

[b, ~ ]g(2295)

[6~~ ] g (2295)

[b, t+]g (2370)

[b, ~~+]3(2460)

[b, ~+]y (2420)

[b.~+]g (2505)

[4 ~ ]y(2450)

[b, '~~+] g (2880)

[4 '~~+] g (2955)

[D ~~~ ] g (2750)

[4'~ +]g(2920)

[b, 'i +]g(3085)

1
(MeV&)

1.2 + 0.2

31+ '-1.1
+0.1—0.2

2 2+0.1-0.3
5.2 + 0.1

0.6 + 0.1

2 4+0.5-0.7
0.1 + 0.1

2.1 + 0.6

1.8 + 0.4

4.8 + 0.9

1 5+0.6—0.9

1.1 + 0.1

1 2+0.5-0.4
0.4 + 0.1

2.9 + 0.7

0.8 + 0.2

0.2 + 0.1

2.2 + 0.4

1.6 + 0.3

0.4 + 0.1

Nm state

assignment

(1900)

b. q (2150)

b. ~~(1940)

(1930)

(2350)

(2200)

b, -', (24oo)

(2390)

b, -', +(23oo)

E '~'+ (2420)

(2750)

(2950)

Rating vr...(Ba,)~.
1

(MeV & )

4.1+2.2

4.0+1.5

3.2+1.4

5.0+2.3

7.7+5.3

5.2+1.9

4.1+2.1

4.9+2.0

5.1+2.2

6.7+2.8

3.7+1.5

3.6+1.5



2006 SIMON CAPSTICK AND %'INSTON ROBERTS

expt.

*+N13/2+(2700)—

+~~N11/2-(2600)—

~»N9/2+(2220)—

*N1/2+(2100)—

i $ I I
l

i i l
theory

[N15/2+]z(3005)
Q model

— [N15/2+] i(2940)

[N13/2-]z(2845)

[N13/2-] i(2715)

[N13/2+]3(2955)

- [N13/2+ jz(2930)

[N13/2+] i(2820)

[N11/2-]5(2855)

[N 1 I/2-]4(2770)

[N11/2-]3(2700)

[N 11/2-]z(2670)

[N11/2-] i(2600)

[Nl 1/2+]z(2600)

[Nl L/2+], (2490)

[N9/2+]3(2490)

[N9/2+]z(2500)

[N9/2+], (2345)

[N7/2+]4(2455)

[N7/2+]3(2410)

[N7/2+]z(2390)

[Nl/2+]7(2210)

[N1/2+]6(2065)

i i I I l I i I I I

this sector our model appears to consistently underesti-
mate the couplings of known states to ¹r,a pattern that
was already seen in the N = 3 band.

The results described above show in many cases a re-
markable agreement with the data, given the simplicity of
the model. Most noticeably absent from our analysis is a
treatment of coupled-channel effects in the spectroscopy
and decay-channel couplings of these states. These can
be expected to cause both mass shifts and mixings be-
tween the states. As mentioned above, there are sec-
tors where states which are close in mass and which have
similar couplings to the N~ production channel in our
simple model are likely to mix in the presence of many
open decay channels. Such mixings could easily make
one state more likely and one less likely to be produced,
which would help explain why some states with appre-
ciable couplings in our model remain unseen. We have
seen several examples where such a mechanism could be
operating. On the other hand, our model can be consid-
ered reliable for states which are appreciably separated
in mass and coupling strength from other states with the
same quantum numbers and similar energies.

It should be stressed that our results for the ¹rcou-
plings of states which first appear when the bases are
extended beyond the %=2 band are predictions based
on the fit to the lower-lying states. The generally good
agreement of these predictions with the couplings ex-
tracted from the partial-wave analyses makes it rather
hard to decide, on this basis alone, between a conven-

lAN~l (MeU)

FIG. 10. Absolute values of the ¹tamplitudes for the
lightest few nucleon resonances for J values which first ap-
pear in the %=4, 5, and 6 bands. Legend as in Fig. 6.

tional three-quark or hybrid explanation for these states.
However, the discrepancy noted by many authors be-
tween the model predictions and the mass of the well-

established 4 ~ (1930)Dss remains. A remarkable pat-
tern emerges for many J sectors of a given Bavor; the
lightest state in a given oscillator band couples most
strongly to ¹rwith the coupling strengths falling ofI'

rapidly as the masses of the states increase. This sug-
gests a mechanism which correlates a lower expectation
value of the spectral Hamiltonian with a stronger cou-
pling to this production channel.

Our fit to the states below the %=3 band confirms
the results of the recent reanalysis of the Pii partial
wave by Cutkosky and Wang [38] for the Roper reso-
nance with a conventional three-quark description of this
state. On the basis of the ¹rcouplings alone, the same
conventional explanation suffices for A 2 (1600)Pss al-
though the mass of this state is considerably too high
in quark potential models. Our model is unable to ex-
plain the small width of the well-established resonance

(1720)Pis which appears in the partial-wave analy-
ses; there are suggestions in the literature [44] that these
quantum numbers (along with Pii and Pss) are natural
for a low-lying hybrid state. Our results indicate that
this possibility deserves further study.

We close this article by noting that there is much that
may yet be done in the framework of our model. De-
cays of strange baryons as well as decays of nonstrange
baryons to strange final states are of interest, especially
in the light of experiments that are proposed for CE-
BAF. In addition, multipion final states demand some
attention, as they provide large branching fractions for
many resonances. In the model we have described, such
decays could be treated as cascade processes. For a two-
pion final state, for example, one would assume that the
resonance of interest first decayed to something such as
Aa or Np, followed by the strong decay of the 4 or the
p. Such analyses have been carried out [5, 45] using the
elementary meson emission model. We intend to examine
these issues within the framework of our model.
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APPENDIX: TRANSITIQN AMPLITUDE

To begin, we note that momentum conservation yields
a factor 6'(Ko) in the amplitude, and we write

(ac~z'~x) = s(KO) M~
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The final form we obtain is

( 1)J +Jb+t +zb 1—
A +B-C = ~(

)- p. g ~ . g~ (S Lp 8 )(I p5'p Jp)(Sj, lp Bg )(lp Sq Jp)
Jp ) S~ ~8b

Jp 1/2 sb sb Ib Jb
x) (—1)" ~' 1/2 1/2 S, ) (—1)~b S, Ic J,

~~a Sa 1 Sbc Sbc ~bc Jbc

b& c& bc) & a) s 0L2 Sa ~a Ja bc bc bc
(g L L g g L k )

bc
(A2)

Here we have written

TABLE V. Absolute values of the Nm amplitudes for the lightest few nucleon resonances for
J values which erst appear in the %=4, 5, and 6 bands. Notation as in Table I.

Model state

[N ~ ]6(2065)

[N ~ ]7(2210)

[N ~+]g(2390)

[N ~+]3(2410)

[N ~ ]g(2455)

[N ~~+] g (2345)

[N ~+]g(2500)

[N ~ ]g(2490)

[N —",+],(2490)

[N ~ ]g(2600)

[N 2 ]1(2600)

[N —", ],(2670)

[N '~' ]3(2700)

[N —", ]4(2770)

[N ~ ]5(2855)

[N '~ +]g (2820)

[N ~ ]g(2930)

[N —", +]3(2955)

[N —", ],(2715)

[N —' ]p(2845)

[N ~ ]y(2940)

[N —', +]g(3005)

1
(MeV&)

7 7+"—2.9

0 3+"—0.1

4.9+—0.4

0 4+0 i 2—0.4

0.5 + 0.1

3 6+0.9—0.8

0.4 + 0.1

0.6 + 0.2

1.3 + 0.4

0.7 + 0.2

3 3+"—0.9

1.8 + 0.5

0.3 + 0.1

0.2 + 0.1

0.6 + 0.1

2 0+"—0.8

0.2 + 0.1

0.2 + 0.1

1.1 + 0.3

0.2 + 0.1

0.7 + 0.1

0.4 + 0.1

Nm state

assignment

N ~+(2100)

N ~ (2220)

N ~ (2600)

N 2 (2700)

Rating v'&~.c (BR)~
1

(MeV&)

5.0+2.0

8.5+2.0

4.5+1.5

3.7+1.2
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J = I~+ S~ = E~+s~,

with

(A3)

L, = L),.+ Lp. = l, ~ Lp. ,

S, =Sp. + 1/2, ( 4)

s = Jp. + 1/2 = Lp. + Sp. + 1/2,

with similar definitions for B Th. e first four 6-j symbols of Eq. (A2) are necessary for transforming from the usual
angular momentum basis for the baryons, given by Eq. (A4), to the basis of Eq. (A5), which is the more convenient
one for evaluating the transition amplitude. I, Ib„and Sb, are internal summation variables, and X(ABC) is the
Havor overlap for the decay.

The purely "spatial" part of the transition amplitude is

1 ex —F2k2
sf'~, I,„I,b„g, g, I, Qp) = J'(A) (—1) "—

~ N~NbN,

x ) C~'Cq Cqi, Cq (x —~i) ' (x —~2) ' (x —1) 'x '
E1,82,83,84

gg2, $5,$6,$7,$8

Ps 1

(—1) "+~' —. l2 l2 I, E4 E4

&6 L bc &7 &S

3&4bc

A, p, v

r &i+&2+&3+I4+2&+~ i 2P+ —E1 —E2 —E3—E4xkp /'G (A6)

In this expression, X is a normalization coeKcient that results from writing a single component of the wave function
ofAas

A' P2

AIM+ g n 8 (Pl P2 Ps) = ii(AA')"') . (4&~niM —nilI'M)&, ~, (A'&p)'« ~ ~.",+' '(A'pp)&~, (&p)

A2 2

xA' „r„(Ap),)~"e ' I~"„+ ~ (Apg)Yj„(Ap). (A7)

For proper exchange symmetry among the quarks, A' =
~2A and

1 1
Pp — (Pl P2) ~ PA (Pl + P2 2Ps) '

2 ' 3 (AS)

( )
2np+2ng+P p+l&

With these deFinitions, N = A "+ i JV„„g„,with

(A9)

2nt
I" (n+ ~+ -', )

(A1O)

The I„+ are the associated Laguerre polynomialsa+1/2

n 1 2'
Is+i)2( ) ) -( 1)m n+&+ 2

n —m mI '
m=p

while the Yj~ are the usual spherical harmonics.

(All)

g is a phase factor that arises from calculating the Fourier
transform of the configuration space wave functions and
has the value

J' is a Jacobian factor needed to convert from the basis
used in evaluating the space factor s in Ref. [33], to the
basis used in the evaluation of the wave functions we
are using for explicit calculation of the decay amplitudes.
The wave functions of Ref. [1] use

Pp (Pl P2) ~ PA (Pl + P2 2P3) ~ (A12)
2 6

so that both the Jacobian factor mentioned above as well
as a redefinition of the Gaussian parameters of the wave
functions are required in order to use the wave functions
of Ref. [1] with the above expression for the decay arn-
plitude.

The factor 'R of Eq. (A2) is obtained as the overlap of
the wave functions in the p coordinates in the initial and
final baryon. Since we are using a model in which quarks
1 and 2 are spectators (Ep. = I», Sp. = Sp„Jp. = Jp, )
and our basis is fully orthogonalized (n is the same in the
initial and final baryons, so that np ——np, ), this overlap
is always unity. In addition, this means that the Jacobian
discussed above is only necessary for the transformation
in pg.
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The p& @ Dp„(wi, wz, x)I„(Es,Es, E7, ls, I ) term
arises from writing (we define q—:pg. , with a simi-
lar definition for the daughter baryon)

A'q'/2Lg& —B'q,'/2L L —c q /2
Ap 7lc

Dp„„(~i,~„x)e "'q-'r-'e ~'q'~'e ~'q'~'.

~iP»

is the 9-j symbol and J = g2 J + l.
In Eq. (A6)

x = (B'~, + C'~, ) (X'+ B'+ C") ',
F = — A x ~B (x —u)i) +| 2(x —~z)

2

= —(As + B2 + C2).1

2

(A15)

(A13)

When the substitutions q = xk+q, qb = (x —ui)k+q,
q, = (x —cu2)k + q are made, and the integrals over k
and q are evaluated, the expression above results. We
note that it is not particularly enlightening to write out
explicitly the full form of the Dp„„that we have obtained.

In Eqs. (A2) and (A6),

my+ mg m3
(dy = (dg =

m] + mQ + m4 m3 + m4
(A16)

where the subscripts refer to the quark labels shown in
Fig. 5. For the decays that we are considering, uq ——3
and u2 = 2. In addition,

~~ and u2 are ratios of various linear combinations of
quark masses. In general,

a b c a b c
d e f = cfghi d e f
g h i g h i

where

4~(2l + 1)!
(2li + 1)![2(E —li) + 1]!'

(—1)'- - «i
Bee, = EiEz

I 0 0 0 r4z-

(A17)

and 8&
——Lg —lq, E2 ——L, —Sq, E~

——1 E3 E4 = J E4,
and the geometric factor I~ is

I2p(~5~ ~6~ ~7i ~si L') = (—1) (2S)!&s&s&7~s

X
4'(4A+ I)(p+~)! t'2Z p, g, l (2X S, Z, l S. S. 1,

- (2@+2A+ I)!(p—A)! i 0 0 0 r i 0 0 0 r Es E& 2A

4' 4%+3
I2„+i (ls, Es, 87, ls, I ) = 2(—1) +'(2 + I)!gs Esgrgs ) - (2@+2A+ 3)!(p—A)! i 0 0 0 r

&2&+1 Ss Ss S, Ss L,

0 0 0 ls E7 2A+ 1

(A18)
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