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We analyze the electromagnetic amplitude for the leptonic decays of pseudoscalar mesons in the
quark model, with particular emphasis on g —+ l+l (l = e, p). We evaluate the electromagnetic
box diagram for a quark-antiquark pair with an arbitrary distribution of relative three-momentum
p: the amplitude is obtained to all orders in p/m~, where m~ is the quark mass. We compute
Bp = I'(rl ~ l l )/I'(g —+ pp) using a harmonic oscillator wave function that is widely used
in nonrelativistic (NR) quark model calculations, and with a relativistic momentum space wave
function that we derive from the MIT bag model. We also consider a quark model calculation in
the limit of extreme NR binding due to Bergstrom. Numerical calculations of B~ using these three
parametrizations of the wave function agree to within a few percent over a wide kinematical range.
Our results show that the quark model leads in a natural way to a negligible value for the ratio
of dispersive to absorptive parts of the electromagnetic amplitude for rt -+ p+p, (unitary bound).
However we find substantial deviations from the unitary bound in other kinematical regions, such as

~ e+e . Using the experimental branching ratio for g —+ pp as input, these quark models yield
B(q ~ p+p, ) —4.3 x 10,within errors of the recent SATURNE measurement of 5.1+0.8 x 10
and B(rj ~ e+e ) 6.3 x 10 . While an application of constituent quark models to the pion should
be viewed with particular caution, the branching ratio B(n ~ e+e ) 1.0 x 10 is independent
of the details of the above quark model wave functions to within a few percent.

PACS number(s): 13.40.Hq; 12.40.@q; 13.20.Jf; 14.40.Aq

I. INTRODUCTION

The rare leptonic decays of pseudoscalar mesons, such
as wo —+ e+e and rt, K ~ l+l (l = e, p), provide sensi-
tive probes of new physics both in and beyond the stan-
dard model [1]. In the case of the pro and rl decays, a
careful analysis of the electromagnetic contribution to the
amplitude is required in order to isolate a possible con-
tribution from new physics. While the absorptive part
of the electromagnetic amplitude can be reliably deter-
mined by unitarity from experimental data on the two-
photon width of the pseudoscalar, theoretical estimates
of the dispersive part are in some disagreement [2].

An improved experimental measurement of the branch-
ing ratio for q —+ @+p, has recently been obtained at the
g meson facility SATURNE in Saclay [3], with the result
B(rt ~ tt+p, ) = 5.1 + 0.8 x 10 s. This is to be com-
pared with the lower limit obtained by neglecting the
dispersive part of the electromagnetic amplitude, yield-

I'('P ~ l+l ) 1 o.m( )Bp=
I (P pp) 2 ~m~)

where mp is the meson mass, and v is the lepton velocity
in the center of mass:

m2
4 L

fA p
2 (2)

ing the so-called unitary bound B(rl —+ @+p ) & B""'"=
43x10

The SATURNE measurement is significantly closer to
the unitary limit than previous experiments (for a corn-
pilation of earlier measurements see Ref. [4]). It is there-
fore of interest to reconsider the theoretical situation with
respect to the magnitude of the dispersive contribution
to the electromagnetic amplitude in this general class of
decays.

The unitary bound for the leptonic decay of a pseu-
doscalar meson 'P is most conveniently expressed in terms
of the ratio of leptonic to two-photon widths
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To establish our notation, we express B in terms of a
ratio of the amplitudes for the two modes. The invariant
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where the explicit factor of the lepton mass m~ reHects
the helicity flip that occurs over the lepton line in Fig.
1. The width is given by

a4
I'(P ~ l+l ) = m, mpv~I ~z.

8x
The amplitude for the two-photon decay takes the form

M(P pp) = ie e„„~ps~c2q~ qz F,

where ei 2 and qi 2 are the polarizations and momenta of
the two photons. The form factor F is purely real for the
decay to on-shell photons. The width is

(6)

and the form factor R for the relative branching ratio B~
of Eq. (1) follows

B= —.L
(7)

Unitarity implies a connection between ImL and F,
resulting in the following model-independent result for
the absorptive part of R [5]

v (1+v)
The unitary bound on Bp is obtained by assuming that
the dispersive part of B is negligible. In the case of
rl —+ p+p, Eq. (8) implies Bp & Bp"'t ——1.1 x 10
When combined with the experimental result for the two-
photon branching ratio (Ref. [4]), this leads to the uni-
tary limit for B(rl ~ p+p ) quoted above. In general, a
nonvanishing dispersive part leads to a correction to the
unitary bound given by

Bp (Re Rl
B""'" elm R)

= 1+ (9)

Most theoretical calculations of the dispersive part of
R have been based on a pointlike coupling of the pseu-
doscalar to off-shell photons [6], including dispersion re-

FIG. l. Quark model electromagnetic box diagrams for
'P ~ l+l . In a "mock meson" description (Sec. II), the
quark momenta in the center of mass are anticorrelated, p, P =
(p, +p). The lepton momenta are k, k = (ko, +k).

amplitude for the leptonic decay can be parametrized as

4
M('P ~ l+l )

—= mt u(k)p v(k)L,

lations and vector meson dominance. Alternatively, a
pointlike coupling of the pseudoscalar to nucleons or
quarks (which then decay to virtual photons through a
triangle diagram) has also been considered [7]. Recently,
a calculation of q and ~ meson leptonic decays has been
made in chiral perturbation theory [8].

We consider instead a bound-state description of the
quarks which comprise the meson. We evaluate the lep-
tonic decay P —+ l+l at the quark level, which proceeds
through the one-loop diagrams illustrated in Fig. 1. This
approach was considered by Bergstrom [9] in the limit of
extreme nonrelativistic binding, where the bound-state
quarks are assumed to be at rest in the center of mass of
the meson (and the meson mass is assumed to be exactly
twice the quark rest mass). These approximations must
be viewed with caution however when applied to light
mesons such as the g.

In this paper we allow the quarks to have an arbitrary
distribution of relative three-momentum p. We compute
the quark model amplitude for 'P —+ l+l to all orders
in p/m~, where rn~ is the quark mass. A quark model
wave function supplies the distribution of relative three-
momenta for the quark-antiquark (qq) bound state.

This approach is well known in nonrelativistic (NR)
quark models [10—13], and has been used in a variety
of applications, including calculations of the two-photon
widths of light pseudoscalars [14,12]. We make use of two
parametrizations of the momentum space wave function:
a harmonic oscillator form that is widely used in NR
quark model calculations [12, 13], and a new relativistic
parametrization that we derive from the MIT bag model.
We also compare with the extreme nonrelativistic limit
obtained by Bergstrom.

Although the NR quark model and the MIT bag model
both give successful phenomenological descriptions of
light hadrons, we use these models here mainly because
they provide simple analytical expressions for the mo-
mentum space wave function in two limits that charac-
terize a wide class of models. Our purpose in this paper
is to make an estimate of momentum-dependent eKects
in the quark model amplitude for P —+ l+l, rather than
to assess the predictive power of a particular model.

We expect that some of the model dependence inher-
ent in a description of light quark binding may cancel
in the relative branching fraction Bp In fact, ou.r nu-
merical calculations using the above parametrizations of
the wave function agree to within a few percent over a
wide kinematical range. Our results show that the quark
model leads in a natural way to a negligible value for
the ratio of dispersive to absorptive parts of the electro-
magnetic amplitude for g —+ p,+p . On the other hand,
we find substantial deviations from the unitary bound in
other kinematical regions, such as g, vr —+ e+e

The rest of this paper is organized as follows. In Sec. II,
we describe our method for the evaluation of P —+ l+l'
for a quark-antiquark pair with an arbitrary distribution
of relative three-momentum. We evaluate the electro-
magnetic box diagram for the leptonic decay in closed
form. In Sec. III, we present quantitative results using a
harmonic oscillator wave function. In Sec. IV we derive a
relativistic momentum space wave function based on the
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MIT bag model, which we also use to obtain quantitative
results. We summarize our findings in Sec. V.

II. "MOCK MESQN" METHOD

A. General framework

A conventional approach to the evaluation of hadronic
matrix elements is to decompose the bound state into
a superposition of free plane wave quark-antiquark (qq)
pairs [10—12]. An economical and physically reasonable
description of the momentum space wave function is ob-
tained by assuming that the quark and antiquark have
equal and opposite three-momentum in each component
of the plane wave expansion. In this "mock meson" de-
scription, the momentum space state vector lM(P)) for
a meson in the center-of-mass frame [P = (m~, O)] has
the decomposition [12]

.q, c'(p) 2~ lq(p)) lq( —p))

where E„= p + m, and m~ is the quark mass. We

have omitted color, spin, and flavor indices in Eq. (10) for
convenience. We use invariant normalizations through-
out this paper, e.g. , (q(p')lq(p)) = 2E„(2vr) b (p' —p).
The wave packet amplitude C (p) is normalized according
to

d'plo(p) I' = 1.

FIG. 2. Quark model diagrams for 'P -+ pp.

has also been used in other "mock meson" calculations
[15).

In the extreme nonrelativistic limit Eq. (10) implies
that the qq annihilation amplitude is proportional to the
coordinate-space wave function (or its derivatives) at the
origin [10, ll]. This limit has been used for example to
make calculations of heavy quarkonium matrix elements
[16], and was used by Bergstrom in a calculation of P ~
l+l- [O].

Equation (10) has been used to all orders in the qq
relative momentum in nonrelativistic quark model cal-
culations of various matrix elements [12, 13], including
pseudoscalar meson decay to two photons, Eq. (5). The
form factor I' is found by evaluation of the Feynman di-
agrams in Fig. 2 [14, 12]:

(12)

For the ground-state pseudoscalar mesons of interest
here, we assume that the wave function is spherically
symmetric, C(p) = 4(p).

The right-hand side of Eq. (10) is a (zero) momentum
eigenstate, by construction. However, since the quarks
are taken to be on shell, the energies of the individual

qq plane wave components are in general not equal to
the bound-state energy. This energy "mismatch" leads
to several ambiguities in mock meson calculations, in-
cluding the value to be used for the total qq energy run-
ning through intermediate states in the amplitude, and
in phase space factors [12, 13]. A popular prescription
is to identify the total qq energy appearing in the ampli-
tude with the mean energy of the wave packet [12]. In the
case of quark model calculations of the pseudoscalar two-
photon width for example [12], this prescription leads to
a phase space dependence on the meson mass that is in
agreement with phenomenological estimates of the g —g'
mixing angle (see, e.g. , Ref. [4]).

For the purpose of calculating the amplitude A how-
ever, it is crucial to take the total energy of the wave
packet running through intermediate states to be equal
to the physical meson mass (the relative branching frac-
tion B~ is very insensitive to overall phase space factors,
on the other hand). This is necessary in order to obtain
the correct unitarity relation Eq. (8) between the absorp-
tive part of the amplitude for the leptonic decay, and the
(on-shell) two-photon matrix element. This prescription

B. Application to leptonic decays

We derive the mock meson amplitude for 'P ~ l+l
along the same lines which led to Eq. (12) for the two-
photon matrix element:

M('P ~ l+l ) = +2m~ p 1

(2 )sj, 2~ C'(P)~le(P),

where JH~q is the amplitude for a given three-momentum
component of the qq wave packet,

where the logarithm comes from an integration of the
quark propagator over angles (assuming that the wave
function 4 is spherically symmetric). Q is the quark
charge in units of the proton charge. For decays of flavor-
mixed states such as rl, it is understood that an expecta-
tion value of the above expression for F is taken between
the meson flavor wave function and the vacuum.

Equation (12) is obtained by assuming that each plane
wave component of the qq wave packet has the same total
energy [14, 12]. In our case, this means that a factor of
1/m~ is extracted from the quark propagator, which is
contained in the overall factor of the meson mass in Eq.
(12).
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Mqq(p) = —i2v 3e Q
(2vr)4

"' [q2+ ie][(P —q)z+ ie][(p —q)2 —m~+ ie][(q —k)2 —mi2+ i~]
',Q" (q)Lp. (q)

(14)

The factor of 2 above accounts for the equal contribution of the two diagrams in Fig. 1, and ~3 is a color factor. Qi'
is the spin-singlet qq current:

).&6-~(—p) W [8—0 + rnq] V"~ (p) =

where, e.g. , ug(p) is a positive energy spinor of three-momentum p and angular momentum A/2 along a fixed
quantization axis. Li" is the spin-singlet projection of the lepton current

L" = 2i — '
e ""q u(k)p v(k)

mg

[spin-triplet components of L" vanish under contraction with Q"", or under integration in Eq. (13)].
Comparison of Eqs. (13)—(16) with Eq. (3) yields the following expression for the form factor L:

L=16v3 Q
/my

where

EPp 1

(2 )s]z4(&)~ I(P),

1 —q
iver [q + ie][(P —q) + ie][(p —q) —m + ie][(q —k) —m& + ie]

(18)

I(p) =
4 (p. k)2 —rnzmi2

ln(xp)II, + I~, (19)

Il. = 2+in
~

q
~
+2ln(1 —x ) ——1 (xn„) i++,

mqrni l' 1

rnI, P 2

7r2
ln

~
+ Sp(x„) + Sp

~

1 —x„
mqj " ( mq)

+Sp 1 —x„mq&
(21)

This integral can be evaluated analytically. An identity
relating q2 to a linear combination of (inverse) propaga-
tors reduces the integral to a sum of scalar three- and
four-point functions, pius an integral of three propaga-
tors with a factor of qo in the numerator. A fictitious
photon mass is introduced in intermediate calculations
as the scalar vertex and box functions obtained in this
way are infrared divergent (the total integral is infrared
finite). We evaluate the divergent integrals using the ex-
pressions provided in Ref. [17]. After some algebra, we
find

p k — (p k)z —m2miz

mqmt

Sp(x) is the Spence function:

Sp(x) =— ln(1 —t)
t (23)

A crucial intermediate step in our evaluation of the
loop integral in Eq. (18) is the identification of the to-
tal energy of each component of the qq wave packet with
the physical meson mass (i.e. , Po:—mi ). This is nec-
essary in order to satisfy the unitarity relation of Eq.
(8). In particular, without this prescription for the wave
packet energy, the loop integral would acquire unphysi-
cal branch cuts that do not correspond to the "unitarity
cut" through the intermediate photons in Fig. 1. On
the other hand, we do use the actual plane wave energy

p = E„= p~ + m~2 in our final expression Eq. (19) for

I(p). We note that a similar prescription has been used
in other mock meson calculations, such as the two-photon
width [cf. Eq. (12) and Refs. [14, 12]].

The fact that our anal expression for Im l exactly sat-
isfies the unitarity relation of Eq. (8) is a nontrivial check
of the above prescription for handling the ambiguity in
the wave packet energy. Indeed, after an analytical evalu-

As with Eq. (12) for the on-shell two-photon form factor, it is understood that an expectation value of Eq. (17) for L is
taken in the case of a Qavor-mixed state.
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include a plot of Br as obtained by Bergstrom in the
limit of extreme nonrelativistic binding [cf. Eq. (25)
and Ref. [9]]. The harmonic oscillator and ENR results
difFer by less than O'Fo over the entire kinematical region
in mi/m„.

Using the experimental value for the two-photon
branching fraction as input [4], we find B(rl —+ p,+p, ) =
4.3 x 10 s and B(rl ~ e+e ) = 6.3 x 10 s in the har-
monic oscillator model. The result for the decay to muons
is within errors of the recent SATURNE measurement
B,„~ (tlr~ p+p ) = 5.1 + 0.8 x 10 s [3], and is only
0.2' larger than the unitary limit. On the other hand,
the branching fraction to electrons is = 3.6 times larger
than the corresponding unitary limit. We also compute
B(7r ~ e+e ) = 1.0 x 10 in the oscillator model
(about twice the unitary limit), although an application
of constituent quark models to the pion should be viewed
with particular caution.

IV. BAG-MODEL-INSPIRED RELATIVISTIC
WAVE FUNCTION

Although the mock meson method described in
Sec. II A was developed in the context of nonrelativistic
quark models [12, 13], we find that the MIT bag model
[19] can be used to motivate a relativistic parametrization
of Eq. (10). We note in this connection that the momen-
tum space wave packet distribution 4(p) is, in principle,
an arbitrary function, and need not be localized around
momenta that are small compared to the quark mass [12].

To begin with, we must take account of the fact that
bound states in the usual bag model are not momen-

turn eigenstates, while the quark and antiquark in Eq.
(10) for the mock meson have equal and opposite three-
momentum by construction. Our approach is comple-
mentary to the formalism introduced by Donoghue and
Johnson, who introduced a wave packet in order to de-
compose the bag model wave function into momentum
eigenstates [20]. Their wave packet is determined by
normalizing to a particular matrix element, such as f
We choose instead to identify the wave packet amplitude
C (p) in Eq. (10) directly from the Fourier transform of
the cavity wave function.

To begin with, consider the wave function for the
ground state of a single quark in a cavity of radius B:

(r &R),

(27)

where for later use we label the "current" quark mass by
mo, and where uo = (x~/R2 + moz)i)'z. The momentum
eigenvalue x is determined by the boundary condition

R = 0 [19]. JV is a normalization, and Up is a two-
eomponent spinor with polarization A = 6 along the z
axis.

The Fourier transform of a Dirac wave function can be
found by standard methods [21]. Since we can decom-
pose the wave function along an arbitrary complete set of
states, the plane wave spinors in the Fourier transform of
Eq. (27) need not have the same ("current") quark mass
mo as gp(r). We compute a Fourier transform along
plane waves of arbitrary "effective" mass m, ff

..

0 (r) = (p)ug(p)e' '+~(p) ) Sgg (p)vp (p)e ' '
2~.e(p)

(2S)

p j[o(pR+ *)+i o(pR —x) —2jo(pR) jo(x)]~,ir(p) + m, ir

(29)

where ug(p) and vp(p) are plane wave Dirac spinors with angular momentum A/2 along the z axis, and S~~i(p)
U&ter p U~ . The spinors are normalized to utu = —v" v = 2cu, rr(p), where ~,rr(p):—p + m, rr [22].

The Fourier amplitudes P and P depend on the magnitude of the three-momentum p—:!p!.We f'md [23]

4(p) = ~'(0)~(0)
g2~ . px ( 2u),rr(p)

(ciao —mo ) 1/2
x jo(PR —x) —jo(PR+ x) +!

!(~o+mo J

j. -1 2B 1/2i/2 R ~,&(p) + m, rr

+2vr- px 2cu, rr (p)
1/2

x — [jo(pR —x) —jo(pR+ x)] +
~efr(p) + meir cdp + mp

[i 0)u&+ *) + i o(u& —*) —2i D(u&)io (~)]).

(30)

The usual mock meson approach to the calculation of
hadronic matrix elements assumes that the quarks prop-
agate as free particles in intermediate states [12]. For ex-
ample, the explicit factor of the quark mass in the matrix.

I

elements for 'P —+ pp, l+l [Eqs. (12) and (17)] is due to
the helicity flip along an intermediate quark line. In typ-
ical nonrelativistic quark model calculations, the quarks
have large "constituent" masses. This means, for exam-
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pie, that the u, d, and s quark components of the g and g'
flavor wave functions make comparable contributions to
their matrix elements in these models, in agreement with
simple phenomenological estimates of the pseudoscalar
mixing angle (see, e.g. , Ref. [4]).

In typical MIT bag-model calculations however the
quarks are assigned current masses, in particular, m„g
0. In order to obtain a sensible phenomenological de-
scription of helicity-Hip amplitudes in a mock meson ap-
proach, we must assume that a cavity quark propagates
with a mass that is diferent from its "bare" value mo. We
therefore assign a constituent (or efFective) quark mass to
intermediate quark lines, and for consistency we use the
same effective mass in the Fourier transform Eq. (28) of
the cavity wave function.

A rigorous calculation of matrix elements in the con-
text of the bag model would use a cavity propagator for
intermediate quark lines [24]. This was in fact done in
a calculation of ao —+ pp in Ref. [25]. We note that
the cavity quark propagator divers from the free prop-
agator by some terms that act, to some extent, like a
(momentum-dependent) effective mass. A calculation of
the leptonic decay using cavity propagators would be
quite involved however. On the other hand, our exten-
sion of the mock meson method to the bag model per-
mits a straightforward evaluation of the matrix element
incorporating much of the basic physics underlying cav-
ity perturbation theory [this is further illustrated by our
comments below Eq. (32)].

Although the actual value of the effective mass for
"free" quark propagators is somewhat ad hoc, this ap-
proach can nevertheless can be used with justification in
the calculation of the form factor B of interest in this
paper [Eq. (1)]. This is due to the fact that the ratio
between the leptonic and two-photon amplitudes is in-
sensitive to variations in the actual value of the effective
quark mass over a large range. Observe in particular
that the same factor of the intermediate quark mass due
to the helicity Rip appears in both matrix elements [cf.
Eqs. (12) and (17)]. On physical grounds, the effective
quark mass should be on the order of the cavity energy
Mo', we find that Bp changes by only a few percent as
m, ir is varied from 4up to ceo. We use rn, p = us in the
following calculations.

At any rate, we do not regard our results as providing
precise tests of the predictive power of the bag model.
Our interest in this paper is to make an estimate of
momentum-dependent eÃects in the correction to the uni-
tary limit for 'P —+ l+l in the context of general quark
models. In that respect, the bag-model-inspired wave
packet amplitudes provide a very useful comparison with
the harmonic oscillator wave function used in Sec. III. In
particular, P(p) falls off only as 1/p at large p, compared
to the exponential decay of the oscillator wave function.

In this connection, we note that the mock meson wave
packet of Eq. (10) is based on a single-particle descrip-
tion of the quark and the antiquark in the bound state,
which is in general inadequate to describe localized rela-
tivistic states. This problem is shared by the single wave
packet amplitude introduced by Donoghue and Johnson.
A proper connection between the localized cavity wave

function and momentum space eigenstates requires the
use of a Bogoliubov transformation [26], which in this
case involves a mixing among the complete set of cavity
eigenstates.

On the other hand, we find that the negative energy
components of the Fourier transform actually make a
small contribution to the normalization of the ground-
state cavity mode. The cavity wave function Eq. (27)
is normalized to one in the sphere of radius R, which
implies

dp p+ (31)

We End that the contribution of the negative energy com-
ponent to this normalization integral is at most 7% in the
"ultrarelativistic" limit (moR = 0), and falls below 4%
by rnoR 1. We conclude that a reasonable approxi-
mation to the ground-state cavity wave function can be
obtained by truncating the negative energy component
of the Fourier transform in Eq. (28),4 and we therefore
identify C (p) in the mock meson wave packet Eq. (10)
as

The results for B~ in the relativistic wave function
agree with the harmonic oscillator calculation (and with
the extreme nonrelativistic limit) to within a few per-
cent over a wide range in m~/m„, except for large lepton
masses, near threshold. This is evidently related to the
fact that bag-model wave packet has appreciable compo-
nents at large qq relative momentum [cf. C'b8s(p) 1/p
at large p, compared to C' Sc(p) exp( —p )].

For the physical cases of q or vro decays to rnuons or
electrons, m~/m~ is small, and the bag-model-inspired

Note that the normalization of the wave packet cancels in
a calculation of the relative branching fraction BI .

(32)

[cf. Eqs. (11) and (31)].
We note that Re B is very insensitive to the value of

the current quark mass mo. This is due in large measure
to the fact that we use an effective mass m, ir = O(wo)
for intermediate quark propagators. Thus, even for a
massless current quark, the eEective mass is nonzero
(woR c [2.04, oo] for moR E [O, oo]). The logarithmic
mass singularity that would be present in Re B for a truly
massless propagator is thereby avoided. A similar situ-
ation would occur in a rigorous calculation of the bag
model width using cavity propagators.

We include our results for the relative branching frac-
tion Bp(rj —+ l+l ) for the physical g meson using this
bag-model-inspired wave function in Fig. 4. We use the
typical bag-model parameter values [19,27]

m~ =md =0,
m, = 300 MeV,
R = 3.3 GeV
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results B(rl ~ it+@, ) = 4.4 x 10 s, B(rl +—e+e ) =
6.1 x 10 s, and B(7ro —+ e+e ) = 1.0 x 10 7 agree with
the oscillator model to better than 5%%uo.

V. SUMMARY

We have evaluated the electromagnetic box diagram
for the leptonic decay of a pseudoscalar quark-antiquark
pair with an arbitrary distribution of relative three-
momentum. Quantitative results were obtained in three
different models of the bound-state wave function (a non-
relativistic harmonic oscillator model [12, 13], a new rel-
ativistic momentum space wave function that we derived
from the MIT bag model, and in the limit of extreme non-
relativistic binding, analyzed previously by Bergstrom
[9]). Our results demonstrate that the relative branching
fraction B~ = B('P ~ l+l )/B(P ~ pp) is insensitive
to the details of the quark model wave function. In the
case of rl and no decays, the results obtained with the
harmonic oscillator and relativistic wave functions agree
to within 5%%uo.

We find that the quark model leads in a natural way to
a negligible value for the ratio of dispersive to absorptive
parts of the electromagnetic amplitude for g ~ p+p
On the other hand, we find substantial deviations from

the unitary bound in other kinematical regions, such as
g —+ e+e

Using the experimental branching ratio for g —+ pp
as input, these quark models yield B(rl —+ p+p )
4.3 x 10 s, within errors of the recent SATURNE mea-
surement of 5.1 + 0.8 x 10 s, and B(rl ~ e+e )
6.3 x 10 . While an application of constituent quark
models to the pion should be viewed with particular cau-
tion, the quark models considered here yield B(a —+
e+e ) = 1.0 x 10 7, independent of the details of the
model wave function to within a few percent. This is
to be compared with recent experimental data from Fer-
milab, B,„&&(pro -+ e+e ) = 6.9 + 2.8 x 10 s [28], and
preliminary data from Brookhaven B,„~&(pro —+ e+e ) =
6.0 + 1.8 x 10 s [29]. The quark model branching ra-
tios obtained here are comparable to the results of a re-
cent analysis in chiral perturbation theory [8], which re-
quires the experimental value of the branching ratio for
g —+ p+p, as input.
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