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To study plasma photons in relativistic heavy-ion collisions one must account for direct photons
from all possible sources. The aim of this work is the examination of the effect that initial-state
parton distributions in nuclei, distorted to accommodate the European Muon Collaboration (EMC)
effect, will have on the direct-photon spectrum produced relative to the basic @CD subprocesses in
&ee nucleon-nucleon collisions. Since this parton distortion has been quite satisfactorily described
by an expansion of the nuclear state in multiquark color-singlet (cluster) basis states, this "quark
cluster model" should give useful predictions for the reflection of the EMC effect in the nucleus-
nucleus direct photons. The presence of such clusters enhances the phase space available to direct
photons. As a result, the direct-photon yield per nucleon shows significant dependence on the photon
transverse momentum pz. The ratio of the cross section per nucleon for zero photon longitudinal
rapidity in collisions of two similar heavy nuclei to the cross section for collisions of two free protons
exhibits deviations from unity, being less than one for small values of pz, and larger than one for
large values of pz . We investigate the sensitivity of this ratio on the mass number of the colliding
projectiles, on the effective multiquark cluster probability, and on the nucleon or multiquark cluster
gluon distributions for various values of the heavy-ion momentum per nucleon.
PACS number(s): 12.38.Mh, 12.38.@k, 13.85.@k, 25.75.+r

I. INTRODUCTION

ParCon efFects in high-energy nuclear physics have at-
tracted the attention of many particle and nuclear physi-
cists in the past few years. Experiments that involve
nuclear targets have demonstrated significant difFerences
between the behavior of partons in free hadrons and those
bound in nuclei, a result known as the European Muon
Collaboration (EMC) effect [1]. Many contributions to
the EMC efFect have been examined to explain this phe-
nomenon, including nucleon Fermi motion, pions in nu-
clear matter, the redefinition of the momentum fraction
(x) of the parton due to nuclear binding, overlapping of
nucleons to form multiquark clusters, overlapping of par-
Cons in adjacent nucleons, and others [2—4]. All these
potential contributions to the EMC efFect need to be
examined carefully in as many processes as possible to
assess their combined effects with due attention to the
possibility of double counting them.

Expanding the nuclear state in multiquark cluster basis
states has proved to be extremely reliable in describing
a large number of processes beginning with deep inelas-
tic scattering (DIS) on sHe [5]. Among the subsequent
applications are those to the DIS EMC effect with large
nuclear targets [6, 7] and the description of the sHe charge
form factor [8]. The distinction between shadowing and
antishadowing contributions from clusters at small x was

clearly elucidated [7], and shadowing behavior in DIS on
a nuclear target of mass number A was shown to im-
ply shadowing in Drell-Yan (DY) lepton pairs produced
on A [9]. This follows since both processes have similar
sensitivity to the initial-state parton distributions which
reHect the EMC eEect. The DY processes treated include
pairs produced by pion [3) beams and proton [4, 10, ll]
beams. Direct-photon production with proton probes on
nuclei has also been studied [12].

The underlying physics of the multiquark cluster ex-
pansion is most simply illuminated with DIS on the
deuteron ( H) [13,14]. The complete state vector

~
H) =

n~3q) + P~6q) gives the probability of finding the neutron
(n) and the proton (p) isolated as ]3q) clusters or overlap-
ping in a color-singlet six-quark configuration ~6q). Prom
the ~6q) part of H, baryons can emerge backward oppo-
site to the probe direction with large cross sections [15].
The probability that a parton chosen at random from ~H

emanates from the 6q cluster is ~P~ .
For A nucleons the general expansion of the nuclear

state into orthonormal color-singlet basis states ~n3q)
would be difficult to carry out:

IA) = ~I3q)+&16q)+~lgq)+"

For three- and four-nucleon systems, (n)2, (P(~, (p[2, etc. ,
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have been related to microscopic nuclear wave functions,
and a simple parametrization was given for extrapolation
to heavier systems [16]. This parametrization shows that
the probabilities for the higher clusters decrease rapidly,
and so we will keep the first two contributions as rep-
resentative in the following calculations. However, the
values in Ref. [16] based on the assumption of a critical
radius for cluster formation may be underestimated as
nearby nucleons can exchange quarks [17]; such an ex-
tended system will be a color singlet and can be part
of the ~6q) contribution. Further, dynamical support for
6q cluster formation in nuclei has also been obtained in
Ref. [18]. Altogether, then, it seems a reasonable ap-
proximation to a full multiquark cluster expansion of a
nuclear state to take the leading ~3q) and ~6q) configu-
rations as the main source of nuclear partons. Viewed
phenomenologically, the ~6q) term assimilates many es-
sential features of other contributions, including parton
exchange [17] and recombination [19] processes between

~3q) clusters which contribute to reactions with external
probes.

In principle, direct-photon production in fixed target
experiments should give useful information on gluon dis-
tributions [20, 21]. However, nuclear efFects must be
taken into account as the gluon distribution in the nu-
cleus will be shadowed at small x and grow at large z rel-
ative to the distribution in the proton [12, 14]. This same
nuclear distortion should then exist in direct-photon pro-
duction in nucleus-nucleus collisions.

In this work we expand our investigation on direct-
photon production to collisions that involve two high-
energy heavy nuclei. To guide future experiments at the
BNL Relativistic Heavy Ion Collider (RHIC) and else-
where, it is important to know the photon production
rate coming directly from the hard @CD process, in-
cluding modifications due to nuclear effects, in order to
isolate the thermal photons [22] which are predicted to
emerge during the formation of a quark-gluon plasma. In
addition, better insight regarding the poorly determined
gluon distributions may be developed since the latter play
a dominant role in the production of direct photons.

This article is organized as follows. Sections II—IV lay
out the essentials of the quark cluster model (QCM). The
parton distributions in quark clusters are defined and re-
lated to one another by isospin invariance considerations,
and the effective probability for six-quark cluster forma-
tion in a nucleus is discussed. Section V introduces the
kinematics of nucleus-nucleus collisions and the cross sec-
tions for direct-photon production at the partonic and
the nuclear level with reference to the nonperturbative
hadronic Qux factors involved. The form of these func-
tions is given in the Appendix. Section VI presents our
numerical results for the direct-photon production cross
section at zero photon longitudinal rapidity for various
nuclei, energies, and quark cluster probabilities as a func-
tion of the photon transverse momentum (pT). Section
VII extracts the nuclear dependence by evaluating ratios
of cross sections and examines the sensitivity of the ex-
pected nuclear effects to the parameters of our model.
Section VIII gives an interpretation of our results and
discusses the physical observables.

II. PARTON MOMENTUM DISTRIBUTIONS

U~(x) = B~~x(l —x) ~

D~(z) = B~~x(l —z) &

Siv(z) = A~(1 —z)
G~(x) = Civ(1 —x)'".

(2)

(3)
(4)
(5)

The number densities will be denoted by lowercase let-
ters. Results of DIS with electron probes on nucleons and
with neutrino and antineutrino beams on protons suggest
that the exponent of the down valence quark distribution
in the proton is bigger than that of the up valence quark.
A simple assumption in concert with this observation is

b~ ——b~ + 1. (6)

The coeKcients and exponents in these expressions are
determined by reasonable constraints which are given in

A quark cluster is characterized by the number of its
valence quarks, ¹ Clusters are formed by the merging
of nucleons, so that N = 3 for a single nucleon, N = 6 for
a six-quark cluster, etc. Operationally, the merger might
be defined to occur when the two nucleons approach each
other within a critical distance d, = 1 fm. We shall first
consider six-quark clusters formed from protons and ap-
ply isospin (I) relations to obtain the parton distributions
for clusters that involve neutrons as well.

The variable x is de6ned as the fraction of the clus-
ter (~3q) or ~6q)) momentum carried by a particular par-
ton (valence quark, sea quark, or gluon) in a frame of
reference in which the cluster momentum is very large
compared to the intrinsic transverse momentum (A;T ) of
the partons so that the latter can be neglected. This is
true in the laboratory frame of reference in relativistic
heavy-ion collisions, and so x is a relativistically invari-
ant quantity and ranges from 0 to 1. The probability
that a certain parton carries momentum fraction x of its
parent cluster, i.e. , the number density of the parton it
represents, is a function of x. It may also depend on the
factorization scale Q at which the parton distributions
are separated from the perturbative @CD part of the in-
teraction, but this Q2 dependence will tend to cancel in
the ratios we shall calculate for heavy-ion collider exper-
iments. The distributions we are going to use have been
applied to DIS data with leptons and hadrons on protons
and nuclei and successfully describe EMC-type data [4,
7, 9].

A protonlike cluster of type N contains 2N/3 up va-
lence quarks whose momentum distribution is denoted
by Uiv(x) and N/3 down valence quarks whose momen-
tum distribution is D~(x). The ocean of the cluster con-
sists of three species of sea quarks accompanied by an
equal number of antiquarks to maintain electric charge
neutrality. Here, we assume that up and down quarks
and antiquarks in the ocean have identical distributions
S~(z) and the strange sea distribution is S~(x)/2. The
total sea or ocean distribution is then Oiv(x) = 5Siv(x).
The gluon distribution is denoted by G~(x).

We assume simple forms for the momentum distribu-
tions:
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order of decreasing conMence.
(1) Normalization of valence quark distributions. The

valence number densities should give the appropriate
number of valence quarks upon integration over x:

TABLE II. Total momentum fractions carried by par-
tons in three- and six-quark clusters. The superscripts
u, d, v, s, o, and g refer to up, down, valence, sea, ocean,
and gluon, respectively.

dx 2—U~(x) = N, —
3

'dx 1

x D~(x) = N.—
3

dx F(x),

(2) Momentum sum rule Th. e total momentum frac-
tion carried by a parton species is

+N
+N

V+N
8Xp7

+N
+Ng

N=3
0.222
0.091
0.313
0.023
0.114
0.572

N=6
0.190
0.087
0.277
0.024
0.120
0,602

where I" stands for up (u), down (d), ocean (o), or gluon

(g) momentum distributions. The sum of all the total
momentum fractions must be equal to unity:

+N

(3) Dimensional counting rules. The leading behavior
of the up valence quark momentum distribution in the
limit x —+ 1 suggests that 63 ——3. Generalizing this idea
to any proton type cluster, we may write [5, 7]

(io)

(4) Ocean to gluon momentum ratio. We assume that
the ratio of the total momentum fractions carried by
ocean quarks and gluons is independent of ¹ Based on
examination of pion and nucleon data, we shall take [7]

x7v/xw = 1/5

These assumptions are sufhcient to determine the to-
tal momentum fractions carried by the various parton
species.

(5) Sea and gluon distribution powers. In order to de-
termine the complete set of parameters in our model,
we need some further information on the sea and gluon
distributions, which, however, are poorly determined by
current experiments. Various data suggest that a3 ——9.
We shall take a6 ——11. For the gtuon exponents we shall
assume [7]

(12)

We shall take c3 ——6 and c6 ——10 as possible values and
investigate the inhuence of varying these parameters by
+l.

Powers of (1 —x) for the three- and six-quark clus-
ter distribution functions are listed in Table I. The sea
and gluon distributions are proportional to the total mo-
mentum fractions carried by them. Any change in the

exponents of the sea or gluon distributions affects only
their shape but not the corresponding total momentum
fraction. As N increases the total momentum fraction
carried by valence quarks decreases while the total mo-
mentum fraction carried by the ocean quarks and by the
gluons increases. The momentum fractions calculated
with the power values given in Table I are listed in Ta-
ble II. We note that the fraction of momentum carried
by the gluons in a proton is somewhat higher than some
recent [23] determinations. In the ratios we shall present,
however, eKects due to this difference will tend to be very
minor.

III. ISOSPIN INVARIANCE RELATIONS

From protonlike clusters, clusters with neutrons will
be obtained from obvious isospin relations. For u and d
quark distributions in a proton (p) or neutron (n),

Up(x) = D„(x) = Us(x), D„(x) = U„(x) —= Ds(x).

(13)

A cluster of two protons (pp) or two neutrons (nn) be-
longs to the I = 1 state, and the analogous relations to
Eq. (13) are

(x) = D (x) —= Us(x) D (x) = U (x) = Ds(x)

(i4)

A proton and a neutron (pn) cluster may be in a mixture
of I = 1 or I = 0, with the triplet component related to
the (pp)-type cluster. A reasonable assumption for the
I = 1 (pn) cluster is

UV(-) = D&'.l(*) = [U„(*)+D„( )]/2,

where the superscript (1 or 0) refers to the isospin value.
The I = 1 state distributions are assumed the same as
the I = 0 ones for simplicity:

&2V

CN
b"

bN

TABLE I. Powers of (1 —x).

N=6
11
10
9
10

U ( ) = D..( ) = U&'"( ) = D&V&( )
= [U.(*)+D.( )]/2

For fixed N, the sea and the gluon distributions are taken
independent of isospin. This section can also be applied
to clusters with more than six valence quarks.
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IV. MULTIQUARK CLUSTER PROBABILITIES

An important ingredient to this model is the proba-
bility of the formation of multiquark clusters in the nu-
clear medium. In previous work, this probability has
been calculated for clusters of various numbers of valence
quarks based on realistic or semirealistic nuclear wave
functions [5, 16]. Another approach is to consider such
probabilities as free parameters to be fixed by comparison
with data from scattering experiments involving nuclei.
In the case of the deuteron, which can form only a (pn)-
type six-quark cluster, both approaches seem to agree on
a value approximately between 0.04 and 0.05 [14]. This
is also in agreement with data on the production of back-
ward hadrons from deuterium targets [15]. In more mas-
sive nuclei larger clusters may also be formed. We define
the effective probability f for the formation of six-quark
clusters to incorporate the presence of heavier clusters.
A natural question is whether this effective probability
has any approximate, simple dependence on the mass
number of the nucleus (A). If we use the fact that the
nuclear central mass density is approximately constant in
A (with the exception of some light but very dense nu-
clei) and that the volume of the nucleus is proportional
to A, we deduce that the effective probability for two nu-
cleons to overlap suKciently to form a six-quark cluster
is f = c ln A with c = 0.0575—0.0721, where we used 0.04
and 0.05 for the deuteron as starting values [12]. This is
consistent with the weak dependence of cluster probabil-
ities on A given in Ref. [16]. We shall further test the
sensitivity of our results to the value of f

It is desirable to have an estimate of the average num-
ber of the various cluster types in the nucleus because
these numbers enter in cross section evaluations. For
a nucleus with mass number A, atomic number Z, and
"neutron" number N = A —Z, the average numbers of
(p), (n), (pp), (pn), and (nn) type clusters are denoted by
n„, n„, n», n„„, and n„„, respectively. The following
conditions apply to these numbers [3, 24].

(1) Baryon number conservation. The sum of all the
cluster baryon numbers should be equal to A:

n„+n„+ 2n» + 2n„„+2n„„=A. (17)

(2) Ztectric charge conservation. The electric charge
carried by the clusters must add up to the total charge
of the nucleus:

(4) Clusters in targe nuclei. We assume that, for large
nuclei, in which we are mostly interested, the number
of each cluster type is proportional to the corresponding
nucleon number raised to a power equal to the number
of protons or neutrons it contains:

"p="n "»= "pn ="nn
Z Pf ' Z& 2ZPf

(2o)

np + npn + 2n» ——Z.

(3) Probability conservation. The total number of clus-
ters of a particular size must be proportional to the cor-
responding probability:

(1 —f)(n„„+n„„+n„„)—f(n„+n„) = 0. (19)

The factor of 2 in front of ZN refiects the fact that in an
isoscalar nucleus the probability for forming a (pn) clus-
ter is twice as large as the probability for forming a (pp)
or an (nn) cluster. We assume this also for nonisoscalar
nuclei.

A solution that satisfies all these conditions is

(1 —fl (1 —f&
&1+fr ' &1+f) (21)

( f &z' ( f )2Z~
~pl+ fp A ' "" pl+ f) A

( f
pl+ f& A

(22)

(flns=n»+np~+n~~ =
~01+f)i

A.

In the case of the deuteron we take ns = n„„

V. KINEMATICS AND CROSS SECTIONS

In this section we discuss the direct-photon produc-
tion process. In our model there are four possible types
of hadronic interactions in nucleus-nucleus collisions. We
use the index (i) to denote a hadron in the nucleus that
moves in the positive z direction and the index (j) to
denote a hadron in the nucleus moving in the opposite
direction. Those indices take on the value i,j = 3 if the
hadron is a ~3q) state and the value i,j = 6 if it is a ~6q)
state. We categorize those interactions as follows: (a)
nucleon-nucleon interactions (i = 3,j = 3), whose con-
tribution to the cross section is proportional to (1 —f)2;
(b) nucleon-6q cluster interactions (i = 3,j = 6), with
contribution going as (1 —f)f; (c) 6q cluster-nucleon in-

teractions (i = 6,j = 3), contributing as f(l —f); (d) 6q
cluster-Gq cluster interactions (i = 6,j = 6), proportional
to f Cases (b) an. d (c) are similar but must be treated
separately due to their dependence on the kinematic vari-
ables. In Fig. 1 we show the general diagram for case (d).
Since the mass of a 6q cluster is approximately twice the
mass of a nucleon and all Sq and 6q clusters in the nu-

cleus move at the same velocity, the longitudinal momen-
tum of a single nucleon is +B~b and that of a 6q cluster
is +2Pj b. For the present investigation we neglect the
Fermi motion of clusters in the nucleus relative to their
motion in the laboratory. In addition, we argue that in
a given cluster's rest frame the Lorentz-contracted col-
lision partners interact with it in a time frame that is
short compared to the natural response time of the clus-
ter. Hence, we assume the multiple collision process on a
given cluster is a set of independent successive impulses
on the same initial state configuration —akin to a conven-

Finally, the total three- and six-quark cluster numbers
are

(1 —fns=n„+n„=
~

A,&I+ f
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FIG. 1. Six-quark cluster interaction in

nucleus-nucleus collision leading to direct
photon production.

MEN

TATION

tional "frozen nucleus" approximation. We also assume
incoherence in all cluster-cluster collision processes.

Our goal is to estimate the yield of "primary" (direct)
photons, i.e., those emanating from the initial-state mul-
tiple collision process, and to leave out completely those
photons resulting from subsequent scatterings or decay
of secondary fragments. Understanding all photons is of
great interest as some may carry important information
on the possible formation of quark-gluon plasma [22]. It
is our hope that, elucidating the primary photon yield,
we will clarify the secondary photon signals. We argue
that, at the very least, one should obtain a quantitative
understanding of the hard photon yield where the pro-
cesses we treat should dominate before developing strong
conclusions from the softer photons where a multitude of
processes are expected.

The kinematic invariants that pertain to the four types
of hadron interactions mentioned above are

2
8( i) P() + P(i) 2P(') . P(3) (24)

P" (k) (k) P(k) (28)

where (k) stands for either (i) or (j). The partons are
considered massless. The parton level kinematic invari-
ants are

"( ') P" (')+P"{ ) 2P(). P() () () (' )

(29)

and

In the following all the symbols with carets refer to
parton level quantities. The four-momenta of the partons
that participate in the hard process ignoring transverse
momenta are then

2
~P(') . P (25)

2
(i) P(a) P 2P(i) .P (26)

where P(') and P(~) are the four-momenta of the hadrons,

x {&) P

~=(. »)=( ~ p~ p) ~ = p +~p! (27)

is the four-momentum of the real photon, and the squares
of the cluster masses have been ignored.

The longitudinal momentum fraction of a parton rel-
ative to its parent hadron moving in the positive z di-
rection is x('), and 2:{~) is that for a parton moving in
the negative z direction. These fractions are equal to
unity when the parton carries the entire momentum of
its parent hadron.

x0)

FIG. 2. Direct-photon production diagrams for pair anni-
hilation of a quark and an antiquark.
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2
(j) /™(j) p 2p (j) . p —~(j)~(j) (31)

The dominant hard processes that contribute to direct-

photon production are (1) quark-antiquark annihilation

(qq) and (2) quark-gluon Compton-type scattering (qg),
shown in Figs. 2 and 3. To lowest order in @CD the
corresponding differential cross sections, including color
factors, are [25]

.(i,j)
@ &Oqq

d pp
- (&»)dO qg

dsy~

8 2=+-nn, (Q ) (, ,)

n. (Q') = 12'
(33 —2ny) ln (4)

(34)

where ny = 3 is the number of active quark flavors and
A = 100 MeV is the @CD renormalization scale con-
stant. To avoid large logarithmic terms due to higher
order corrections in the hard part of the interaction, we
pick Q = p~T [tests of the sensitivity to this choice sug-
gest (4 to 4)p~z [26]].

In order to calculate the hadron level cross section, we
must convolute the parton level cross sections with the
appropriate probability flux factors for the partons enter-

where n = 1/137 is the electromagnetic coupling con-
stant (the squares of the quark charges are not included
in these expressions). The running strong coupling con-
stant is

ing the hard process. These factors express the combined
probability that the momentum fractions carried by the
interacting partons are equal to x(') and 2:(&). We also in-
clude the squares of the quark charges in these functions.
There are four terms in the hadron level cross section,
each corresponding to one of the four cases of hadron in-
teractions and each includes two flux factors for each hard
process which we refer to as hadronic structure functions.
We assume that there is negligible dependence of these
functions on Q in the kinematic domain we are going to
consider, so that they explicitly depend only on x(') and
x(~). Moreover, and in the ratios we will present, the Q
dependence would largely tend to cancel.

We adopt the notation Hq(q' for the quark-antiquark

annihilation functions and Hqg' ) for those that corre-
spond to quark-gluon scattering. With these considera-
tions the hadron level cross section is

i)j=3,6

d-('i) d-(~i)
dz(') dz(i) H(''»)(z(~) z(i)) g «+ H(~,i)(z(') z(i)) ~' 3

The upper integration limits are equal to unity. One
set of integrations can be performed trivially with the
6 functions in Eq. (33). We choose to do the integra-
tion over 2;(&). This results in a multiplicative factor
1/ x(~)s('~) + t(')) and a constraint that relates x(') to
~(2

~(2) g, (2)

x(j)s('») + t(') (36)

The lower limit of the integration over x(') becomes

g(~)

+min &(~) + s(j,j) ' (37)

FIG. 3. Direct-photon production from quark-gluon
Compton scattering diagrams.

which corresponds to z(&) = 1. The remaining integra-
tions can be done numerically. All the nonperturbative
information is contained in the hadronic structure func-
tions which, also, include the effects of multiquark clus-
ter formation. Their explicit forms are given in the Ap-
pendix.
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VI. CROSS SECTIONS FOR y=0
10

f~„=0.30
I I I I

I
I I I I

I
I I I I

In this section we ap l ourpp y our mo e to numerica y
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'
varian variable is the ratio of
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10

10

P1 b
——200GeV dependence on the factorization scale. Thus, we calculate

the photon production ratio

1 do(A —A)/dsp~
A2 do. (p —p)/dsp~

'

10

10

—1410

—1510

10

KT

.5

FIG. 7. Direct-photon production cross section for vari-
ous nuclei versus xT . The proton (p) case is shown for refer-
ence. Isoscalar (d, Ca) and nonisoscalar nuclei (Be, Au) are
presented.

for gold relative to protons for various values of the six-
quark cluster probability fA„.

our calculations for PI~b = 100, 200, and 400 GeV
show that the curves for R~ vs pT shift towards larger
pT as PIab increases. However, for a given fA„value,
as shown in Fig. 8, the different Pi b curves collapse to
the same R~ vs xT curve, exhibiting xz scaling as xT is
the relevant argument in parton structure functions for
direct-photon production.

We observe that there is a striking xT dependence of
R~, reminiscent of the EMC effect in lepton DlS with
R„( 1.0 at xT & 0.3 to 0.4. The precise xz value at
which the ratio crosses unity decreases as fA„ increases.
There is a local maximum at x~ = 0.07—0.08. For smaller
xT, the ratio decreases rapidly and increases monotoni-
cally for xT & 0.3—0.4, becoming significantly greater
than unity. This efFect becomes more pronounced as fA„
increases, which increasingly contrasts with the curve for
fA„——0.00. The latter decreases monotonically and lies
below unity as xT increases.

Similar ratios to Eq. (39) can be calculated for a light
nucleus in the denominator, e.g. , the gold to deuteron
cross section ratio shown in Fig. 9. Its behavior is similar
to that of the gold to proton cross section ratio. How-

P1 b=iOOGeV, 200GeV, 400GeV
I I I I

f

I I I I

(

I I I I

f
I I I I

I
I I I

section to drop more slowly.
In Fig. 6 we plot the cross section versus xT for

PI b = 200 GeV and for various values of the six-quark
cluster probability f~„Clearly, .as fA„ increases, the
cross section increases. This conclusion holds for all val-
ues of PIab.

The cross section also increases with the mass number
A as shown in Fig. 7 in which we plot it for various collid-
ing nuclei. This dependence enters through the probabil-
ity f The noniso. scalarity correction is also present. The
values of the six-quark cluster probabilities, in this fig-
ure, are chosen to follow the rule f~ = 0.0575 ln A with
fd, = 0.04 (deuteron) taken as a starting point. Similar
curves are obtained for all values of Pj~b.

When viewed on a semilog scale over many decades,
the dependence of absolute cross sections on the presence
of 6q clusters may appear to be rather weak. The same
comment applies to the original EMC eKect. Hence, the
best way to observe these difFerences is through ratios of
cross sections.
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VII. CROSS SECTION RATIOS FOR y = 0

The inhuence of multiquark clusters is more clearly
shown in ratios of difFerential cross sections per unit
mass number for large nuclei relative to those for proton-
proton collisions. Additionally, in ratios, the @CD evolu-
tion Q dependence will tend to cancel as will, therefore,

I I I t l

0 .2 .3 .4 .5
KT

FIG. 8. Cross section ratio for direct-photon production
as a function of xz for various values of fp, „The curves scale.
1n XT.
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FIG. 9. Cross section ratio for direct-photon production
as a function of zT for various values of fA„and fq
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FIG. 10. Cross section ratio for direct-photon production
as a function of zT for various values of the three-quark cluster
gluon exponent c3 for c6 = 10.

FIG. 11. Cross section ratio for direct-photon production
as a function o xT or va

'f f arious values of the six-quark cluster
gluon exponent c6 for c3 ——6.

ever, it crosses over to values greater than 1 at zT = 0.1.
The curve for fd = fA„= 0.00 is also presente for ref-
erence. The values of the six-quark cluster probabili-
ties are consistent with a logarithmic dependence on the
mass number. If the numerator referred to an isoscalar
nucleus (A) and the denominator referred to a deuteron

'
h f = f = 0 00 the curve would be a straight line,with

Th 1 d' tribution functions are the least knoknowne guon is
model. Theand yet an important component of our mode. e

shape of these distributions is determined by the expo-
nents c3 an cg od f (1—z). It is necessary to investigate the
be avior o eh

' f th P~ when these parameters are change
= 10. In Fig. 10from the initial choices c3 ——6 and ~ = 10. n ~g.

we show ~ or A„= . )K„ f f =0.30 cs =10andcs =5, 6, and
7. e o serve a z.. W b that for zT & 0.14 the ratio increases as

& 0.14. Thiscs decreases. The opposite happens for zT ) . . is
effect is quite marked for large xT.

In Fig. 11 we present K„with cs = 6 fixed an
'

ged and letting
= 9, 10, and ll, for f~„= 0.30. For zT & 0.18

increasing cs results in higher R .. The effect is reversed
for zT ) 0.18. The curves in Figs. 10 and ll are plotted
for P b = 200 GeV, but exhibit zT scaling, as impliedfor Pj,b = 2
by Fig. 8.

V'III. DISCUSSION

In this section we discuss the physical interpretation of
our results. For all zT, the quark-antiquark contribution
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X(~ 3) X2XT

2X2 —xT
X] (4o)

x(i=3)
2 —xT

Then, as xT —+ 1,

X2(min) . (41)

X2
X1 ~ 2(min)2x2 —1

(42)

to the cross section is one to two orders of magnitude
smaller than that of the quark-gluon term. Consequently,
we first examine the XT dependence of the cross section
ratio K, shown in Fig. 8 at the limits xT —+ 0 and xT —+

1. Particularly, we are interested in the f part of the
cross sections in ~.

For interactions of two three-quark clusters, we find

(x2 = x~&=3&), from Eqs. (36) and (37),

f ) ' J',)3 dz2gs(zi)~s(z2)/(zzs+ t)

+ f ) f i dx2g3(xl)g3(x2)/(x28 + t)

tends to infinity. This is a phase space efFect whereby
the more massive six-quark clusters can produce photons
more copiously at high pT. Without the presence of the
f2 term, the cross section ratio would flatten out as xz —+

1, tending to a value greater than 1, as shown by Petridis
[12].

In the limit xT —+ 0 the gluon distributions for the
positively moving nucleus are calculated at x1 ——z1 ——0
where they are equal to the product of the total momen-
tum fractions carried by the gluons in the corresponding
clusters and the factor (c3,s + 1). The integration over x2
or z2 in the range from 0 to 1 depends on the exponents
c3 and es which determine the shape of the gluon distri-
butions. Prom the values for these exponents in Table I,

In this limit the integration over x2 covers only an in-
finitesimal range. On the other hand, as xT —+ 0,

1+ 1.204f + 0.362f'
1+2f+ f2 (48)

X2(min) ~ 0. (43)

In this limit the integration over x2 covers the entire
range from 0 to 1.

For interactions of two six-quark clusters, we find

(x (j=sl —
z2)

x (~ 6} Z2XT

4z2 —xT
Z] ) (44)

(&
—6) XT

xIlln 4 —XT
Z2(IIlin} . (45)

Then, as XT ~ 1,

Z2 1
Z1 ~ Z2(min) ~

4z2 —1 3
(46)

In this limit the integration over z2 covers a reduced but
nonzero range. On the other hand, as XT ~ 0,

Z1 ~ 0) Z2(m;n) ~ 0. (47)

In this limit the integration over z2 covers the entire range
from 0 to 1.

Since when xT is small xi (or zi) is also small and when
xT is large xi (or zi) is also large, the hard cross sec-
tion for quark-gluon scattering does not vary much with
xT. Consequently, the convoluted quark-gluon hadronic
structure functions determine the essential behavior of
R„. Then, in the limit xT ~ 1, the f term in R~,

I

a decreasing function of f It sho. uld be noted that this
expression neglects the qq contribution. Clearly, for f =
0, R~(0) = 1, as expected.

We conclude that the small xT behavior of the cross
section ratio depends largely on the shape of the gluon
distributions and the total momentum fraction carried
by gluons.

The presence of the qq annihilation terms can be seen
in nonisoscalar nuclei for f = 0 as shown in the solid
curves in Figs. 8 and 9. These contain more neutron-
type clusters which implies more down valence quarks
whose momentum distributions are concentrated towards
smaller values of the quark momentum fraction x than
those of up quarks. This lowers R~(1).

As we have pointed out, K„(0) is sensitive to the rela-
tive values of c3 and cs. Higher values of these exponents
describe softer gluon distributions. The eKects of chang-
ing c3 and cs should be opposite due to the fact that
the six-quark clusters appear mostly in the numerator of
the cross section ratios (compare the curves in Fig. 10
as c3 increases with those given in Fig. 11 for increas-
ing cs). Momentum conservation balances the behavior
of K„between small and large xT as the exponents are
altered.

The cross section ratio scales in XT implying that the
expectation value of the transverse momentum is propor-
tional to P»b. This re8ects the pointlike nature of the
interacting partons in a way similar to the Bjorken scal-
ing in lepton deep inelastic scattering on nucleons. In
fact we may define the expectation value of pT for zero
photon longitudinal rapidity as

f" --" dp p z,d ~ &(~=o)/d p,
(49)

where E~do&"~&i(y = 0)/dsp~ are the hadronic level cross
sections for interaction between i,j ty pe clusters aft-er in-

tegration over x('} and x(~). The upper integration limits

depend on the cluster kinematics so that separate inte-

I

grations must be performed for the four cluster interac-
tion cases. The lower limit is chosen so that o,, remains
positive. Numerical calculation of (pT ) shows that it is
indeed proportional to Piab. The slope of (pT ) vs P»b is
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approximately 0.056 when six-quark clusters are present
and a little lower when they are not. Upon integration
over pT the total cross section that appears in the de-
nominator of Eq. (49) does not show any special features
as a function of Q b.

The cross section for direct-photon production is af-
fected by higher order @CD corrections. These include
soft gluon emission [27] and bremsstrahlung of pho-
tons [26] ofF quarks. These processes have been stud-
ied thoroughly by other authors in the case of nucleon-
nucleon collisions [28]. Their results indicate that they
do not afI'ect ratios of cross sections significantly.

As a final summary, we note that the cross section ra-
tios for direct-photon production in gold-gold collisions
compared with proton-proton (deuteron-deuteron) colli-
sions plotted in Fig. 8 (9) are dramatically difFerent when
allowing for the presence of multiquark clusters in nuclei.
This source of photon emission in relativistic heavy-ion
collisions is implied by the existence of the EMC efrect
and will have to be taken into account before claiming
evidence of photons from the quark-gluon plasma.
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APPENDIX

The explicit forms of the eight hadronic structure func-
tions that appear in the hadron level cross section are
given as sums of products of the parton number densities
weighted by the numbers of each type of quark cluster
involved and the squares of the quark charges. The no-
tation is introduced in the main body of this article. The
variables x1 and x2 refer to the momentum fractions car-
ried by the interacting partons from the first nucleus,
moving in the positive z direction, and the second nu-

cleus, moving in the negative z direction, respectively.
The superscripts refer to the types of clusters involved.
The subscripts refer to the hard process. Isospin invari-
ance relations have been used in the derivation of these
formulas.

The four hadronic structure functions for the quark-
antiquark annihilation process are

(„) 12 1 2 5 4H '(z1, z2) =-n„+——n„n„+ n„us(x—1) + n„+ —n—pn„+ n„d—3(x1) ss(x2)9 & 9 9 9 & 9 ~ 9
4 2 5 1 1 2 5 4+,(x,) n„'+ -n„n„—+ n'„u-, (x,) + n„'+ -n„-n„+ n„' d, (x,)-

72+-n, ss(x1)s3(x2), (Al)

(A2)

(3,6) 7
~qq (z1 x2) = n6 np + n u3(xl) + np + n d3(zl) + n333(zl) s6(x2)

4 5 1 1 5 4

+nese�

(zl ) —llpp + np + n„—ue (z„s) + —npp + np„+ n„)—de—(zs)—
9 18 9 9 18

63) 4 5 1 1 5 4 7
(x1,x2) = n3 npp+ n„„+—n„„—us(x1)—+ n„„+ n—„„+ n„„d—s(x1) + —nsss—(x1) s3(x2)

9 18 9 9 18 9 6

4 1 1 4
+ness(zl) np + n„us(ze) + n—p + n—„)ds(zs)— —

9 " 9

and, finally,

(6,6) 4 5 1 1 5 4
(zl zs) ns n +

yean
+ n u6(zl) + n + n + gn ) d6(zl) 66(zs)

9 18 9 9 18
4 5 1 1 5 4

+nsss (z1) npp / —np„+ —n—„„us(x2) + npp + —np„+ n—„„ds(x2)—
!

72+—nsss (x1)ss (x2).
6

The four hadronic structure functions for the quark-gluon Compton scattering process are
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H, (zi, z2) = g3(zi) n—„+—n„n„+ —n„u3(z2) + n—„+—n„n„+ n—„d3(z2) + —nss3(x2)(3 3} 4 2 5 12 1 2 5 11 2

12 1 2 5 4 11 2+ np—+ n—pn~ + —n~ u3(zi) + np—+ 9npnn, + 9n~ d3(zl) + nss3(xl) g3(z2)~ (A5)

H&&' (zi z2) = n3g3(zi) npp + np + n ii u6(z2) + npp—+ 18np~ + —n~~ ds(x2) +
9 ness(x2)

4 1 1 4 ll
+ns np—+ n„—u3(zi) + n—„+ n„—d3(xi) + n—ss3(xi) gs(z2),

(6,3} 4 1 1 4 11H ' (xi, x2) = nsgs(xi) —n + n„u—s(x2) + n+ —n„d—3(x2) + —nss3(x2)9 ~ 9 9 ~ 9 9
4 5 1 1 5 4 ll+ 3 n„„+——n„„+—n„„us(xi) + n„„+——n„„+—n„„ds(xi) + —nsss(zi) g3(z2),

(A7)

and, finally,

(6,6} 4 5 1 5 4 ll
(zl&z2) = nsgs(zi) 9npp+ Snpn+ nnn, us(z2) + npp+ npn+ nnn ds(z2) + —nsss(*2)9 18 9 9 18 9 9

4 5 1 1 5 4 11
+n6 npp + npn + nnn u6(zi) + npp + npn + nnn ds(zl) + n6s6(zi) g6(z2).
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