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Gottfried sum rule and the light-Savor content of the nucleon
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We discuss the implications for the light-flavor content of the nucleon of the recent experimental re-
sults of the New Muon Collaboration (NMC) on the Gottfried sum rule. We perform a phenomenologi-
cal analysis of the data and of the symmetries of the quark sea in the nucleon. We show that a
discrepancy between the data and naive parton model expectations as seen in the NMC data is also indi-
cated by measurements of the nucleon cr term. We compute the isotriplet value of the o. term through
the flavor-singlet scale Ward identity, and we use the result to fix the light-flavor content of the nucleon.
We discuss the possibility of reproducing the experimental results in various theoretical frameworks,
both within effective models of the nucleon and on the basis of perturbative or nonperturbative QCD.

PACS number(s): 13.60.Hb, 11.30.Hv, 11.50.Li, 12.40.Aa

I. INTRODUCTION

where q;(x) [q;(x)] is the momentum distribution of the
ith quark [antiquark] parton fiavor. Notice that n, indi-
cates the total number of quarks plus antiquarks of flavor
i [3];as we shall discuss extensively in the sequel, this is a
scale-dependent quantity [n; =n;(Q )].

The difference of the first moments (1) measured with a
proton and a neutron target,

F((x)—Fz(x)
SG = dx

0 x
(3)

gives a handle on the isospin asymmetry of partons in the
nucleon. If one computes the difference (3) by including
only valence quarks in the sum over partons (1), one gets

SG(valence) =e„—ed =
—,',

the difference of the square charges of the up and down
quarks. Equation (4) is known as the Gottfried sum rule.
This is usually justified [2] by assuming that the sea, be-
ing isotopically neutral, cannot contribute to a proton-
neutron difference; previous data, affected by large exper-
imental uncertainties, supported this conclusion. The
NMC data [1]instead lead to a value

SG =0.24+0.016 .

A recent experimental determination of the proton-
neutron difference of structure functions I'z, performed
by the New Muon Collaboration (NMC) [1], has pointed
out yet one more instance of disagreement between naive
parton model expectations and deep-inelastic scattering
data. As is well known [2), the first moment of F2(x) in
the parton model is equal to the sum of the electric
charges squared, e;, of all partons in the target:

F2(x)
dX = O'I. fl;

I

n;= dx q;x+q;x

This value is obtained at Q =4 GeV by extrapolating to
the full 0 ~ x ~ 1 range the value

SG [0.004 ~ x ~ 0.8 ]=0.227+0. 021 (5')

obtained from the measured x region. The extrapolation
to small x is done by assuming Regge behavior. The neu-
tron structure function is obtained, neglecting shadow-
ing, as the difference between deuteron and proton struc-
ture functions.

Both the extrapolation and the neglect of shadowing
may be questioned. On the one hand, one may obtain
from the data values of SG which agree with the sum rule
(4) if one assumes Regge behavior to set in at a much
smaller x value than usually taken [4]. Then, the small-x
behavior of the valence-quark distributions can be deter-
mined from the data, and in particular, if the distribu-
tions are assumed to rise more steeply with x than pre-
dicted by Regge behavior (which would then set in, if at
all, only for extremely small x), the contribution from the
small-x region to SG may be made larger, possibly recon-
ciling the data with the naive parton model prediction (4).

On the other hand, because shadowing is a small-x
effect, it may potentially give a large contribution to the
first moment (1). If shadowing is taken into account, the
neutron structure function is larger than the deuteron-
proton difference of structure functions, thus yielding a
yet smaller value of SG [Eq. (3)]. Two computations of
the shadowing correction to SG [Eq. (3)] have appeared in
the literature [5,6], in rough agreement with each other.
The correction to SG [Eq. (5')] for the measured range of
x is computed to be b.SG = —0.043 [5] or b,SG = —0.026
[6], the difference being due to details in the parametriza-
tion of the diffraction dissociation cross section which is
used to estimate the amount of shadowing. In Ref. [5] a
further correction ASG = —0.038 is estimated to apply to
the unmeasured x &0.004 region. It is perhaps worth
noticing that these sizable corrections are obtained from
a rather small value of the total shadowing [about 3 —4%
of the (virtual) y Dcross section] due-to the fact that the
effect is concentrated at small x (typically x -0.01) [7].
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Thus a conservative estimate of the shadowing correc-
tion to SG [Eq. (5)] leads to the approximate value

S~=0.2 . (5")

Such a small value would be accordingly harder to recon-
cile with the sum rule (4), even by modifying the small-x
extrapolation. Resolution of these problems rests ulti-
mately with experiment [4]; in the sequel we shall assume
the result of Ref. [1],as given in Eq. (5), to be correct, al-
though we shall also take the determination (5") into ac-
count.

Then, if we accept the experimental result, we must
conclude that the light-Aavor content of the nucleon is
very different from the content usually assumed accord-
ing to parton model expectations. This conclusion is
rather striking both from the phenomenological and from
the theoretical point of view. On the one hand, conven-
tional parton intuition is embodied in all the phenomeno-
logical parametrizations of parton distributions which are
used in analyzing experimental data. On the other hand,
a dramatic violation of the light-Aavor symmetry of sea-
quark distributions presents us with a theoretical puzzle
which we would like to understand in terms of QCD or at
least effective models of the nucleon. It is the purpose of
this paper to address these issues by trying to establish as
accurately as possible what the experimental result (5) en-
tails for the light-Aavor content of the nucleon, and to see
how this fits in the framework of QCD and of efFective
models of the nucleon.

In Sec. II we shall discuss the SU(2) light-fiavor sym-
metry structure of the nucleon sea quarks at various ener-
gy scales. In Sec. III we shall show that whereas Eq. (5)
alone is not su%cient to fix uniquely the up and down
content of the nucleon, this may be done, within the par-
ton model, through the knowledge of a different, experi-
mentally accessible quantity, namely, the nucleon o. term.
In Sec. IV we shall determine the isotriplet matrix ele-
ment of the latter (i.e. , the difference of its proton and
neutron values) by means of a Ward identity satisfied by
the trace of the energy-momentum tensor in QCD, and
we shall use the result to perform a phenomenological
analysis of the pattern of flavor-symmetry violation in the
nucleon sea. Finally, in Sec. V we shall discuss the Aavor
content of the nucleon in the framework of the Skyrme
and bag model, and we shall see how perturbative and
nonperturbative mechanisms for sea-quark generation
compare to the data. Conclusions are drawn in Sec. VI.

SG=(e„n, +ednd l)a=i= e(n " )+ed(nd nd) (6)

where J =1 indicates the isotriplet matrix element, i.e.,
the proton-neutron difference; u and d label up and down
quarks, while n and p label neutron and proton matrix
elements; and we assumed that the content of strange and
heavier fiavors in the proton and neutron is the same (we
shall come back on this assumption in Sec. IV). Equation
(6) may be conveniently rewritten as

SG =—[(e„+ed )(n„+nd )+(e„—ed )(n„—nd )] ly

=—'[—(n„+nd )+—'(n„—nd )]ly

If we assume isospin symmetry [SU(2)~, henceforth],
then the coefficient of —, in Eq. (7) vanishes because it is
the isotriplet matrix element of an isosinglet quantity. In
terms of parton content SU(2)z implies

n~=n„", nq~=n„",

which entails

SU( 2 )~
sG '=

—,'[—,'(n, nd )]lr=i
=

—,
'

[ 1+[ni'(sea) —ndi'(sea) ]], (10)

bated by the fact that (as we shall discuss in detail in the
next section) there exists no leading-twist operator whose
matrix elements measure SG [Eq. (3)], or more generally
the first moments (1). Thus, one must assume that the
parton picture makes sense in the first place in order for
the quantity (3) to have any physical meaning. This is the
point of view that we shall take in the sequel of this pa-
per. Of course, one could take the opposite point of view
[8], that parton model sum rules are meaningful only to
the extent that they follow from the operator-product ex-
pansion applied to deep-inelastic scattering, and conclude
that the discrepancy between the parton prediction (4)
and the experimental value (5) indicates that a parton
model computation of SG is not meaningful. In view of
the wide success of the QCD-improved parton model, we
feel that this conclusion is unwarranted.

Then, the Gottfried sum rule (4) is a consequence of a
specific assumption on the separation of valence and sea
contributions to the first moment (1), namely, that sea
contributions cancel in the difference (3). This is true
only if the nucleon sea satisfies two different SU(2) sym-
metries. Using the parton determination of the erst mo-
ment of F& [Eq. (1)] in the definition (3) of SG leads to

II. THE SU(2) SYMMETRIES OF THE NUCLEON SEA

The Gottfried sum rule (4) is a parton model sum rule,
and not a consequence of QCD (unlike other parton mod-
el sum rules) in that it does not follow from a conserva-
tion law (such as the Adler sum rule), nor from the sym-
metry properties of an operator (a current) whose matrix
elements are related to the quantity measured by the sum
rule (as the Bjorken sum rule). In particular, there is no
conservation principle to protect the value (4) computed
from valence partons alone; indeed, radiation of a quark-
antiquark pair of Aavor i by a gluon produces a contribu-
tion of 2 units to n; [Eq. (2)]. These problems are exacer-

where in Eq. (10) we have separated the valence and sea
contributions to the sum rule. The valence-quark com-
ponent of the nucleon satisfies by definition SU(2)i [thus
it never contributes to the coefficient of —,

' in Eq. (7)];
hence, Eq. (8) may be viewed as a requirement on the nu-
cleon sea.

SG reduces to its valence value (4) if one assumes the
sea to satisfy both SU(2)i and a further SU(2) symmetry:
namely,

n~ =n&~, n„"=nd,

which we shall call Q spin, i.e. , isospin at the quark (rath-
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er than nucleon) level, or SU(2)&. If we assume SU(2)&
alone, and not SU(2)z, then the coefficient of —,

' in the sum
rule (7) reduces to its valence value, but there might be
still a contribution from the sea in the coefticient of 9.

SU(2)S g= ,'+—95(n—~ n„")—. (12)

The most general parametrization of Sg [Eq. (7)] is
thus

Sg =
—,
'

( 1+b Q) + —,
' bI, (13)

where b, Q and b,I denote, respectively, the violation of
SU(2)g and SU(2)i:

b Q: '[n,„(—se—a) —ng(sea) ] li =, = ,'(n—„ng—) li= i
—1,

(14)bI—:—,'(n„+nq)li

The experimental value (5) may be explained by assuming
a violation of either, or both, of the symmetries SU(2)i
[Eq. (8)] and SU(2)& [Eq. (11)];there is no a priori reason
to favor either symmetry, apart from the naive expecta-
tion that SU(2)i should be better established. Physically,
the experimental value (5) may be understood as a conse-
quence of the fact that the flavor asymmetry of the nu-
cleon sea is opposite to that of the valence quarks, thus
leading to a negative EQ, or of the fact that the proton
sea is smaller than the neutron sea, thus leading to a neg-
ative AI.

It should be noticed that, whereas the first moment of
any quark distribution [Eq. (1)] is ill defined, it is quite
conceivable that the quantities introduced in Eq. (14) are
all well defined, and generally nonzero. This can be Un-

derstood as follows. Quark distributions are expected to
behave as q(x) —1/x as x~0 on the basis of Regge be-
havior (see, e.g., Ref. [2]). Thus q(x) admits an expan-
sion q(x) =qo/x +q, +qzx + in the neighborhood
of zero, and b,Q and b,I are finite if qo satisfies Eq. (11).
Now, the value of qo is controlled by the Pomeron contri-
bution to the structure function F2(x) as x ~0; since the
Pomeron is charge-conjugation even and carries zero iso-
spin it follows that the quark distributions satisfy both
SU(2)& and SU(2)i as x —+0. However, no constraint is
imposed by the small-x behavior on the higher-order
coefficients, which may not satisfy Eq. (11). This leads to
finite but nonzero values of AI, AQ.

In view of the possibility of understanding the source
of possible isospin violations, it is interesting to discuss
the scale dependence of the various terms in Eqs. (7) and
(13). Indeed, the two terms on the right-hand side (RHS)
of Eq. (7) are both scale dependent; also, their scale
dependence is not the same. This means that the pattern
of SU(2)-symmetry breaking depends on scale. Now, the
two combinations n„+n& which determine the values of
b,I and EQ [Eq. (14)] renormalize both multiplicatively
(see, e.g. , Ref. [9]). It follows that if EI is nonzero, its
value is scale dependent, whereas if it vanishes at some
scale, then it remains zero at all scales. The value of b Q,
instead, cannot be zero at all scales because the quantity
which is renormalized multiplicatively is I+6,Q; other-
wise stated, the value of EQ is scale independent only if

CX

dt 2m
(n„+ng)ly i= A P(n„+ng)li

+ —A[g2n, li=i, (iS)

where A, are first moments of splitting functions, f is the
number of Aavors, and n is the number of gluons, i.e.,
the first moment of the gluon density, ng

=
JOG (x )dx (we

follow the notation and conventions of Ref. [9]). At one
loop A P =0. Because the gluon distribution is expected
to behave at small x as the quark distribution, the isotrip-
let n does not diverge (although the isosinglet does);
then, if we assume that the isotriplet gluon number does
not vanish either, the evolution of lD is nontrivial.

Complete integration of Eq. (15) would require simul-
taneous diagonalization of the corresponding equation
for n . However, this is unfeasible because the evolution
equation for the gluon distribution is inconsistent with
the expected behavior G(x)-1/x; rather, it predicts a
stronger growth at small x which violates unitarity, indi-
cating a failure of the leading-logarithm approximation
under which the evolution equation is derived (see, e.g. ,
Ref. [11]). This is refiected by the fact that the first mo-
ments of the gluon splitting functions diverge, thus lead-
ing to an infinite value of the anomalous dimension of the
quark number, too. At very small x, though, the
Altarelli-Parisi equations should be replaced by nonlinear
equations [12], which are not amenable to the standard
treatment in that they do not factorize upon taking mo-
ments and can in general only be integrated numerically.

Nevertheless, we may compute the evolution of AI
from Eq. (15) if we assume the isospin violation in the
first moments of the gluon distributions to be proportion-
al to that of the quark distributions, i.e.,

(n„+n~ }r i =2k,n

Then Eq. (15) can be integrated immediately:

bI(Q )=bI(QO)exp(id f s),

d(g 1 A(g 1
ln(Q /A )

2~fb '
in(Q,'/A')

(16)

(17)

AQ = —1 [i.e., if the SU(2)& asymmetry of sea quarks ex-
actly compensates that of valence quarks].

Furthermore, the evolution of AI takes place at one
loop, whereas that of bQ only starts at two loops, be-
cause bI evolves as the singlet quark number and b, Q as
the nonsinglet one. At one loop, evolution takes place
through emission of one gluon; thus, it does not change
the nonsinglet number, although the singlet number may
evolve due to gluon admixture. At two loops a quark can
emit a quark-antiquark pair through gluon radiation; this
determines the evolution of the nonsinglet number be-
cause the emission kernel is di6'erent according to wheth-
er or not the final-state quark-antiquark pair has the
same fiavor as the starting quark (due to Fermi statistics)
[10].

The evolution of AI is thus simply obtained by taking
the first moment of the singlet Altarelli-Parisi equation,
i.e.,
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where b is the lowest-order coefficient of the P function
[9]. With f =3 we get df =0. 15. Unless the value of A,

in Eq. (16) is exceedingly large, this leads to a moderate
dependence of EI on scale. For example, taking A, = 1,

b,I(4 GeV ) =1.066I(1 GeV ) . (18)

Of course, a large value of AI could be obtained due to
strong scale dependence in the nonperturbative region.

The two-loop evolution of b,Q, instead, is given by
[9,10]

(2)

I+AQ (Q') = 1 — [a,(Q') —a, (QO)]

X [I+A,Q (Qo)], (19)

where b is as in Eq. (17) and the value of the two-loop
anomalous dimension of the nonsinglet first moment of
quark distributions is [9,10] yP'= —8. 1X10 . Because
the anomalous dimension is very small, the Q depen-
dence of b,Q is negligible for practical purposes; for in-
stance, if b, Q(QO)=0 the asymptotic value b,Q(~) at-
tained as Q ~oo is just b, Q(ac7)= —0.01a, (Qo) [13].
Also,

bQ(4 GeV )=0.999bQ(1 GeV ) —0.001 . (20)

III. THE o TERM AS A FLAVOR PROBE

The discussion in the previous section shows that, at a
fixed value of Q, it is possible to disentangle the amount
of violation of SU(2)& and SU(2)I only through a
knowledge of the experimental value of a different linear
combination of n; [Eq. (2)]. This is nontrivial because
there is actually no leading-twist operator associated with
the first moment (1) of the structure function F2, i.e., the
total quark number (2) cannot be expressed as the for-
ward nucleons matrix element of a twist-2 operator. This
is a consequence of the fact that at leading twist the nth
moment of a structure function in the scaling limit is pro-
portional to the forward matrix element of the spin-n
contribution to the operator-product expansion. Howev-
er, an operator with odd (even) spin is odd (even) under
charge conjugation, while the matrix element which
yields the electroproduction structure function
F2(x)=x g, e, [q,.(x)+q;(x)] is charge-conjugation even.
It follows that there are no odd-spin contributions to this
matrix element, and the odd moments [including the first
moment (1)] may only be constructed by analytic con-

Thus, QCD evolution does lead to negative b,Q, as re-
quired to explain the data; unfortunately the effect is
negligibly small.

Whereas the Q dependence of both the light-fiavor
symmetry-violation parameters b, Q and b,I is too weak to
account for the violation of the Csottfried sum rule, it
may be strong enough to be measured experimentally. In
particular, the scale dependence of the ratio of structure
functions Fz /I' z may be a sensitive probe of the values of
b, Q and b,I. Such a dependence is seen in the data of Ref.
[1];more precise measurements over a wider range of Q
could provide independent evidence for the violation of
SU(2)I and SU(2)&, and could allow disentangling the rel-
ative amount of violation of the two symmetries.

tinuation from the even ones (see Ref. [10]).
However, there does exist a (higher-twist) operator

whose matrix elements are related to the total number of
quarks plus antiquarks n; [Eq. (2)], namely, the fermion
bilinear pg, which has charge-conjugation properties op-
posite to those of the charge f g and is twist 3. The
identification of the nucleon matrix elements of this
operator with the quark number (up to a universal multi-
plicative renormalization constant) has been suggested in
Ref. [14] on phenomenological grounds. Indeed, expand-
ing pit in a plane-wave basis (and using Bjorken-Drell no-
tation) gives

it7$= f d k—g8'(k, s)++M(k, s, s') (21)
$ $7$

X(k, s) =b (k, s)b (k, s)+dt(k, s)d (k, s), (22)

M(k, s,s')= A (k, s, s')b (k, s)d ( —k, s')+H. c. , (23)

A(k, s, s')=e ' '2s'ut(0, s) u(o, s') . (24)
m

The operator X [Eq. (22)] is recognized as that which
counts the number of quarks plus antiquarks; hence, up
to the factor of m/F. (due to the fact that gg is a Lorentz
scalar) the matrix element of the first term on the RHS of
Eq. (21) is equal to the total quark plus antiquark num-
ber. The operator M [Eq. (23)], instead, is nondiagonal in
quark number; it creates or annihilates a quark-antiquark
pair, thereby generating transitions between different
Fock components of the nucleon wave function.

It follows that the identification of the operator (21)
with the quark number is correct to the extent that the
contribution of the operator M [Eq. (23)] to its matrix ele-
ments is negligible; the factor I /E may then be approxi-
mated by a constant. These approximations are widely
used in model computations (see, e.g. , Refs. [15,16]) and
seem to be phenomenologically successful (see Refs.
[14—17]). On phenomenological grounds, we may thus
use the operator Pg [Eq. (21)] as a probe of the quark
content of the nucleon, as suggested in Ref. [14], and as-
sume its forward nucleon matrix elements to be propor-
tional to the quark number [18]. Notice that the constant
of proportionality is scale dependent: the operator gg
[Eq. (21)] evolves as an inverse mass (see, e.g.,
Ref. [17]), thus, its evolution starts at one loop, whereas
the (nonsinglet) evolution of the quark number n; [Eq.
(2)] begins at two loops. In the next section we shall see
that independent evidence for the smallness of the nondi-
agonal contribution to the matrix elements of fg in the
isotriplet case is provided by a Ward identity satisfied by
this operator.

We are thus left with the problems of determining the
constant of proportionality between the operator g;P;
[Eq. (21)] and n, [Eq. (2)] and. that of finding a measurable
linear combination of P;g; when the fiavor index i takes
different values. It turns out that both problems can be
solved at once by considering the combination of opera-
tors P;g; constructed in analogy with Eq. (1), with the
quark square charges replaced by quark masses, i.e., the
nucleon cr term (see Refs. [14,17] for reviews):

o—= g mfa, , (25)
I =Q7d
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which is just the light-quark mass term of the QCD Ham-
iltonian. The rationale for this choice is that, on the one
hand, the nucleon matrix elements of o [Eq. (25)] are
measurable, while, on the other hand, we may take ad-
vantage of the fact that cr is scale invariant because m it/
is. Then, we may absorb the constant of proportionality
in the quark masses, i.e., dejine [14] the quark mass to be
the (dimensionful) coefficient of proportionality between
the operator mp1t and the quark number. The values of
the quark masses determined in this guise are (at the nu-
cleon scale) [14] m„=4 MeV, md -—7 MeV, in good
agreement with the more precise determination, found
through utterly different techniques [17],

crG(valence)=m„— md = —3 MeV, (31)

M —M„=—2.05+0.30 MeV . (32)

which is the parton model prediction for this quantity,
just as Eq. (4) is the parton prediction for SG. Now, a
rough estimate [17] of crG [Eq. (28)] can be obtained by
observing that, by definition, o.

G is the zeroth-order per-
turbative contribution to the proton-neutron mass
di6'erence due to the presence of the light-quark mass
term (25) in the QCD Hamiltonian. The proton-neutron
mass difference, after subtraction of the electromagnetic
contribution, is [17]

m„=5.1+1.5 MeV, md=8. 9+2.6 MeV . (26)
Thus,

where fi', is the quark number n, [Eq. (1)] at the nucleon
scale Q =1 GeV . We shall comment in the next section
on the sensitivity of our results to the absolute value of
the quark masses (i.e., on the uncertainty in the deter-
mination of the coefficient of proportionality between g1(
and n; ) [19].

We are thus led to define the quantity

OG=crlI i
—(m„e„+md'�)lI (28)

Notice that the values of the masses in Eq. (28) should be
fixed without using any information on the experimental
value of crG, i.e., without knowledge of isospin-violating
mass splittings in the nucleon sector; otherwise Eq. (28)
would be an identity, which does not carry any informa-
tion.

Equation (28) may be treated as in Eqs. (6)—(13) with
the replacement e; ~m, . In particular, the analogue of
Eqs. (7) and (13) are now

=(m„—md )[1+AQ(1 GeV)]+(m„+md )bI(1GeV).

(30)
If we evolve b,I and KQ to the same scale, through the
evolution equations (17) and (20), then Eq. (30), together
with Eq. (13), allows us to solve for the two unknowns
b.Q and b.I, namely, the amount of violation of SU(2)&
and SU(2)I, respectively. In practice, given the weakness
of the evolution (18),(20) [as compared to the uncertainty
in Eqs. (26) and (27)], we may take bI and AQ to be con-
stants.

We may now check qualitatively the consistency of our
picture by verifying that the violation of SU(2)I or
SU(2)&, which is obtained from Eq. (13), is also displayed
by Eq. (30). Indeed, if b,I=6,Q =0, then crG reduces to
its valence determination, namely,

This suggests that we may take m /E = 1 in Eq. (21) to an
accuracy of about 20%, comparable to that of the deter-
mination (26). Thus, we shall henceforth assume phe-
nomenologically that (to the same accuracy) the nucleon
matrix element of the operator (21) is

(27)

o 6= —2 MeV, (33)

which shows a disagreement with the naive prediction
(31) comparable in magnitude to the violation of the
Gottfried sum rule (4): in both cases the experimental
value is about —', of the valence-quark contribution.

This provides independent evidence for a violation of
SU(2)I or SU(2)& and seems to disfavor explanations of
the experimental results (5) based on mechanisms that
reduce the value of SG while leaving o.

G unaA'ected. One
such mechanism, suggested in Ref. [20], consists of as-
suming that deep-inelastic scattering should not be taken
to be entirely incoherent at the quark level, but rather
that scattering on quark pairs may be coherent; i.e., that
eftective diquark constituents contribute to the cross sec-
tion. Clearly, this efFect does not modify the sum rule
(31), and seems thus to be disfavored by the data.

However, a quantitative computation of the sizes of
b, Q and b,l, even to the accuracy to which we expect Eq.
(27) to hold, requires a more accurate determination of
the experimental value of o.G. We shall do this in the
next section.

IV. THE o TERM AND THE SCALE WARD IDENTITY

The most direct way of measuring the nucleon matrix
element of 0 [Eq. (25)] is to relate it to pion-nucleon
scattering amplitudes (see, e.g. , Ref. [17]). Then, an ex-
perimental determination of crG [Eq. (28)] can be simply
obtained by subtracting the proton and neutron o terms
[Eq. (25)]. This leads [17,21] again to the value of o.

G

given by Eq. (33). Unfortunately, the cr term, which is
typically o. =35—45 MeV, is determined in pion-nucleon
scattering only up to an accuracy of about 20%%uo [21]; thus
it is unclear whether the value (33) determined in this
way is significant at all. On the other hand, there is no
way of estimating the error in the zeroth-order perturba-
tive computation which led to Eq. (33).

We may, however, do better by observing that classi-
cally the cr term (25) is equal to the divergence of the
Noether current for scale transformations; i.e., it equals
the trace of the energy-momentum tensor. In the quan-
tized theory, this implies a Ward identity that allows re-
lating its matrix elements to the mass of physical states,
as we shall now prove.

To this purpose, define the dilation current [22]
jg=x T" . This is the Noether current for scale trans-
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formations; its divergence is equal to the trace of the
energy-momentum tensor T" . In the quantized theory,
the trace of the energy-momentum tensor satisfies on
shell the operator equation [23]

p(a, )BJg=T"„=(1+y ) gm, P, P, + G," G„'
S

(34)

(N(kz)~T„~N(ki)) = 2k„k F&(q )

+(q g„—q„q )G~(q ), (35)

with k =
—,'(k, +k2) and q =k2 —k, . Identification of

T with the Hamiltonian density fixes Fz(0)= 1/(2M+),
where M& is the mass of the given nucleon state [25]. Be-
cause of the absence of a scalar Goldstone boson, G~(q )

has no pole at q =0, and the forward matrix element of
the trace of T" is

where the sum runs over all quark Aavors, G," is the
gluon field strength, y = —p, (Bm /Bp) is the mass anom-
alous dimension, and P is the P function for the strong
coupling [24] a, . All operators appearing in Eq. (34) are
renormalized and normal ordered. The last term on the
RHS of Eq. (34) is due to the conformal anomaly, and the
quantum correction y is present because the anomaly
term and the mass term in Eq. (34) are not separately
scale invariant, while the energy-momentum tensor is (up
to surface terms) [23]. Taking matrix elements of Eq. (34)
generates the scale Ward identities of QCD.

On the other hand, the nucleon matrix element of the
energy-momentum tensor may be parametrized by two
form factors:

(the scalar gluon condensate) is obviously fiavor singlet,
we cannot conclude immediately that its isotriplet matrix
element vanishes since it is well known [26] that its pseu-
doscalar counterpart, i.e., the condensate e" ~ G„' G',
has a large isotriplet nucleon matrix element. This is,
however, not the case in the scalar sector. To understand
this, it is convenient to rewrite the matrix element on the
LHS of Eq. (37) in terms of one-particle-irreducible phys-
ical couplings, analogously to what is done in the pseudo-
scalar case in order to derive [27] the isosinglet
Goldberger-Treiman relation, which is closely related to
Eq. (37).

To this end, we define a generating functional

w(Ds; )=in, (exp i D„jr+ps;4; ), (39)

where the set of fields 4&; =(N, N, P, =/A, ,P, $0=//,
Q = [p(a, )/4a, ]Gi' G," ) includes the nucleon, the scalar
mesons, and the gluon condensate. Also, we define the
eft'ective action obtained by Legendre transformation
with respect to the fields 4; (but not jg ):

I (D" N") = W(D" S ) —N"S 58'
i 5S

(40)

The functional I (called the Zumino effective action) gen-
erates diagrams which are one-particle irreducible with
respect to +',-'.

Now, the nucleon matrix element of the Ward identity
(34) in terms of 8' [Eq. (39)] reads (at zero momentum
transfer and setting all sources to zero)

(N(k)
~
T"„~N(k) & =M (36)

"5D„5S~5$g,.
' 5S,5S~5S~

Thus, the isotriplet nucleon matrix element of Eq. (34) is
5 8'

(41)

g (1+y )m, PP, + G," G„' =M~ —M„.4', I=1

(37)

(1+y )cr G =M~ —M„— (a, )
GiiivG ii

4 a pv
S

(38)

which is the desired Ward identity.
Although the gluon operator on the RHS of Eq. (38)

Assuming as usual the content of strange and heavier
quarks to be isosinglet (we shall come back to this as-
sumption at the end of this section), we get

where the sum runs over the sources for the quark bilin-
ears obtained as linear combinations of the Aavor-
diagonal scalar mesons, Sz are the sources for the nu-
cleons, and 0 is the source for the anomaly. On the oth-
er hand, in terms of I, the Ward identity is

(42)
5'r 5r

"5D„5N 5N 5/0'5N 5N

where 5DP = —P is the variation upon dilatation of the
fermion bilinears, and when setting sources to zero

= (4, ), so that only the singlet contribution survives.
We may compare Eq. (41) with Eq. (42) if we recall [27]

that the LHS of Eq. (42) is related to that of Eq. (41) by

5 8'
"5D 5S 5S—

5I 5 I 5I
"5D 5N5N " ~ ' 5(to'5N5N " ~ 5Q5N5N

5I 5I
5/0'5N5N " o 5$05N5N p' 5Q5N5N

(43)



1848 STEFANO FORTE 47

=s— (,)s„
6$"5X5%

(44)

It follows that the contribution of the anomaly to the
LHS of Eq. (44) removes the OMR part of the expecta-
tion value of o. in order to yield the OMI coupling on the
RHS. That is, taking the isotriplet matrix element,

OMR(~, ) 6"'6'
4 a pv

S

= —(I+@ ) g m iran,
I=1 I

Now, the one-particle-reducible matrix element of the
o. term is dominated by the diagrams where the o. term
couples directly to the meson states with the same quan-
tum numbers. In the pseudoscalar sector (where a simi-
lar relation holds [27]) this in turn is dominated by the
pion pole; it follows [26] that the OMR contribution to
the pseudoscalar analogue of the o. term, namely,
o.5=m„uy5u +mddy5d, has an isotriplet component of
order

OMR

I OMR u d 305
m„+md

(46)

where 0.5=m„uysu —mddy5d. According to the pseu-3=
doscalar analogue of Eq. (45), this implies that the pseu-
doscalar gluon condensate has a large isotriplet com-
ponent. In the scalar sector, instead, there is no domi-
nance of the triplet mesons over the singlet ones; thus the
isospin violation of the OMR contribution to the o. term
is of the order of the isotriplet component of o G [Eq.
(28)] at the relevant scale [26], and Eq. (46) is replaced by

OMR ~ d 3 OMR

MÃ

O'
G

—( m „u 7' u m d dd ) I i —i

(47)

By Eq. (45), it follows that the isotriplet gluon
condensate's contribution to Eq. (38) vanishes up to
corrections of order (m„—md )/M~. We conclude that

oG = (M —M„)
1

1+@
(48)

where Sz, @
—=6 8'/5S;5S = ( T(ci;@.) ) are the various

j J
full propagators, and in the last step we used Eq. (42).

If there was no anomaly (for example, for a conformal
theory), then the last terms on the RHS of Eqs. (41) and
(43) would both be missing, and we would identify the
two surviving contributions on the RHS of Eq. (43) as the
one-meson-irreducible (OMI) and one-meson-reducible
(OMR) contributions to the expectation value of o, re-
spectively. However, in the presence of the anomaly the
OMR terms on the RHS of Eq. (43) both vanish at zero
momentum transfer because the anomaly removes the
scalar Goldstone boson and only the first term survives,
i.e. , that given by Eq. (42). In this case, using Eq. (41) in
Eq. (43) we get

O'W 6'W
' ss, ns t's„-+ sons„ss-

with an accuracy of 0.5%%uo, where y is the value of y at
the nucleon scale Q =1 GeV . This shows that the first-
order perturbative estimate (33), up to the quantum
correction due to the anomalous dimension y, is pro-
tected by the scale Ward identity and holds in the full
theory.

It is interesting to compare the decomposition of 0.
G

into its OMI and OMR portions to that of the operator
PP [Eq. (21)] into its diagonal (22) and nondiagonal (23)
parts (in quark number). It is clear that the OMR part of
o.

G comes entirely from the matrix elements of the nondi-
agonal operator M [Eq. (23)]. Thus, the conclusion [Eq.
(47)] that the former quantity is small agrees with the as-
sumption we made in the previous section (on phenome-
nological grounds) that the latter contribution to $1tj is
negligible, and provides theoretical evidence in favor of it
as long as we assume that the matrix elements of M [Eq.
(24)] are dominated by meson exchange.

Notice, furthermore, that, independently of whether or
not the OMR part of o G is small, because of Eq. (45), it is
always true that

0G= (M —M„),1

1+y
(49)

where &6 is the OMI part of o.G. But then, because all
QMR contributions to o.

G come from matrix elements of
the nondiagonal operator M [Eq. (23)], o G is a better ap-
proximation than a& itself to the quark number, which is
identified with matrix elements of the diagonal operator
g [Eq. (22)]. In particular, if we assume that the matrix
elements of o. are dominated by coupling through meson
states, then o. is always proportional to the quark num-
ber, regardless of whether or not the matrix elements of
X are small. Thus, even if Eq. (27) were not true because
of a large contribution of the nondiagonal operator M
[Eq. (23)] to p1t, we could still approximate n; with ma-
trix elements of 0', which is all we need in order to
proceed.

These results can be checked in any model of the nu-
cleon where the relevant quantities may be computed ex-
plicitly, like chiral models. In these models (as we shall
see in the next section in the case of the Skyrme model)
AI =0; hence, we can express the quantity SG [Eq. (13)]
in terms of &G, which in turn is related through Eq. (49)
to the (strong) nucleon mass splitting:

1 gSg=-
r 3(m„—md)

M —M„
r 3(m„—md) 1+y0

(50)

The constant was previously set equal to 1, however in
specific models it may differ significantly from unity.
Equation (50) is exact in all models where b,I =0, and the
coupling of composite operators (such as gg) to the nu-
cleon is dominated by meson exchange. Indeed, Eq. (51)
has been obtained in Ref. [28] by explicit computation in
a chiral quark-meson model.

where we have restored the constant of proportionality r
between 0 and the quark number,

(51)
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We may now use the two-loop value [29,17] y =0.27
and the value (32) of the nucleon strong mass splitting to
get

0.g = —1.61+0.24 MeV . (52)

Notice that the quantum correction is actually quite siz-
able. Equation (52) thus confirms the qualitative estimate
at the end of the previous section, and its implied con-
clusion that the violation of SU(2)t or SU(2)& which is
displayed by the NMC measurement also shows up in the
value of the isotriplet o. term.

We can finally get a quantitative determination of the
symmetry violation by solving for b,I and b, g Eqs. (30)
and (13) with the determinations (5) and (47) of SG and
oG and the values of the quark masses Eq. (26). Using
the value (5), uncorrected for shadowing, we get

b Q = —0.38+0. 19,
AI =0.057+0.094 .

(53)

(54)

This means that the naive expectation is confirmed: Q
spin is violated by over 30%, whereas isospin is a much
better symmetry, violated only up to a few percent. If we
use instead the value of SG corrected to account for sha-
dowing [Eq. (5") with the experimental error (5)], then

b,g = —0.46+0.20,
AI =0.034+0.096,

(55)

(56)

which implies an even larger violation of Q spin, almost
of order 50%. In order to see whether a violation of iso-
spin is really required, we may check whether the value
b,I =0 (i.e., no isospin violation) is consistent with the
data. If we take b,I =0 by assumption, then we can pre-
dict SG using Eq. (50) (with r = 1). This gives
SG =0.14+0.075, to be compared with the experimental
results [Eqs. (5) and (5")]. Even though the evidence is
not conclusive, a small but nonzero value of AI is sug-
gested by the data.

The error in Eqs. (53)—(56) has been determined from
the experimental errors in the determination of SG, 0.G,
and the quark and nucleon mass splittings. On top of
that, there is the extra theoretical uncertainty in the
determination of the value of the coefficient r [Eq. (51)],
which we assumed in Eq. (27) to be r =-1 to about 20%
accuracy, on phenomenological grounds. The uncertain-
ty in the determination of r can be viewed, according to
the definition [14] of the quark masses given in the previ-
ous section, as an uncertainty in the absolute value of the
quark mass while the mass ratios are being held fixed.

Even though the uncertainty on the determination of
the quark masses is the main source of error in Eqs.
(53)—(56), the values of AI and b, g turn out to be rather
stable under variations of the absolute value of the
masses. In particular, if we assume that the approxima-
tion introduced in Eq. (27) has introduced a further un-
certainty of 20% on the absolute value of the masses (i.e.,
if we allow rescaling the masses up or down by 20%), this
only increases the value of the error in Eqs. (53) and (54)
to cr(bg) =0.20 and o (EI)=0.099, and in Eqs. (55) and
(56) to o(hg)=0. 22 and cr(bI)=0. 10. Even if we as-

sume that the masses may be off by up to 50%, which
would mean that the proportionality constant r [Eq. (51)]
which we took to be 1 is actually 0.5~r ~1, we get
o(b,g)=0.22 and cr(EI)=0. 10 in Eqs. (53) and (54) and
o(b,g)=0.31 and o(bI)=0. 12 in Eqs. (55) and (56). We
conclude that the theoretical error in the determination
of r does not substantially affect our conclusions. Notice
that all these errors are certainly overestimated since
r ~ 1, whereas we allowed for rescaling the masses in both
directions.

If we relax the assumption that strange and heavier
quark components of the nucleon sea be isosinglet, we get
extra contributions to both SG [Eq. (13)] and crG [Eq.
(28)] from hn, =n/' n,", wh—ere i is a heavy-quark fiavor.
Although now we can no longer solve for b, g, b,I, and
An; simultaneously, we can get a feeling for the expected
values of b, n;. Suppose, for example, b, n, &0. Because
m, =25(m„+md )/2, this gives a very large contribution
to o &. Thus, unless we imagine rather unlikely scenarios
with large violations of all symmetries that miraculously
cancel each other, the value (24) of o G leads to the esti-
mate An, ( 1%, hence, An, does not contribute
significantly to SG. It follows that an isotriplet strange-
quark contribution cannot modify the value of Eg [Eqs.
(35) or (37)] by more than a few percent, although it
could alter significantly b,I. This is a fortiori true for
heavier flavors: for example the charm quark could at
most provide a 0.1% contribution to b, g, and so forth.

V. THE FLAVOR STRUCTURE IN EFFECTIVE
MODELS OF THE NUCLEON AND 1N QCD

n;(sea)= ——(i';g, ) Vii,
1

(57)

where the expectation value is to be taken in the nonper-
turbative QCD vacuum, while Vz is the bag volume. In
Eq. (57) we have restored the proportionality constant r
[Eq. (51)],which in this model can be significantly smaller
than 1; typically [31] r —0.5.

The sea component generated through Eq. (57) cannot
violate Q spin without violating isospin. Either Vii is not

We may now discuss whether and how the symmetry
violations (53)—(56) in the nucleon sea can be reproduced
within various approaches. Our aim is to see whether the
pattern of symmetry violation found in the previous sec-
tion is compatible with our understanding of the nucleon;
detailed model computations will be reserved for forth-
coming publications. First, we shall consider some popu-
lar effective models of the nucleon; then we shall discuss
whether the results of model computations can be repro-
duced in a more fundamental approach.

Let us consider first the bag model (see, e.g. , Ref. [30]).
The expectation value of the operator gg in a nucleon
state can be computed directly [15,16]: it receives a
valence contribution from quarks inside the bag and a sea
contribution due to the fact that inside the bag ( gitj) =0,
whereas outside the bag the vacuum is not the perturba-
tive one and yields a nonvanishing chiral condensate.
The sea contribution to n, in the bag model is thus (to
leading order in a, )
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where X is a flavor SU(X) matrix, U& is the nucleon
Skyrmion, Z is a renormalization constant with the di-
mensions of (mass), and Tr indicates both trace on liavor
indices and integration over all space. The last term on
the RHS corresponds to the subtraction of the vacuum
expectation value of the given operator X. We may fix
the value of Z by requiring the vacuum condensate per
unit volume to take its physical value:

(uu ) =Z tr(X„+X„)= —(225 MeV)

where tr is the ordinary trace and X„ is the SU(X) matrix
X„=diag(1,0, . . . , 0), i.e. , Z = —

—,'(225 MeV) .
The explicit values of n, depend now on the version of

the Skyrme model which is used. In the SU(3) model we
have [15]

rnid[SU(3)]=(p~uu ~p ) =
—,",k,

md~[SU(3)]= (p~dd ~p ) = —'„'k,

(60)

(61)

where the constant k depends on the details of the Skyr-
mion field„and the values for the neutron expectation
values are found using SU(2)I [Eq. (8)], which is exact in

isospin invariant (i.e., the size of the proton is not the
same as that of the neutron), in which case n, [Eq. (57)]
violates isospin only, or the vacuum chiral condensate is
not SU(2) invariant (i.e., (uu )W(dd )), in which case
SU(2)& is violated, but SU(2)I is also violated by the same
amount. Now, the chiral condensate is usually assumed
to be SU(2) symmetric, and can be determined using
current algebra (see, e.g. , Ref. [17]) as ( uu )
=(dd) = —(225+25 MeV) . A violation of SU(2)I of,
say, 4% (i.e., bI-0.04), as in Eq. (38), can then be ob-
tained, if the nucleon radius is R& -—1 fm, by taking
R —R„=0.002 fm (even taking r =1). Such a tiny iso-
spin violation is certainly compatible with present data
on electron-nucleus scattering; as a matter of fact, isospin
violation of nucleon radii up to about 0.2 fm in either
direction is compatible with the data (see Ref. [32] and
references therein), and if we did not know about the o.

term, in this model we could easily reproduce the entire
violation of the sum rule (4) from violation of isospin.

Thus, although we can easily reproduce the violation
of SU(2)i required by the data [Eqs. (53)—(56)], it does
not seem possible to obtain the required violation of
SU(2)&. Because in our approach the problem of deter-
mining the fIavor content of the sea has been related,
through Eq. (49), to that of computing the proton-
neutron mass diA'erence, this can be seen as a manifesta-
tion of the well-known [31] difficulty of reproducing this
di6'erence correctly in pure bag models.

Let us turn now to the Skyrme model. Here there are
no explicit quark degrees of freedom; however, we may
identify quark operators with soliton operators that carry
the same quantum numbers, i.e., transform in the same
way under the flavor SU(X) group. Hence, in the
Skyrme model [15]

(X~gxq~X) =Z [Tr(XU + UtXt) —Tr(X+X~)],

this model. If the SU(2) uncranked soliton (see, e.g., Ref.
[33]) is Uo =exp[io"xF(x)], then

k = Z I dx x [cosF(x)—1] .
3 0

(62)

The integration can be performed with an explicit numer-
ic solution for the Skyrme profile F(x). Using the nu-
merical values tabulated in Ref. [33] to determine k [Eq.
(62)] we get, from Eqs. (60)—(62),

r (n~ —nd ) =0.15,
whereas, from Ref. [34],

r(n~ —nf)=0 35 ..

(63)

(64)

Since these results are very model dependent (for in-
stance, they are very sensitive to the value of the coupling
of the quartic Skyrme term), Eqs. (63) and (64) should be
taken as order-of-magnitude estimates. Recalling that in
this model b,I =0, and taking the value of r (which can-
not be calculated directly as there are no explicit quarks)
to be the same as in the bag model (according to the
Cheshire cat principle), i.e., r =0.5, we get, from Eq. (14),

b, Q = —(0.3 —0.7), (65)

where the two extreme values correspond to Eqs. (63) and
(64). We conclude that in the SU(3) Skyrme model the
violation of SU(2)& is rather large, even more than re-
quired by the data on the Gottfried sum rule.

The SU(3) model, however, is known to predict an
unusually large value of (X ss~X) [15], which seems to
contradict recent experimental data [21]. We may thus
turn to the SU(2) model, which gives generally a better
description of the data. In this model [15],

n~[SU(2) ]= n f[SU(2) ]=n„"[SU(2)]= nd [SU(2)], (66)

which implies that SU(2)i is again exact, whereas

b,Q= —1,
i.e., SU(2)& is violated by 100%%uo. The same is true for
models where the light quarks are viewed as rotational
excitations of an SU(2) Skyrmion, while strange quarks
are vibrational excitations; these models are known [34]
to give a good description of SU(3) breaking in

(X~q, 1t, ~X).
The extreme result (67) is certainly phenomenologically

untenable, since it would entail the vanishing of the
proton-neutron mass difFerence. However, isospin nonin-
variant terms may be added to the SU(2) Skyrme La-
grangian as subleading terms in a 1/NI expansion
[35,31]. For example, such terms would be induced in an
efFective Lagrangian describing the coupling of Skyr-
mions to vector mesons [31,36]. With these terms it is
possible to obtain satisfactory fits of the proton-neutron
mass difference from SU(2)& violation [31],at the expense
of introducing many additional parameters in the model.
Since, according to Eqs. (53)—(56), AQ provides the bulk
of the violation of the Gottfried sum rule (4), the experi-
mental value of the latter [Eq. (5)] can be easily accom-
modated in these models. In this picture, the isotriplet o.
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terms behave in the Skyrme model in a way similar to the
much discussed isosinglet axial charge [37]: it vanishes in
the pure Skyrme model, and it receives contributions at
higher orders in 1/X&.

The facts that in a pure bag model only SU(2)~ can be
violated, and that pure Skyrme models display only viola-
tion of SU(2)& (generally larger than required by the data)
suggest considering hybrid models. It is clear that in the
most naive hybrid model one can easily reproduce the
data (53)—(56) by simply weighing b, Q [Eqs. (65) or (67)]
by the percentage of the baryon number (or of the
nucleon's moment of inertia [31]) carried by the Skyrme
field, adjusting the bag radius in order to get the correct
value of the weighted b, Q, and then reproducing the re-
quired EI by a small isospin dependence of Vz, as dis-
cussed above. Indeed, less crude hybrid models are
known to reproduce to good accuracy the proton-neutron
mass difference [36], as well as [16] the SU(3) violation of
(N~g;g; N). The strong dependence of the SU(2) viola-
tion on the bag radius seems to hold in more refined mod-
els, too [36].

Having ascertained that a large violation of SU(2)& is
actually predicted by the Skyrme model, and that the ex-
perimental pattern of symmetry violation can be repro-
duced in hybrid chiral models, it is natural to ask wheth-
er known perturbative or nonperturbative mechanisms
for sea-quark generation can explain the large SU(2)-
symmetry violation which is displayed by both experi-
mental data and model calculations.

Within perturbative QCD there is little more to say
than the evolution equations (18) and (20). Namely, if we
take, at a relatively small scale (where, however, we still
trust perturbation theory), b, Q =0 and b,I of a few per-
cent, then AI is hardly scale dependent, whereas a tiny
EQ is generated that is negligible for all practical pur-
poses. An important by-product of the computation [10]
of the scale dependence of b, Q is the explicit proof that
the Pauli principle does not yield any contribution to b, Q.
The latter has been suggested time and again recently
[38,39] as a possible explanation of the result (5) (an ex-
cess of up quarks in the valence component would
suppress the up component of the sea quarks, and con-
versely), but the explicit computation of Ref. [10] shows
that this effect, contrary to the naive expectation, has
(due to interference) the wrong sign, in addition to being
negligibly small.

Since all the evolution equations discussed so far hold
in the limit of vanishing quark masses, there remains the
possibility that isospin breaking in the quark masses may
play a role; this is also the only possibility of finding a
violation of SU(2)~, which is necessarily exact in the
chiral limit. This possibility is currently under investiga-
tion [40]; otherwise perturbative QCD does not provide a
natural explanation of the data, and we must invoke some
nonperturbative mechanism instead.

Among nonperturbative mechanisms for the violation
of SU(2)&, pion cloud eff'ects have been repeatedly sug-
gested. Some of these [28,38] are based on an incomplete
counting of the contributions to Sz. in these references,
Eq. (7) is written as

SG =
—,'+ ', (—n~ —n$), (68)

where n~ (n$ ) is the number of u (d ) antiquarks in the
proton. Equation (68) follows from Eq. (7) assuming
SU(2)~ and

n„(sea) =
—,'n~(sea), n$(sea) =

—,'ng(sea) (69)

which, if used in Eq. (68), would express the violation of
the sum rule in terms of the asymmetry in pion content.
Of course, however, pions violate Eq. (69) unless
X + —X =0; thus we cannot make this substitution:
either N + =N or the qq sea, due to Eq. (69), exactly
compensates the pion contribution to SG.

Indeed, because quarks and antiquarks are counted
with the same sign in n; [Eq. (2)] any pion always gives a
vanishing contribution to SG, or generally to n„—n&. If,
however, we assume that all sea quarks condense into
pions (i.e., there are no free sea quarks, but only sea
quarks bound into pions), then either N + =N or some

sea antiquarks must be bound into a pion with a valence
quark. Under this rather strong assumption the expres-
sion [Eqs. (68) and (70)] of SG is correct. In general, how-
ever, it is unclear that this assumption is true; if it is false,
those pions whose quark should be counted in the valence
component contribute to SG [Eq. (68)] through Eq. (70),
but in addition there is an undetermined quark contribu-
tion to S& whose sign and magnitude cannot be estimat-
ed, thus making the applicability of the results of Refs.
[28,38] to the explanation of the experimental result (5)
dubious.

However, a pion contribution to the violation of the
Gottfried sum rule can be obtained [39,41], provided one
assumes that at least some part of the nucleon sea is gen-
erated through transitions where a pion is radiated by a
nucleon. A proton then would favor the transition where
a ~+ is created, namely, p~n+~+, over that where a

is created, namely, p~b, +++m (and conversely for
a neutron) because of the nucleon-b, mass difference.
This, spelling out the quark content, is seen to favor the
production of dd pairs over uu pairs, thus producing a
violation of b, Q with the right sign. The problem with
this kind of explanation is that one would expect the con-
tribution to EQ thus generated to be of the order of
AQ —(M& —M~ )/(M~+M&), i.e., b Q ——0. 14; explicit
calculations [41] support this conclusion. This seems to
be too small to account for the data.

A final option which may be considered is nonpertur-
batively induced quark-quark interactions. The simplest
example of these are instanton-induced interactions. It is
immediately clear [42] that these lead to a contribution to
KQ which is qualitatively in the right direction, basically
for the same reason why they lead to a cancellation of the
isosinglet axial charge of the nucleon [43], namely, the
instanton-induced effective quark-quark interaction

[in which case it reduces to Eq. (10)]. In Eq. (69) n„,nz
are, as usual, the total numbers of u, d quarks plus anti-
quarks. It is then observed that, for an assembly of pions,

(70)
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('t Hooft interaction) couples Xf quark-antiquark pairs of
different flavors. Thus, this interaction can only generate
a down (up) qq content of an up (down) quark; i.e., it al-
ways gives a negative contribution to Ag. A quantitative
investigation of this mechanism is currently in progress.

VI. CQNCI. USIQN

In this paper, we have shown that the recent measure-
ment of the Gottfried sum rule by the NMC implies a
substantial violation of the SU(2)& symmetry of the nu-
cleon sea [Eq. (11)]. Independent evidence for this effect
is provided by the value of the isotriplet nucleon o. term,
which we were able to determine through the scale Ward
identity. Combining these two results allows us to fix to
good accuracy the pattern of SU(2) violation of the nu-
cleon sea, and suggests that the large violation of SU(2)&
is accompanied by a small violation of isospin.

These results have a considerable phenomenological
import, since the exactness of the symmetries SU(2)& and
SU(2)I [Eqs. (8) and (11)] is always assumed in phenome-
nological parametrizations of the nucleon structure func-
tions (see, e.g., Ref. [44]). Allowing for a violation of
these symmetries would considerably alter our picture of
the nucleon structure functions. It would be very impor-
tant to get independent measurements of the symmetry-

violation parameters.
From the theoretical viewpoint, the violation of isospin

and Q spin challenges our understanding of the nucleon.
Although this kind of effect may be reproduced in models
of the nucleon such as the Skyrme model [which allows
for violation of SU(2)&], bag models [which allow for
violation of SU(2)I ], or hybrid chiral models (where both
symmetries can be violated), it is hard to get a fundamen-
tal understanding of their origin. Perturbative QCD evo-
lution almost certainly cannot produce the required
effects, and even traditional nuclear physics, such as pion
radiation, are insufhcient to produce effects as large as
the observed ones.

It would seem that, once more, precision deep-inelastic
scattering measurements are giving us a hint of physics
that belongs to the nonperturbative QCD domain which
still remains so elusive to theoretical investigation.
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