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London relation and fiuxoid quantization for monopole currents
in U(l) lattice gauge theory
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We explore the mechanism of quark confinement in four-dimensional U(1) lattice gauge theory by
measuring the color-magnetic current distribution from Dirac magnetic monopoles in the presence
of a static quark-antiquark pair. Our results give the first direct evidence that the quarks induce
a solenoidal current distribution that screens the color-electric flux of the quarks in an electric
analogue of the Meissner effect in a superconductor. We show that the vacuum state of U(1) lattice
gauge theory obeys both a dual version of the London equation and an electric fluxoid quantization
condition.
PACS number(s): 12.38.Aw, 11.15.Ha, 74.25.Ha, 74.60.Ec

Since free quarks have never been isolated, there must
be a mechanism for permanently confining them within
hadrons. This mechanism is expected to arise as a natu-
ral property of the vacuum state of the theory of strong
interactions. It was suggested many years ago [1] that
confinement would occur if the vacuum reacted to expel
a color-electric field in a manner similar to the response
of a superconductor to an external magnetic field, the
Meissner eKect. For example, if two magnetic monopoles
of opposite magnetic charge are introduced into the in-
terior of a superconductor, the Cooper pairs give rise to
persistent currents to generate a countermagnetic field
to expel the magnetic fiux. As a result, the magnetic
flux lines from one monopole to the other are confined to
a narrow Abrikosov flux tube which is surrounded by a
solenoidal distribution of persistent circulating currents.
The energy of such a configuration is proportional to the
separation of the two monopoles, thus permanently con-
fining them. By analogy, therefore, if the vacuum nat-
urally expels a color-electric flux, the field lines from a
static quark-antiquark (qq) pair would not spread out in
a dipole field pattern but would instead form a narrow
fiux tube, leading to a quark potential proportional to
their separation and confinement.

For this mechanism to work the vacuum must contain
objects that react to a color-electric field in a fashion
similar to the reaction of the Cooper pairs in a super-
conductor to an ordinary magnetic field. One possibility
is to mimic [1] the Ginzburg-Landau theory of supercon-
ductivity by adding to the gauge theory an elementary
charged Higgs field to act as the superconducting con-
densate, but there is no experimental evidence for any
elementary scalar particles in particle physics. The dual
superconductor mechanism [2] is an alternative that does
not require the ad hoc introduction of a Higgs field but
instead uses dynamically generated topological excita-
tions to provide the screening supercurrents. For exam-
ple, U(1) lattice gauge theory contains Dirac magnetic
monopoles in addition to photons [3, 4]. The dual su-
perconductor hypothesis postulates that these monopoles
provide the circulating color-magnetic currents that con-
strain the color-electric flux lines into narrow flux tubes.

't Hooft has shown [5] that objects similar to the Dirac
monopoles in U(l) gauge theory can also be found in
non-Abelian SU(N) models.

We chose to study U(1) lattice gauge theory as a model
for confinement for several reasons. U(1) lattice gauge
theory in four dimensions has both a confined phase at
large charge and a weak coupling deconfined phase corre-
sponding to continuum electrodynamics with a Coulomb
interaction between static quarks. Therefore confinement
or its absence can be studied using U(l) lattice gauge
theory as a prototype, before tackling the more compli-
cated non-Abelian theories that actually describe quarks.
Furthermore, there is evidence [5—7] that confinement in
non-Abelian SU(N) gauge theory arises from monopoles
associated with a residual U(l) i gauge freedom that
remains after gauge fixing.

Much evidence for the dual superconductor hypoth-
esis has accumulated from studies [3, 4, 8—ll] of U(1)
lattice gauge theory. Polyakov [3] and Banks, Myer-
son, and Kogut [4] showed that U(1) lattice gauge the-
ory in the presence of a quark-antiquark pair could be
approximately transformed into a model describing mag-
netic current loops (the monopoles) interacting with the
electric current generated by the qq pair. DeGrand and
Toussaint [8] demonstrated via a numerical simulation
that the vacuum of U(1) lattice gauge theory was pop-
ulated by monopole currents, copious in the confined
phase and rare in the deconfined phase. Similar behav-
ior has also been seen in non-Abelian models with Dirac
monopoles [6, 7, 12] or other topological excitations [13],
although other studies [14] find no evidence for the dual
superconductor hypothesis.

So far, studies of confinement have examined "bulk"
properties such as the monopole density [8, 12, 15], the
monopole susceptibility [9, 12], and the behavior of the
static quark potential [6, 10]. However, the case for the
dual superconductor hypothesis is incomplete without an
explicit demonstration that a static qq pair actually in-
duces the appropriate persistent current distribution. It
is not the presence of the condensate, but the fact that it
is magnetically charged and can generate the appropri-
ate current distribution, that leads to flux expulsion. For
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example, 3He exhibits a superfluid state with anomalous
magnetic properties but no Meissner effect because the
condensate is uncharged. In this Brief Report we present
the first direct evidence for this behavior. We further
show that there are exact U(1) lattice gauge theory ana-
logues of two key relations [16] associated with the Meiss-
ner e8'ect in a superconductor: the London equation and
the Huxoid quantization condition.

Our simulations are done on a Euclidean spacetime
grid of volume L x L&, where L is the spatial size and
Lq the temporal size of the lattice in units of the lattice
spacing a. The U(l) gauge degrees of freedom are com-
plex numbers of unit magnitude residing on the links of
the lattice and are written U„(r) = exp[i8„(r)], where r
denotes a point on the lattice and p the direction of the
link from that point. The links form a directed lattice so

that U „(r+p) = U„(r). We use a standard Wilson ac-
tion Sp supplemented with a Wilsori loop R' to represent
a static qq pair with charges +1:

S = Sp —i'
= P $ [1 —cos 8„ (r)] —i ) J„(r)8„(r)

r, p,)v

oriented in the zt plane and measured the electric flux
and the monopole current in the transverse (2:y) plane

midway along the axis connecting the qq pair. A stan-
dard Metropolis algorithm [17] alternated with overrelax-
ation [18] is used to generate configurations distributed
according to exp( —So). In the confined phase, we ther-
malize for 10000 sweeps and sample the data every 10
sweeps for a total of 7000 measurements, which are then
binned in groups of 5. In the deconfined phase only half
as many measurements are taken since the fluctuations
are much smaller. Because of the geometrical syrnrnetry
of the measurements only the z components of (8) and
(V' && JM) are nonzero. If the Wilson loop is removed,
even the z components average to zero, so the response
we observe is clearly induced by the presence of the qq
pair.

Figure l(a) shows the electric flux distribution for
P = 1.1 where the vacuum is in the deconfined phase.
The broad flux distribution seen is identical to the dipole
field produced by placing two classical charges at the
quark positions, except that the classical value of the flux
on the qq axis is a factor of 2 smaller. We measure the
total electric Hux from one quark to the other, including

Here P = hc/e2 is a dimensionless measure of the
strength of the charge and exp[i8„(r)] = U~(r)U„(r +
p)U&(r + v)U (r) is an oriented product of gauge vari-t t
ables around an elementary plaquette of the lattice. The
current J„(r) is kl along the world line of the qq pair
and 0 otherwise. In the naive continuuin limit (a ~ 0) S
reduces to the action for a pure photon Geld in the pres-
ence of a current loop. Physical observables are given by
expectation values

p, 3

p. 1-
3

0

(o)

(A) = —Tr (e '+' A)
1

z (2)

where Tr denotes an integral over all angles 8„(r) and
Z = Tr exp( —So + iW) is the partition function.

The two observables we study here are the electric
flux through a plaquette, which in lattice variables is
Z&(r) = Imexp[i8&4(r)], and the curl of the inonopole
current density 9' x JM. The monopole current JM is
found by a prescription devised by Decrand and Tous-
saint [8], which employs a lattice version of Gauss' law to
locate the Dirac string attached to the monopole. The
net flux into each plaquette is given by 8„„(r)mod 2vr.

If the sum of the fluxes into the faces of a three-volume
at fixed time is nonzero, a monopole is located in the
box. The net flux into the box at fixed time thus yields
the monopole "charge" density, or the time component of
the monopole four-current JM, measured in units of the
monopole charge gM = 2nhc/e. The spatial components
are found in a similar manner. The monopole currents
form closed loops due to the conservation of magnetic
charge.

Our simulations are performed on a 93 x 10 lattice using
skew-periodic boundary conditions. Less extensive work
on a 7 x 8 lattice yields similar results except for the
expected increase in statistical fluctuations arising from
the smaller lattice size. We used a 3 x 3 Wilson loop
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FIG. 1. Surface plot of the electric flux through the xy
plane midway between the qq pair when the system is in (a)
the deconfined phase (P = 1.1) and (b) the confined phase
(P = 0.95). The line joining the pair is located at (0,0).
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not only the flux through the plane between the charges
(0.8504 6 0.0045) but also the flux (0.0951 6 0.0028)
that flows through the lattice boundary because of the
periodic boundary conditions. This yields a total flux
of 0.9453 + 0.0053, close to the theoretical value C, =
1/~ = 0.9534.

Figure 1(b) shows the electric flux in the confined
phase (P = 0.95). In this case the flux is confined al-
most entirely within one lattice spacing of the axis and
essentially no flux passes the long way around through
the lattice boundary. The net flux is again equal to 1/~
within statistical error. This behavior is exactly what one
would expect from the superconducting ana}ogy, where
the flux has been "squeezed" into a narrow tube. The
data in Fig. 1 are consistent with flux profiles found in
other studies of U(l) [19],SU(2) [20], and SU(3) [19] lat-
tice gauge theory.

The electric field E produced by the monopole currents
arises from the dual version of Ampere's law:

—cV'xE= JM.

A2
E dS —— J~ dE = n4'~,c (5)
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expect a dual version of the fluxoid quantization relation
to hold:

As we will show below, we find that the Meissner effect
appears because a dual version of the London relation
holds between the field and the monopole current of the
form

-0.1
I I

II
2.0

A2E= —Tx JM.
C

(4)
1.6

1.2
Equations (3) and (4) result in the electric flux being
confined to a region of size A, which is the "London pen-
etration depth" for the electric field.

We show in Fig. 2(a) (8) and in Fig. 2(b) —(7' x JM) in
the confined phase as a function of the distance from the
qq axis. The data show that the spatial variation of the
flux and the curl of the current are very similar, except
for the point on the axis which will be discussed below.
Figure 2(c) shows the best fit found for (8') —(A /c)(V' x
JM). We find a value of A/a = 0.482 + 0.008, which is
consistent with the range of penetration of the electric
flux in Fig. 2(a) and the thickness of the current sheet
in Fig. 2(b). The dashed curve in Fig. 2(a) is the result
of using the continuum Eqs. (3) and (4) to yield a flux
distribution of the form Z(r) = (C', /2vrA~)Ko(r/A). Here
4, = e/~bc = 1/~ is the quantum of electric flux. The
agreement between the continuum version and the Aux
distribution from the lattice simulations is very good.

We also expect that, as in a superconductor, the tran-
sition to the deconfined phase will be signaled by a diver-
gence of the London penetration depth. We have there-
fore measured A further from the deconfinement transi-
tion at P = 0.90, and find a smaller penetration depth of
A/a = 0.32 + 0.02. In the deconfined phase we find an
almost insignificant value of (V x JM) and fitted values
of A were larger than our lattice size.

The anomalous behavior of the point on the qq axis
can be understood by recalling that a superconductor
penetrated by an Abrikosov flux tube becomes multiply
connected and the London relation is replaced by the
more general quantization relation for the Buxoid. Since
our U(1) vacuum is pierced by an electric flux tube, we
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FIG. 2. Behavior of (a) the electric flux, (b) the curl of the
monopole current, and (c) the fluxoid in the confined phase
(P = 0.95) as a function of the perpendicular distance R from
the qq axis. The dashed line in (a) shows the flux expected
using the continuum relations (3) and (4).
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where n is an integer. In fact, the data in Fig. 2(c) rep-
resent a lattice version of a b function whose strength
(1.016+0.014) is very close to 4, = 1/~ = 1.026. Thus,
if the surface integral in Eq. (5) includes the axis of the
qq pair, we obtain n = 1, while if the axis is excluded
from the integral we obtain n = 0 and Eq. (4) holds. We
examined the response to doubly charged quarks to find
n = 2 electric flux quantization but did not get data of
sufhcient quality to draw any conclusions,

Equations (4) and (5) show that, except for the inter-
change of electric and magnetic quantities under dual-
ity, the confined phase of U(1) lattice gauge theory be-
haves exactly like a superconductor in an external mag-
netic Beld. It is perhaps surprising that a nonlinear,
strongly interacting, model such as U(1) lattice gauge
theory could be described by such a simple model as the
linear London equations, but our results indicate that the
operators 8' and 7' x JM, when measured in the presence
of a source of external flux such as a Wilson loop, give
an unambiguous indication of the confinement of electric
flux by a monopole current distribution. The simulation
yields a large signal even with modest amounts of com-
puter time on a Sun workstation. Although the Meissner

effect itself requires only that Eq. (4) hold, our data also
support the more restrictive fluxoid quantization relation
(5). This additional relation reflects the single-valued
nature of the order parameter in a Ginzburg-Landau
description of the monopole condensate. Because the
monopoles appear pointlike in our simulations, lattice
gauge theory looks like an extreme type-II superconduc-
tor and it is tempting to argue that the phase transition
in lattice gauge theory is a Bose condensation of magnet-
ically charged particles, similar to the Bose condensation
of charged local pairs [21]. Analogous studies of SU(2)
lattice gauge theory along these lines are currently in
progress.
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