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I. INTRODUCTION

Recently, much attention has been paid to stringy
black hole solutions which are obtained from low-energy
string effective actions [1—5]. Witten showed that the
SL(2,R )/U(1) gauged Wess-Zumino-Witten model de-
scribes strings in a two-dimensional black hole [1]. His
work was generalized to the case of charged black holes,
which are obtained by adding a boson to the model and
coupling it to the world-sheet gauge field [6]. These strin-

gy black hole solutions would be useful as a toy model for
a four-dimensional real black hole [7]. Higher-
dimensional analogues of Witten s two-dimensional strin-
gy black holes were also found [8,9].

In all stringy black holes, the dilaton field plays a cru-
cial role. As an illustrative example, the four-
dimensional charged black hole solution given in Ref.
[10] is unstable due to the dilaton field, although it has a
similar form to that of the Reissner-Nordstrom solution
in general relativity [11].

In this Brief Report, we explicitly show that Witten s
stringy black hole in two-dimensional target space is
stable [12] under small nonstatic perturbations by use of
the Chandrasekhar method [13,14]. In Sec. II, we briefiy
review Witten s two-dimensional stringy black hole. In
Sec. III, we show the stability of this solution.
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This action describes the conformal field theory on the
background metric described by the line element
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This background defines a semi-infinite cigar with radius

tained as a finite correction coming from the measure in
the integration over an Abelian gauge field which is intro-
duced to the gauge U(1) subgroup [1]. Note that the par-
ticular form of the dilaton is not described until later,
where it is obtained from the low-energy equation of
motion. The central charge [15] of the SL(2,R)/U(1)
model is given by

II. TWO-DIMENSIONAL STRINGY BLACK HOLE
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After gauging the Wess-Zumino coset model on
SL(2,R)/U(1), Witten obtained the conformal-invariant
representation of the classical action for p and L9 as
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where R ' ' is the curvature on the world sheet, and N is
the dilaton field. This target space dilaton field is ob-

R„—V„V' +=0, (6)

where R, is the Ricci tensor of the target space [16].
These one-loop equations are just the equation of motion
obtained from the low-energy string effective action,
which is given as

Witten showed that this target space can be interpreted
as a Euclidean black hole asymptotically [1,5]. From the
requirement that the one-loop P function, which is ob-
tained from the action in Eq. (3), must vanish, we may get
metric equations
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small metric perturbations of a form at the conformal
gauge such as

On the other hand, we get the dilaton equation of motion
from action (7):
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Using Eq. (6) we get

(V4) +V N — =0 .
8

K 2

(8)

(9)

= —h (P, r)g„, . (19)

We substitute Eqs. (17) and (18) into Eqs. (6) and (9) and
then take terms up to first order of small perturbations.
Then we get metric and dilaton equations determining
small perturbations,

@(r)=ln cosh sr +a, (10)

where a is a constant, and is related to the mass of black
hole. On the other hand, from the space-time eA'ective

action given in Eq. (7), one can find the mass of a black
hole [1,5]:

M =&2/(Ir —2)e '= ee'+ 0 (E ) .

By solving Eq. (6), we may get the function form of the
background dilaton field:
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where the upper bars indicate background objects and
5R„„and 5I ~ (h) are given by
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The analytic continuation of the black hole to a
Lorentz signature is achieved by setting 0=it:
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(12) The non vanishing components of the background

Christos'el symbols are

A more familiar form of the black hole solution can be
obtained by changing the coordinates r, t to
Schwarzschild coordinates P, r in which the dilaton field
is a linear function of |l). We choose
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To begin with, we obtain three metric and one dilaton
equations for small perturbations from Eqs. (20)—(22) as
follows:

ds = —(1 —Me '~)dr +(1—Me '~) 'dP
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In these Schwarzschild coordinates, the line element is
represented as V~h..+V'.h4, 4, +2g 4,4,
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Here we used M as the mass of the black hole given only
to leading order in c. This metric describes a
Schwarzschild-like black hole which has the event ho-
rizon at /EH —=(1/2e) lnM. In the next section we will

show that this black hole solution is stable.

III. STABILITY OF TWO-DIMENSIONAL
STRINGY BLACK HOLE

In order to explicitly show the stability of the black
hole solution given in Eq. (13), we introduce small non-
static perturbations h„{g,r) and n{P,r) around the
background solutions g„and 4, respectively:

g ~~V&n +g "V,n 2Eg ~~5I ~&&—(h )
—
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This equation can be reduced to a simple form of equa-
tion, which is just a free field equation:

r},H —B~=0 . (29)

Second, we combine Eqs. (24) and (25). Then we get an
equation for the combined mode:

[(1—Me '~} 8 +2Mee '~(1 —Me '~}B —8 ]

X (h —n) =0 . (28)

g„=g„+h„
N=N+n,

(17) Here H is a newly defined field and P* is a transformed
coordinate such that

where the background dilaton field N and the back-
ground metric g„are given in Eqs. (13) and (15). Since
two-dimensional space-time is conformally Aat, we take

H=h —n,
P* =P+ ln(1 —Me '~) .
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Note that P* ranges from —oo to + ~, while P ranges
from the event horizon of the black hole /EH to + ~.
Now, we take a trial solution such as

H (P*,r) =IC (P* )e (32)

and substitute this trial solution into the free field equa-
tion in Eq. (29). Then we get an equation such as the
time-independent Schrodinger one:

which is obtained by subtracting Eq. (25) from Eq. (24).
Therefore, Eq. (27) does not give additional information.
As de Alwis and Lykken pointed out, this is because the
metric and dilaton P functions obey a Bianchi type identi-
ty which tells us that if the gravitation equations are
satisfied, then the dilaton equation is automatically
satisfied up to a constant [4].

Now to complete the analysis we study the other mode
J=h +n. Combining Eqs. (28), (38), and (26) we get

d2
K(P*)+k E(P*)=0 .

Its solution is

(33) d
N (P*)+(k —V)N (P* )=0,

where

(39)

K(P*)=A exp(+ikP*) . (34)

In order to know whether or not there is the exponential-
ly growing mode, we take k =ia (a is positive and real).
Since we require that the perturbation falls off to zero for
large P, we choose

J(g*,r)—:h +n =N(P*)e

V =8M', e '~(1 Me —' ) (41)

The asymptotic forms of this equation, and the corre-
sponding solutions, are found to be

K(P*)=A exp( —a/*) . (35) +k2N =0, N -exp(+ikP) for P~ ~

Now in order to cover the event horizon, we are going
to transform the solution into a singularity-free region by
using the Kruskal transformations which are given by
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As in the previous case, set k =ia (a is positive and real).
Then the equation and asymptotic solutions will be

1
ds dudv .
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This metric form of the solution is similar to that of a
black hole in Kruskal-Szekeres coordinates [1,17]. The
curvature is given by R =4/E (uv —M/4) which shows
that the curvature singularity occurs at uv =M/4. The
event horizon is given by the lines uv =0. Therefore
there is not a singularity at the event horizon in the (u, v)
coordinate system. Then the perturbation H(g*, r)
= Ae ~ e 'is given by

H(u, v)=2 i'Au (37)

+4~v.2e 2~~n —cj2n =0 (38)

On the other hand, it is also possible to get the exact
same equation by substituting Eq. (26) for the equation

Note that a and c. are positive and real. In deciding
whether or not the black hole is stable, we start with a
perturbation which is regular everywhere in space at the
initial time ~=0, and then see whether such a perturba-
tion will grow with time. At ~=0, by choosing a small u,
this perturbation can be made as large as we wish. In
other words, this perturbation diverges as u ~0, whereas
the background solution remains finite. This contradicts
the assumption that the perturbation is small compared
to the background value. As a result, the perturbation
with k =i+ is unacceptable and thus cannot exist.

For the time being we want to know the role of dilaton
perturbation equation. The dilaton equation (27) com-
bined with Eq. (26) gives the decoupled equation for n as

(1 —Me '~) 8 n —2MEe '~(1 —Me '&)8 n

N -exp(+a/), N«-exp(+a/*) . (44)

To ensure. that the perturbation falls off to zero for large
P, we choose N„-exp( —aP). In the case of NEH, the
solution exp(a/*) goes to zero as P*~—ao. Then
NEH-exp(a/*) cannot be matched to N„-exp( —aP)
because assuming N to be positive, Eq. (43) shows that
d Nldg* never becomes negative within the range of d

from /EH to oo. Therefore, we conclude that the solution
going to zero for large values of P has the asymptotic be-
havior NEH-exp( —a/*) near the event horizon. This
asymptotic solution has exactly the same form as Eq. (35)
and gives rise to a divergent perturbation in the Kruskal
coordinates as u ~0 at initial time.

Thus we have shown that perturbations with purely
imaginary frequencies are physically unacceptable since
they are divergent even at the initial moment. This
means that the metric and dilaton perturbations should
oscillate with time. As a result, a two-dimensional strin-

gy black hole is stable under small perturbations of
metric and dilaton fields.

IV. CONCLUSION

We have analyzed the stability of the two-dimensional
stringy black hole. We have given the linearized pertur-
bation equations governing the black hole perturbation.
Then, we have obtained the solutions for small perturba-
tions h —n and h +n, and transformed these solutions to
a singularity-free coordinate system in order to cover the
event horizon. As a result, we have shown that the regu-
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lar perturbation solution only exists in the case where k is
real. Therefore the perturbation must oscillate with time;
i.e., the two-dimensional stringy black hole is stable un-
der small nonstatic perturbation, and thus can be regard-
ed as the final state of gravitational collapse of two-
dimensional matter.
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