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We show how a Becchi-Rouet-Stora-Tyutin constant charge can be used to determine the asymptotic
states of an anomalous theory when the quantization is defined through a functional integral over all the
configurations. We also prove the equivalence of possible alternatives, which correspond to the decou-
pling of longitudinal modes, to cure nonrenormalization problems appearing in the Abelian (3+1)-

dimensional case.
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I. INTRODUCTION

Becchi-Rouet-Stora-Tyutin (BRST) symmetry is a use-
ful tool to determine the physical states in gauge theories
[1]. In chiral electrodynamics one might think that the
BRST treatment becomes useless because of the appear-
ance of the anomaly. However, since the quantum non-
conservation of the chiral fermionic current and the La-
grangian gauge invariance may be rendered compatible
giving up the Dirac equation as an operatorial identity
[2], it is conversely possible to have a BRST-noninvariant
Lagrangian accompanied by a conserved BRST current
[3]. Exploiting the validity of the Euler-Lagrange equa-
tions of motion as averages over the corresponding fields
in the functional integral, the usefulness of the BRST ap-
proach for anomalous theories appears when the
Faddeev-Popov gauge-fixing procedure is introduced and
the consistent anomaly manifests itself through the one-
cocycle emerging from the regularized transformation of
the fermionic measure. In this way there arises a La-
grangian allowing the definition of canonical variables
apparently without constraints, even though the chiral
current is not conserved. The requirement of invariance
of the physical states under BRST transformation leads
in general to the restriction given by second-class con-
straints [4]. The choice of an additional condition deter-
mines asymptotic states which may correspond to mas-
sive gauge bosons also when no classical mass was initial-
ly present. However, in 3+ 1 dimensions the anomaly in-
troduces a nonrenormalizable interaction if it is used per-
turbatively [5]. Modifications of the quantization pro-
cedure must be introduced to recover the renormalizabili-
ty of the theory in the Abelian case. We prove that
different approaches are equivalent to a restriction of the
functional integration over configurations which satisfy
the Lorentz condition, losing, however, the possibility of
mass generation through the anomaly.

In Sec. IT we show that the validity of bosonic equa-
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tions as quantum identities allows the nonconservation of
the fermionic current in a chosen gauge. Section III indi-
cates, using the BRST symmetry with an additional con-
dition, the cases in which unitarity may be expected.
After a short survey of the renormalization difficulties in
3+ 1 dimensions with the usual quantization procedure in
Sec. IV, alternative rules consistent with unitarity and re-
normalizability are included in Sec. V, where we prove
their equivalence.

II. USE OF BOSONIC EQUATIONS
AS QUANTUM IDENTITIES

If we define the quantum theory summing over all the
configurations,

Z=f$A#1)‘(IJ DY exp

i [dPxL | (1)
with the classical Lagrangian
M? -

Lz—%F2+——2~A2+i¢H¢+eA-JL , )

where only the left fermionic current is coupled to the
massive vector field, no anomaly appears as average over
electromagnetic configurations in the massless limit
M?=0.

In fact using the following identity for any particular
field ¢,

& s
fﬂ(])%e =0 N (3)
one obtains the validity of the corresponding classical
equation of motion E,=0 averaged over configurations
of ¢ with the other fields kept fixed as background:
- 8S is_
<E¢,>—f$(p$e' =0. (4)

For the Lagrangian Eq. (2), the application to A4 of the
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identity Eq. (3) leads to
(M?3-A+ed-J, )=0. (5)

In the limit M?—0 Eq. (5) gives the conservation of the
chiral fermionic current which is consistent with the can-
cellation of the anomaly when averaged over all elec-
tromagnetic configurations.

Adopting the usual view that the average over the
configurations of a particular field of the corresponding
equation of motion is equivalent to its operatorial validi-
ty, Eq. (5) agrees with the anomalous Poisson brackets
treatment of chiral four-dimensional QED without fixing
the gauge [6] where because of cancellations the normal
Gauss and Ampere laws are valid as quantum identities.
As a consequence, the vanishing of the anomaly is one of
the four second-class constraints which do not allow the
increase of the number of degrees of freedom as also
occurs with an analogous analysis [7] of the chiral
Schwinger model.

If we instead introduce in the partition function Eq. (1)
the Faddeev-Popov identity as it is necessary for pertur-
bative purposes in the massless case,

A [Dgd(d-45—b)=1, (6)

where A€ is the gauge transformed field with group ele-
ment g = exp(if), b is a generic function, and A= det[],
performing a subsequent average over b with a Gaussian
weight, a new Lagrangian without apparent constraints is
obtained. With a notation suitable for 3+ 1 dimensions,
it is

2
LB=—§F2+MT(A — 30 +if+ed-J, +3z-dc
b2
+5+A4-9b+m?K(4,00)+A0P(d,4,) (7)

if only the left fermionic field is gauge transformed. Now
in addition to the functional integrations indicated in Eq.
(1) one must integrate over b, which has 4 as conjugate
canonical momentum, the Grassmannian ghosts ¢ and ¢,
decoupled from the rest in the present Abelian case, and
the group field 6. The last one is coupled to A due to the
noninvariance of the fermionic measure. This produces
as a consistent anomaly not only the Chern-Pontryagin
density P, but also a possible kinetic term K depending on
the chosen regularization that may determine the dimen-
sional parameter m 2.

It is now clear that the equations of motion for 4 and
6, which are valid when averaged over the corresponding
fields with a weight given by the action coming from Eq.
(7), may be taken as quantum identities. These combined
give
K K

—_—

—ed- 2
ed-J, +AP—m-9, 24, 30,0

=0 (8)

and allow the nonconservation of the fermionic current
even in the case of massless electrodynamics M2?—0.

We must note that taking bosonic equations as opera-
torial identities implies b =9- A and that to obtain Eq. (8)
we have chosen [0b=0. Whereas the latter is a conse-

quence of the equations for 4 and 6 in the pure massive
vector boson case, it must be imposed as an additional
condition when there is a coupling to chiral fermionic
current. This fact will be important in what follows.

A nonvanishing K is necessary to have 9-J; %0 in the
case M?=0 since otherwise the equation for 6 would give
P=0. The choice of, e.g., a term that behaves as a one-
cocycle and that in 1+ 1 dimensions arises from regulari-
zation [8]

K =9,0(;3"6— 4") , 9
gives a mass contribution to Eq. (8):
m?3-A—ed-J, +AP=0. (10)

It should be remarked that without fixing the gauge an
appropriate regularization of the charge depending on
the electromagnetic potential [9] and which mimics the
existence of a K term allows us to establish a system of
two second-class constraints for the chiral Schwinger
model given by the usual Gauss law and the momentum
T, conjugate to A,. In this way there remain two in-
dependent degrees of freedom and the use of normal Pois-
son brackets for canonical fields leads to the functional
quantization defined by integration over all configura-
tions.

Our approach takes Euler-Lagrange equations coming
from Eq. (7) for bosonic fields as operatorial identities
without using those for Dirac fields. This agrees with the
alternative view [2] which relates the nonconservation of
the chiral current to the nonvalidity of Dirac equation
when multiplied by the change of the field under a global
chiral transformation and averaged over fermionic
configurations.

III. BRST CHARGE AND UNITARITY

We now turn to the analysis of BRST symmetry
defined through the nilpotent transformations

84A=0c, d&=—b, 80=c ,
Sy, =iecty, S, =—iec,

the rest of the changes being zero. The Lagrangian Ly
will remain invariant except for its last two terms. With
the choice Eq. (9) for K, as an example, we obtain

8Lz=—m?A4-dc+AcP , (12)

(11)

which corresponds to a Noether current whose diver-
gence is

a-JB=m26#(cA“) (13)

using classical equations of motion for the bosonic fields.
From the quantum point of view we may start from the
identity averaged over Dirac field configurations with the
weight given by Eq. (7):

(8Ly)=3 (E 8¢)—(3-Jp) . (14)
¢

If all the equations of motion E =0 are taken as identi-
ties except for Dirac fields
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S (E 8¢)=(ed-Jc) (15)
P

and consequently using Eq. (10), Eq. (13) is obtained in an
operatorial sense.

Equation (13) seems not to agree with the Lagrangian
noninvariance Eq. (12). This may be understood in terms
of the compensation provided by the noninvariance of the
fermionic measure. In fact it is seen that the effective ac-
tion [10], obtained by integrating over fermionic and
group field configurations in the partition function, is
BRST invariant.

From Eq. (13) we may define a constant charge opera-
tor

Q=fdr(ﬂ'A,a,-c+baoc—17'9c—ie77¢L1//Lc-—m2A°c)
(16)

which generates, through canonical commutators, the
transformations of quantum fields as in Eq. (11) except
for b.

From the Lagrangian Eq. (7) in 1+ 1 dimensions where
P=¢"9,4,, and the choice Eq. (9) the Hamiltonian
turns out to be

2
_ 1, , 1 7 M?>+m?
HB—fdl‘ —2‘7TA,- Em2+M2 >

(A1+9,6)?

m?
2

2 .
+(mg+3;m ) A% —ed-Jp ~b7— A'9;b

— iy d,y+m m, +3,€9,c+ (A°)?

2
—m——(A")2+k91rA,-+—;-k262 : (17)

Its commutator with the constant charge Q gives
[iQ,Hp]= [dr(—=AF*'+m? —ed-Jp)c , (18)

so that using Eq. (10), Q and Hz commute. A few com-
ments are in order. Whereas in the simple massive
vector-boson case (i.e., A=m2=e=0) the commutation
is obvious, in the general case there are two sources of
noncommutation: the term proportional to m? which
comes from the term b2/2 of the Hamiltonian used to
avoid the strict gauge fixing 3- 4 =0, and that depending
on A which appears as a consequence of the change A8
produced by the Chern-Pontryagin density in the

definition of momentum 7 4 with Eq. (7). These two

terms are compensated by the last one of the right-hand
side of Eq. (18) which comes from writing [p;,Hg]1=ip,
for the chiral charge density which appears in the BRST
charge Eq. (16).

If the explicit canonical commutators of ¥; and ¥,
were used instead, which is equivalent to the validity of
Dirac equation, the left charge would be conserved and
the last term of Eq. (18) would not appear. But we are
taking the left charge in Eq. (16) as the physical one con-
structed from positive energy states. It does not coincide
with the formally conserved Dirac charge before con-
sideration of the full infinite sea of negative energy states.
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This physical charge is not constant because of, on one
hand, the generation of mass for vector bosons in a gauge
different from 3- 4 =0 and, on the other, the change in
the number of left movers with positive energy when an
electric field is applied [11].

If the physical states are defined to be invariant under
transformations generated by Q, from Egs. (16) and (17)
this means the condition

J dr(—be+be)| @) =0 (19)
In the case m2=0 (but M>50) Eq. (19) implies the two
separate conditions of annihilation of physical states by b
and b. Since b and b commute these conditions are there-
fore compatible as in the simple vector-boson case. In
the general BRST treatment for second-class constraints
[4] this corresponds to having enlarged the space to in-
clude the gauge group field so that the constraints turn
into first-class constraints and Q becomes nilpotent.
Therefore, it is possible to eliminate two degrees of free-
dom in the effective Hamiltonian. In the subspace of
|®hys) this turns out to be
1

2M?

2
Hy'= [ dr | 3wt B AP O e,

MZ }\’2
+—(3,0°+ =6 ; a
> (9,0) + 5 O°+AOm i+

+09,¢0;c —iPyd;+eAdJ} (20)

after having subtracted from Hj the terms A% and 70,
and used the classical definition of momenta for these
modes followed by the minimization with respect to A°
along the lines of Ref. [12]. In the same spirit HET must
be understood with 6 defined instantaneously in terms of
m ,ithrough

M?V?0—A*0=Ar ;.

For the case m?#0 (either with M?>=0 or M*#0) Eq.
(19) does not imply two separate conditions, in correspon-
dence with the fact that Q is no longer nilpotent but
satisfies @3=0 because it generates the transformation of
b quoted above. In the language of the general treatment
[4] this means that we may impose the validity of only
one constraint on the physical states, e.g., the Gauss law
b|<I>phys)=0. The second part of Eq. (19) will be also
satisfied requiring that the physical states do not contain
either the antighosts ¢ (whose conjugate momentum is ¢)
or the particles associated with b. The absence of the
latter is consistent because, due to the additional condi-
tion 0b =0 we have adopted, they are free particles. In
this way the number of physical degrees of freedom, oth-
er than the fermionic ones, may be equal to d in d +1 di-
mensions. This is in agreement with the exact solution of
(1+1)-dimensional chiral QED which shows in total two
degrees of freedom [13].

If both M? and m? are zero [14] there is no momentum
conjugate to 6 so that all terms of Egs. (17) and (18) in-
volving either the masses or 7y vanish. Since 6 is not a
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dynamical variable, the two first-class constraints implied
by Eq. (19) leave d — 1 gauge field degrees of freedom.

In the (3+ 1)-dimensional case there is the obvious re-
placement

=1 3
P=1e"PPF F s .

If we keep the same K of Eq. (9) there are no changes in
Egs. (10)-(16). For the Hamiltonian treatment one must
note the change in the definition of 7 ; induced by the
Chern-Pontryagin density 7 ,,;=F%—A6F; (cyclic or-
der). Therefore Hy, in addition to including the magnet-
ic contribution 1 ];’k’ will modify the A-depending terms
of Eq. (17) into A7 ,Fj +LA’6°Fj;. As a consequence,
since [iQ, Fj ]=0, Eq. (18) changes into
[iQ,Hy1=(—AF%Fy +m?h—ed-J.)c , 21

with a sum in cyclic order, Q remains as a constant of
motion, and Eq. (19) is still valid. Other alternatives for
K will be considered in Sec. IV.

We assume that when e —0 the constants which couple
the modes A* and 6 because of the anomaly also vanish,
i.e., A—0 and m2—0. Therefore the set of one-particle
states for a definite four-momentum k w

PRI

after excluding |b ) and |¢) as explained above following
the additional condition [0b =0, is left invariant under
transformations generated by Q. Note that with this re-
striction Q behaves as a nilpotent operator. We define
the physical asymptotic states as those corresponding to
Q =0. They will be the transverse vector bosons

|q)>as:£lll!A‘u>’ Q5T|A#>:O, k'81=0 (22)

which have a positive norm, with the possible addition of
the zero-norm states [3]

|®)o=alc)+B(efl4,)—el3,6)) (23)

in addition to the fermionic states. For the massive case
[15] ef*=k" /M with k*=M? so that the longitudinal vec-
tor boson alone is not BRST invariant.

For the &-matrix elements {®,|&|®d,) it is clear that
the time invariance of Q implies [Q,$]=0 so that a phys-
ical state can only be connected to another physical state.
Also for

|®>;S: |q)>as+ |(I) >O
it would be important that

as’<q)2|‘s|q>1>;s:as<¢2l£l®l>as ’ (24)

allowing the definition of equivalence classes associated
with a submatrix & among physical states. Equation (24)
would be obviously satisfied if |® ), could be expressed as
Q applied to a general state. This is true for |c ) but not
for the second part of the state |¢ ), of Eq. (23). Howev-
er, going back to Eq. (7), it is obvious that, for the normal
massive vector-boson theory (A=0=m?),

[8-4—06)=0 (25)
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so that this disturbing state vanishes.
For the chiral case with the choice of Eq. (9),

%IP) (26)
M +m

|3-4—06)=—
showing that in the asymptotic limit it will again be pos-
sible to define the & matrix in the physical subspace.
This will include the case M =0, provided A tends to zero
faster than m? when e —0, so that we may interpret that
a quantum mass has appeared adding one degree of free-
dom to those of normal QED and consequently in the
definition of &ff, M must be replaced by m.

IV. DIFFICULTIES WITH RENORMALIZATION
IN 3+1 DIMENSIONS

In the (3+ 1)-dimensional case it is not obvious that the
Wess-Zumino term of .Lz must be iterated perturbative-
ly, because of its topological nature and to the fact that it
is not renormalized [16].

However, if a standard perturbative expansion of the
term AOFF is performed, problems related to the renor-
malizability of the theory appear [5]. In fact, the one-
loop correction to the inverse 8 propagator of momentum
p will contain divergent contributions of order A2
proportional to (p2)°, (p?)}, and (p?)®. The first must be
compensated by a mass counterterm for m6 not
present in L, the second by a kinetic counterterm
(Z—1)m? 9,006, and the third by a term 06016 which

might be considered as part of a new kinetic term
K'=«k[(3-4—06)*—(3-4)*] 27

that transforms as a one-cocycle.

It seems apparently impossible to reabsorb all the
above infinities in a Lagrangian which keeps the form of
Eq. (7) with the simple addition of kinetic terms trans-
forming as one-cocycles. Moreover, a term such as that
of Eq. (27) would make the Hamiltonian formalism ob-
scure and it would be difficult to establish a criterion for
avoiding the transition probability between transverse
and longitudinal fields, spoiling therefore the unitarity re-
quirement.

A renormalizable theory is attained suppressing the
one-cocycle kinetic terms, and replacing m 2K of Eq. (7)
by the more general gauge-invariant expression of dimen-
sion four [17]:

K"=ky(3- A —06)+xk,[( A, —3,0)(A*—30)
+ry( A, —3,00f (28)

which must be thought as coming from additional terms
to the original .L of Eq. (2).

In this way we can absorb all the infinities generated by
the Wess-Zumino term considering the dimensional field
d,,0 instead of the dimensionless 6.

Since K"’ is gauge invariant Egs. (8), (10), (12), (13), and
(16) will be valid with m2=0. However, again because of
the difficulty of handling the quantum states of a higher
derivative theory, unitarity cannot be completely proved.

A general analysis of the Faddeev-Popov gauge fixing
of the sum over all configurations using lattice regulariza-
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tion indicates that the theory with a Wess-Zumino field
cannot satisfy all the conditions of renormalizability, uni-
tarity, and finiteness of the photon mass [18], showing the
need for changes in the quantization prescription.

V. ALTERNATIVE QUANTIZATION RULES
AND THEIR EQUIVALENCE

If we return to Eq. (7) and perform the separation
A,=A.+3,p, 3-4'=0, (29)
we obtain
2
,LB=—}F2[A1]+eAl-JL+b—+A -3b+ABP[ A']
+ i+ edp-J, +0¢p-0b+3dc-dc
2 2 2
+M—?"—(Ai+a¢wae)2—mT(Al+a¢)2

(30)

where the choice Eq. (9) for K has been made.

Using Eq. (10) together with 00b =0, and considering
0=06—¢@ as a variable in the functional integral, Eq. (30)
becomes

b2 o m?
,CB=—%Fz[Al]+eAl'JL+7+i¢a¢_T(Al)2
m2 a)
+—(3g)*+ABP[ 4" ]+dc-3c
2 2
+M_;Lm_[(Ai)z+(a§)2] 31

so that @, in addition to b, is decoupled. This decoupling
would remain true also if terms such as K’ of Eq. (27) or
K" of Eq. (28) were added.

To avoid the perturbative difficulties originated by 6P
in the (3+ 1)-dimensional case one might add to Eq. (31) a
regularizing term, a function of a new field [5], which
cannot be derived from the original quantization Eq. (1):

M>+m?
2

L' gives the same Egs. (8) and (10), and is left invariant
under the nilpotent transformation

L'=Lz+AgP— (am)? . (32)

80=c, dy=—c, dc=(—0—n)M*+m?). (33)
Changing variables to
§=0+n, x=0—1, (34

the Lagrangian is rewritten as

L'=—1F+eA! JL+b7+zz,bB¢+ M2y
M?>+m?

STX0E . (9)

m?
—2—(acp)2+85-8c +AEP —

The functional integral over ) leads to 8(J&) showing
that the field apparently coupled to 4 ' is indeed free and
consequently the anomaly becomes harmless. Defining

the physical states as those invariant under the transfor-
mation Eq. (33), the possible state |8)+|7)=|&) which
satisfies this condition is irrelevant and the sole trans-
verse states are important for the & matrix. These will be
three independent modes provided M?> 0 since the effect
of m? has disappeared from Eq. (35).

The transformation Eq. (33) leaves the fermion fields
invariant. In the same spirit, if we keep the fermions in-
variant in the transformation Eq. (11) for the Lagrangian
Eq. (7) with the choice of Eq. (9), instead of Eq. (12) we
would obtain

8Ly =3,[(eJf—m2AM)c] (36)

with a new BRST current J§=J§ —eJfc whose diver-
gence would therefore be

8‘73=a#[(m2A"—eJ£)c] . (37

The nonconservation of J§ is directly related to the
change of the Lagrangian, a connection which is under-
stood looking at Eq. (14) where now the Dirac equation
does not contribute. From Eq. (37) it is clear that the
charge Q defined previously in Eq. (16) is a quantum-
mechanical constant of motion as verified using Eq. (18).
Therefore both transformations & and § give rise to
equivalent physical applications.

Another way of changing the quantization rule is to in-
troduce a Lorentz restriction in the functional integra-
tion:

Z,= [DA, DY DP 8(3- A)exp

ifatxL]. @8

This is consistent for massive vector bosons and avoids
the sum with different weights of configurations which
are gauge transformations of one another. Assuming no
further regularization terms, we shall obtain a BRST La-
grangian of the type of Eq. (7), with a gauge-invariant ki-
netic term [3]

K=3f-(06—4) , (39)

where the additional invariant scalar field f must be in-
tegrated over.

This functional integral over f gives a constraint for 6
which indicates that the latter is not an independent de-
gree of freedom and that Eq. (25) is satisfied leaving only
the transverse states. In fact the restriction in Eq. (38) is
equivalent to starting from a Lagrangian where A is re-
placed by the gauge-invariant [19] expression 4,
—a,0" 13- 4 so that the fermion field must not be gauge
transformed and the fermionic measure is therefore in-
variant giving no anomaly.

On the other hand, inserting the separation Eq. (29)
into the Lagrangian Eq. (7) with the kinetic term Eq. (39)
and using Eq. (10) and Ob =0, one obtains

2
——%F2+eAl-JL+b—+ g+ 2417

L'I:
2
+—A§—[a(9—-¢)]2+86'8c

+MO—@)P—m2fO(60—¢) . (40)
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The functional integral over f shows that the field 6 —¢
is in fact free, proving that the treatments based on La-
grangians L' or L' are equivalent. The only difference
comes from the choice of including the one-cocycle kinet-
ic term Eq. (9) into L’ but not in L"'. Adding it to the
latter would not change the equivalence consideration.

A detailed analysis of the theory with the kinetic term
Eq. (39) has been performed [20] considering the BRST
symmetries for all the ghost fields involved, and this
confirms the unitarity and renormalizability of this ver-
sion of chiral QED in 3+ 1 dimensions. Even though the
current J; is still not conserved, its coupling to a trans-
verse A! implies that A interacts with an automatically
superconserved [21] current J3.

It is interesting to see to what extent the restriction of
the functional integral to configurations satisfying the
Lorentz condition is determinant. If instead of Eq. (38)
we introduce an average of gauges around the Lorentz
one with a Gaussian weight of width 1/« in the spirit of
what was done for the chiral Schwinger model [22], we
obtain a functional integral with a Lagrangian

- M? -
L=—1F"+ - (4 —30)*+iYdy
a
+elf(4,-8,0)+-(3-4—00) (41)

and an additional sum over configurations of 6. Even
though £ is gauge invariant under the transformation of
only A and O so that no anomaly appears from the fer-
mionic measure, for general values of a the field 6 will
not decouple from the physical degrees of freedom with
the consequent difficulties related to its higher derivative
term. Only for a— o0, 8 will be fixed as 6=0"'9- 4 re-
covering the model Eq. (38) in terms of transverse A<,
and Eq. (25) will be satisfied decoupling a dangerous state
which could otherwise spoil unitarity and renormalizabil-
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ity [23]. For a=0 one would instead return to the sum
over all configurations Eq. (1), with the problems quoted
above.

It is therefore clear that only the Lorentz gauge restric-
tion of Eq. (38) provides a consistent anomaly cancella-
tion in 3+ 1 dimensions, whereas for the chiral Schwinger
model the general restriction Eq. (41) allows an exact
solution with a single massive mode when M =0 in much
the same way as mass appears in the normal Schwinger
model. A similar thing occurs with the temporal gauge
A(=0, an unnatural choice when aiming at massive bo-
sons, which forces a modification of the Gauss law [24]
and a single massive mode for the chiral Schwinger mod-
el [25].

In conclusion, we have shown that it is possible to en-
visage a unitary chiral QED in 3+ 1 dimensions using the
sum over all the configurations through the consideration
of invariance under a constant BRST charge which
would allow the generation of mass originated by the
anomaly. However, the renormalizability is only assured
restricting the integration to configurations which satisfy
the Lorentz condition in such a way that the Wess-
Zumino field is effectively decoupled from the transverse
electromagnetic modes without the possibility of mass
generation.
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