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We analyze the chiral Schwinger model in nontrivial topological sectors, performing its complete bo-
sonization. In order to do this, we propose a prescription for evaluating the fermion determinant in the
presence of the zero modes, valid for non-Hermitian Dirac operators, in general. By taking fermionic
external sources into account in every step of the calculation, we discover a phase ambiguity which
affects the effective action and can be used to render the result invariant with respect to particular
choices of the topologically charged background configuration. Consistency requirements on the bosoni-
zation procedure fix the phase ambiguity and determine a unique value for the Jackiw-Rajaraman regu-
larization parameter in all sectors with a nonzero topological charge. We thus find that nontrivial sec-
tors have a null contribution to all fermionic correlation functions. Our method is also checked against
the analogous results for the Schwinger model.

PACS number(s): 11.15.Tk, 11.30.Rd

I. INTRODUCTION

Topologically charged gauge fields have been con-
sidered of physical relevance since the 1970s, in the
pioneer works of Rothe and Schroer [1], Crewther [2],
Nielsen and Schroer [3], Rothe and Swieca [4], Hortaqsu,
Rothe, and Schroer [5], and others [6]. Recently, they
arose again in quite different contexts, such as string
compactification [7], consistency of two-dimensional
SU(2) Weyl fermions [8], two-dimensional gauge theories
[9—11],high-T, superconductivity [12], and QCD strings
[13]. Some very interesting phenomena have appeared in
these investigations, for instance, correlation functions
which would be null in topologically trivial sectors [7,9]
or the elimination of instanton contributions by a dynam-
ically generated Chem-Simons term in 2+1 dimensions
[12].

In previous articles [14,15], it has been noted that, in
topologically nontrivial sectors, the external fermionic
sources play a very important role: they regularize the
zero-mode dependence of the generating functional, pro-
viding the natural appearance of det'D (the product of
nonzero eigenvalues of the covariant Dirac operator D)
instead of detD {the true fermionic determinant, which is
of course zero, due to the inclusion of the zero modes).
This fact led us to a different definition of the Jacobian
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for chiral rotations of the fermionic variables in the path
integral, namely,

I

J[a]=, JV[a] (1)det'D
Q$5 ex/5

with D =e 'De '. The functional JV[a] is a contribu-
tion of the fermionic sources to the Jacobian, that exactly
cancels the explicit zero-mode dependence of the ratio be-
tween det'D and det'D . When D is a normal operator
(that is, DD =D D) or a Hermitian one, one can com-
pute det'D using the g-function regularization, as is done,
for example, in Refs. [16,17]. However, problems con-
cerning the stability of the null subspace of D preclude
the application of this method to non-normal operators,
and that is precisely the case of a model of great interest:
the chiral Schwinger model (CSM) [18].

Therefore, it is the purpose of this paper to compute
the contribution of all topologically nontrivial sectors to
the CSM, taking into account the full dependence of the
generating functional on the sources. We will base our
discussion on the method of bosonization in the presence
of nontrivial field configurations as developed by Bar-
dakci and Crescimanno [7] and Manias, Naon, and Trobo
[9] for the case of the Schwinger model: we assume that
a field configuration with topological charge 1V can al-
ways be decomposed in the following way:

W„=W„' '+a„, (2)

where 3„' ' is a fixed configuration of charge X and a„
carries zero topological charge, so that, within the %-
charge sector, a field change amounts to a change in a„
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II. FERMION DETERMINANT AND GENERATING
FUNCTIONAL IN THE SCHWINGER MODEL

Before we concentrate on our main goal, let us first
consider the Hermitian case of the Schwinger model,
defined (in two-dimensional Euclidean spacetime) by the
Lagrangian density [20]

,'F„,F„+Q D Q, — (3)

where D=il+eA The ga.uge field A„ is assumed to
satisfy a vortex quantization condition [21—23]:

~ A„dx„=N, (4)

where N is an integer and X is a closed loop surrounding
the vortex. We can decompose A„as

only. This implies that the functional measure 2)A„ is
restricted to 2)a„, where the path integral is now to be
computed under trivial boundary conditions, which al-
lows us to bosonize the theory completely. In the course
of our analysis, we are confronted with the fact that the
effective action has an ambiguity due to the process of
orthonormalization of the zero modes after chiral rota-
tions. This ambiguity can be fixed with the aid of two
criteria: (1) invariance of the generating functional with
respect to particular choices of A „'

' and (2) the require-
ment that the theory is to be bosonized without leaving
the topological sector of charge N. As a consequence, the
Jackiw-Rajaraman regularization parameter a~ (N) (in
principle different for each sector) is shown to be equal to
—1 for all NXO, only az(0) remaining arbitrary. Final-
ly, the computation of arbitrary fermionic correlation
functions gives a null contribution from the nontrivial
sectors, thus showing that the model can be completely
solved by considering only topologically trivial gauge
fields.

Our analysis demanded a new definition of det'D, a
generalization of one previously proposed for detD [19].
It reduces quite obviously to the natural one for Hermi-
tian singular operators. We motivate it by working out in
some detail the Hermitian case of the Schwinger model.

The article is organized as follows. In Sec. II we con-
sider the definition of det D for the Hermitian case and
apply it to the Schwinger model. In Sec. III we give an
explicit description of the zero modes and compute the
Jacobian of chiral rotations for the CSM. Section IV
contains the application of our definition of det D to the
non-normal case, where we compute the full generating
functional with the solution of the phase ambiguity. The
correlation functions of fermionic fields and currents are
the subject of Sec. V and in Sec. VI we present our con-
clusions.

of a„ is zero. We choose 2 „'
' to be of the form

e W' '(x)= —3P(x), (7)

with the scalar field f satisfying the boundary condition

f(x) — N—lnlx
I

We can rewrite a„ in terms of scalar fields as well:

egap =8+ Spy, (9)

where p and P satisfy trivial boundary conditions such as

1
p(x) (10)

D =i 8+e A
' '+agf, 0 ~ ~ 1, (12)

with the eigenvalue equation

D y„=A,„y, ,

we can use (11) and det =exp Tr ln to establish a
differential equation obeyed by D, as in Ref. [19],

det(D +el), dD
det'D = lim

z~
Tr (D +el )da, o+ ~l~l de

(14)

with A„' ' and a„given by (7) and (9). The inverse opera-
tor (D +el )

' exists and can be written in terms of the
eigenfunctions of D

A.„+e
n

=S, (x,y)+ Po(x,y), —1

E

so that

dD
det'D =det'D Tr S

dc' de

with y appropriately chosen so that we can perform by
parts integrations involving f (x).

It is well known that D is a singular operator with ~N~

zero modes [1]. We can compute the product of its
nonzero eigenvalues using the prescription [24]

det(D +el )det'D = lim,+

This gives formally the determinant of D+Po, with Po
being the projector over kerD. Considering a family of
operators [D ] given by

W =W' '+a
v '

with A „'
' satisfying (4) and a„such that

(5)
det(D +el ) dD

+11m l"l+' Tr Poe~o dQ
(16)

ya dXp=O . (6)

We say that the topological charge of A„' ' is N and that

There are several ways to see that the second term on the
right-hand side (RHS) vanishes. For instance, we can
note that dD /d a = gf transforms left-handed spinors
into right-handed ones and vice versa; thus,
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dD
Tr Po = g f d x yo (x)yf(x)yo (x)

l

(17)

is in fact the scalar product between a left- and a right-
handed spinor (remember that zero modes in the
Schwinger model have a definite chirality [1,7,9]). We
have then dzP x,zG zy (21)

over R, (the compactification of R, which must have
been made in order to define a discrete set of eigenvalues
for D ) [1]. However, it can be used to construct a func-
tion that satisfies (20):

S (x,y)=G (x,y) —f d z G (x,z)PO(z, y)

with

dD
ln det'D =Tr S

da dQ
(18) where

D G (x,y) =5(x,y) . (22)

q (x)y (y)
S (xy)=

%0 n
n

satisfying

(19)
Equation (18) is then rewritten as

dD
ln det'D =Tr G

da da
dD—Tr GP ' da

D S (x,y) =5(x —y) Po (x,y) =—S (x,y)D (20) dD—Tr P0G
dA

(23)

Although D is singular it has a Green's function that
can be computed exactly in two dimensions. It does not
have a spectral decomposition in terms of the eigenfunc-
tions of D and thus cannot be viewed as a distribution

The ultraviolet singularities in this expression are all con-
tained in the first term of the RHS. We can regularize
them by means of point splitting [25,19] to obtain

dD
Tr G

a„a.—a„a.f d x a„a+(N)5„—
277

2

f d x 3 „'
' a+ (N)5„„ia (N)E„,——

27T
L

a

—:—2al [a„]—I [A„' ', a„] . (24)

The parameters a+(N) and a (N) in (24) are reminis-
cent of the regularization freedom of the theory. The
values that preserve gauge invariance at the quantum lev-
el are a+(N)=1 and a (N)=0, for all N. The uncon-
ventional parameter a is a consequence of allowing
different interactions between the gauge field and the left-
and right-handed fermions (cf. Eq. (11) of Ref. [19])and
appears here only because we have "embedded" the
Schwinger model in the generalized Schwinger model
[19]. We shall see later how to determine these parame-
ters. In order to compute the other two terms in (23), let
us remark that P0 can be written as

Po(x,y)= g q~o (x)q&ot(y)
i =1

1
483(10)

(zv[

(p
—(x)y —*(y)X '

8 (01)

dD
Tr G P0

dcx
=e f d x d y tr[G (x,y)P+y„]

Xa (x) g y —(x)y —*(y) . (26)

Using (see [19])

h+ (x) —h+ (y)
G (x,y)=(e + + P+

(27)

with

h~(x) =f (x)+a[a(x)+ip(x)] (28)

and iPGF(x —y)=5(x —y), it can be shown, by making
use of the equations of motion for the D zero modes,

1 0
with cp0 —=y+ 0, for cV )0, and y0 —=g &, for

1 1 l I

N &0, being the orthonormal set of zero modes of D
Then we write

=P+. g y
—(x)(p—*(y), (25) [8,—B,(f+a(P i p))]y *=—0, (29)
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[d + "r) (f+a((f)+ip))]y *=0, (30) qg
~p+( r5 (35)

where (), = —,'(8) —i Bo) and () =
—,'(a)+ iso), that

dD
Tr G Po = g (0'o (ip P—ls)&po ),

1

(31)

I

det'D'N' l J

where angular brackets denote integration over spacetime
variables. Because of the property

dD dD
r G~P~ = Tr P~G' dc dA

(32)

we come, after integrating over a, to

det'D —&(~„)—&( &
p ~„)[d ( ( t ~dr&

(33)

(e+Ar&~, (34)

The determinant of the zero modes in the above equation
comes from the results of Ref. [15], from which we can
also write the Jacobian of the transformations

—1[a ]
—I [A( ) a ]=e P ' P (36)

which checks with that obtained by Manias, Naon, and
Trobo [9] for a+ (N) = l, a (X)=0. The determinant of
zero modes, which appears in the first line of (36), is a
consequence of working with the external sources present
in every step of the computation.

The fact that the gauge configurations A„can be
classified according to their topological charge enables us
to write

Z= gZ~,
N

(37)

such that, for each ZN, the functional integration over
2„ is restricted over fields of charge X. After making
the transformations (34) and (35), we have

—S [A(+) a ]+(J A )+(g'S(+) ')Z[J, ri, ri]= g fQa e '~ (' » (' " " det'D' ' + (r)'y' ')(qr' ' g')
N i=1

—ip+ Py~, i p+ Py 5with g'=e 'g, g'=ye ' and

(38)

S,(r[A( ', a„]=—'(F„F„,)+I [a„]+I[A( ', a„] . (39)

It is convenient to express the generating functional explicitly in terms of the original (nonorthonormal) set of zero
modes of D' ' [7,9]:

C (N) ~ys-—e

Z
i —1

Z
—i —1

1 X)0,
L

0
N &0.

(40)

To do this, we introduce a rotation matrix between the two sets of functions,

~ & +(N)
O'O ~ iJ O.

J
J

which yields

(
— ( ))( ( ) ) —

~d tb~ ~ ( —@( ))((I&( ) )
l l

i =1 i =1

(N) (N)Thus the condition (yo( '
yo( ') =6; implies

[detb/ =[det((@' ' @ '))]
l

(41)

(42)

(43)

Consequently,

—S [A a ]+(J A )+(g'S q')
Z [J, r), r)]= g f&a„e '~ ~ ' " " " det'D[det((@' ' (I)' ') )] ' Q (r)'(I)' ')((I)' ' r)')

N i=1
(44)

With (44) we can check the invariance of the generating functional with respect to the particular choice of the field
'. This can be expressed by the equation
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6 Z [J„,g, g]=0 . (45)

We comment on two details of the computation. First, we find [5/5f (x) ]det'D' ' using (33):

det'D' }[f+5f ]=det'D[5f, A„' '= —8+,a„= 8„—5f ]

1

(46)

where p0 are the zero modes of D' '[f +a5f ]. We can express them in terms of the zero modes of D ' ' and prove
r

that

g(qF&& 25fy5@0 ) = trln((4' ' e '4' '))
dc' J

I

In the limit 5f~0, we obtain

(47)

det'D(+}=det'D( ' [a+(N)+1] f(x)+2tr[P0 '(x, x)y5]5 x 2' (48)

Second, we consider

det((40( ' 40( }))= detA = exp(trlnA )=detA tr A
5 x ' i 5 (x) 5f(x) 5f (x)

(49)

Thus, we have

detA =2detA tr[P0 }(x,x)y&],
5

as can be easily seen, by expressing @0 ' in terms of @0 '. After some calculation we are then able to show that
I l

(50)

Z[J„,qg]=g f2)p2)P (e ' " " Z~~ '[gg]) + a (N) fXlp2)P pe ' " " Zz }[gg],
5 ' 2~

ZP}[g,g] being the fermion part of the generating func-
tional. The first term on the RHS vanishes, as it is the
functional integral of a functional derivative (in fact, it
represents the quantum equations of motion for P).
Then, the only way to cancel the second term and obtain
invariance is to set

a (N)=0 for all NWO . (52)

This is to be seen as a consistency requirement on the
theory, at a mathematical level. Simultaneously, the con-
dition given in (52) is part of the requirement of gauge in-
variance. Furthermore, the computation of the Green's
functions in nontrivial sectors [7] shows that, in order to
diagonalize S,(r without allowing P and p to carry topo-
logical charge, it is also necessary that

diff'erential equation for det'D' '. Using (48) and (50), we
obtain

ln det'D' '= [a+ (N)+ 1] f(x)
5f(x) 2'

+ ln det((@' ' 4' ') )
6

5f (x) 1 J

or, integrating,

,D (N} [~+ (&}+}](fUf )/471

! J

(54)

The result above is important for the complete analysis
of the Green's functions of the CSM, which will be the
object of Sec. V.

a+ (N) = 1 for all NWO . (53) III. ZERO MODES IN THE CHIRAL
SCHWINGER MODEL

It then appears that there is a match, in nontrivial sec-
tors, between mathematical consistency and gauge invari-
ance. In the trivial sector, a+ remains fixed solely on the
basis of gauge invariance. However, in the CSM, as no
such criterion exists, we expect Eq. (45) to really give ex-
tra information.

As a by-product of our analysis, we get a functional

D =i8+ez AP+ (56)

Using the gauge field A„as in the preceding section, we

We now pass to the chiral Schwinger model, i.e., two-
dimensional electrodynamics with chiral coupling to fer-
mions, whose covariant Dirac operator is
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can now solve the zero-mode problem for D,

D@o=0, (57)
1

C i —1 f +P+ip
l

(61)

or, explicitly, in terms of holomorphic coordinates, If X & 0, however, there are no normalizable solutions at
all for (57). On the other hand, the contrary occurs for
the zero-mode equation for the adjoint operator,

0
=0,

D y —0

where A =
—,'( A, +iso). Substituting for all scalar fields,

this is equivalent to the set of equations

that is, no normalizable solutions exist for X &0 and, if
N (0, the

~
N

~
solutions are

(59)

(60)

—i —1 —(f +P—ip)
XO. (63)

Although there are no normalizable solutions for (59),
there are precisely N for (60), if N )0, which are given by

I

The zero modes of D are as necessary as those of D, as
we can see by considering the generating functional for
the present model:

Z [J„,'f), 'r)] = f2)&„2)$2)/exp( —,' (F„F—„)—(/DE) + (J„g„)+ (qp)+ (p~) ) (64)

D Dy„=A,„y„, D DcPo =0, (65)

with angular brackets again denoting integration. As D
is a non-normal operator, it is convenient to use in each
topological sector, as was done by Fujikawa [26], the two
sets of orthonormal functions defined by the eigenfunc-
tions of the Laplacian operators related to D:

where 0 is the Heaviside function. The determinants in
the formula above do not appear in the Hermitian case,
because the transformations (69)—(72) are unitary there
(in the present case, they are biunitary) and they are re-
sponsible for the phase of det'D. With the aid of the
bases (65) and (66), we can construct a distribution
S(x,y) as

DDtP„=A, P, DD Po =0 . (66)

The sets [y„] and IP„) are orthonormal, as the Lapla-
cians D D and DD are Hermitian. Moreover,

q„(x) t(y)
S(x,y) =

+O n

which satisfies, for X )0,

(74)

Dp„=A,„P„,
D P„A.„y„,

(67)

(68)

DS (x,y ) =o(x —y),
S(x,y)D =5(x y) Po(x,y)—,

— (75)

and kerD D=kerD, kerDD =kerD . If we decompose
g and g with respect to these bases, we have, for N )0,

while, for X &0,

N

X a.V. + X aogo
A, „WO i =1

Xa„

and, for N &0,

Xa„

(69)

(70)

(71)

DS (x,y) =5(x —y) —&o(x,y),
S(x,y)D =5(x —y),

with the two projectors on zero modes given by

INl

&o(x y)= X Vo. (x)V'o'(y)

INl

&o(x y)= X (to (x)P~o (y) .

(76)

(77)

(78)

a„P„+ gao, Po, .
A, „WO i =1

(72)

(73)

The functional fermionic measure may then be written as

gd f(x )d P( x)—
X

=det[y„(x)] 'det[P„(x)]

X ada„da„+da ' ' +da
t I

As defined by (74), S(x,y) is the best object that we
have at our disposal to try to decouple the sources from
the fermion fields, since, as D is noninvertible, we have no
Green's function with a spectral decomposition such as
that of (74). Performing the translations

g(x ) =g'(x ) + f d y S (x,y )i)(y ), (79)

g(x) =g'(x) + f d y i)(y)S (y, x), (80)

we obtain
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Z[J„,rj, r)]= g J 2)a„2)$2)/exp( —,'(F—„F„)—&/DE)+& J„A„)+&gSg))exp[8(N)&gPog)+8( —N)&/Pod) ] .

(81}

Using now the decompositions (69)—(72) and the expression for the measure (73), we see that

INI

Z [J„,rI, rj] = g J 2)a„exp( —
—,
'

& F„F„)+ & J„A„)+ & rISg) )det'D g & rjyo ) ( —1)
N i=1

0(N)
I Nl (9( —N)

n «',.&

i=1

(82)

with (see [23,26])

det'D=det[(P„(x)] ' + A,„det[p„(x)] ' . (83)
A, „WO

ratio of their determinants which appears below.
Returning to Eq. (64), and considering, for brevity,

only the fermion part of the generating functional in the
sector of charge N, we perform transformations (84} and
(85) and obtain

We can bosonize the theory within each sector, by per-
forming gauge transformations of the fermions according
to

(P+ip)P+q=e
—(/+i p)P

e

(84)

(85)

with (t and p defined in (9). As is well known, the fact
that these transformations involve y &

implies that a Jaco-
bian arises; its computation gives the erat'ective action for
the bosonized theory. The rest of this section is devoted
to describing the procedure for obtaining this Jacobian.
It is to be noted that transformations (84) and (85) take D
into D' ', which has the same number of zero modes as
D, because both P and p obey trivial boundary condi-
tions. This is necessary in order to give meaning to the

I

J [ A „' ', a ]ZP)[rl, g]
—=J[A„( ', a„]f2)$2)/exp[ —&gD' 'f)

+&~~'&+&~ V&],

—(/+i p)P
with J being the Jacobian, g' =e

(/+i p)P+
Yj ='ge and

(N)
—(f+ip)P (/+i p)P+

=ia+e, g( 'P, .

Therefore,

(86)

(87)

Z(~)[q, q]=e'~' &'det'D'"' g &q'q'"')( —1P
Ii=1

,
0(N) 6)( —N)

n &~'", " &

i=1

where q&o ', (()o
' are the zero modes of D(~) and D(+), re

t t

spectively, and S' ' satisfies

D' 'S' '(x,y)=5(x —y),
S' '(x,y)D' '=6(x —y) P' '(x,y), —(89)

for X &0 and the analogous equations for X (0. It can
be proven that & r)'S' )r)') can be replaced by & gSrl) in
(88) by virtue of the multiplication of the exponential by
the products of terms involving the sources [15]. To
compare (88) with the fermion part of (81) it is necessary
to express the zero modes of D in terms of those of D'
Thus, given the set [cpo( )] of zero modes of D' ', we ob-

t

tain the corresponding set for D as

(90)
J

The matrix B is introduced to ensure the orthonormality
of the set [&po ], when expressed in terms of the (Ioo

t

[14,15]. Its determinant is fixed, up to a phase, by

(94)

&~o,.mo, & =&;, (91)

which implies

IdetB I

= [det( &(po
' e +go ') )] (92)

However, we need detB (not just its modulus squared) for
the generating functional because

INI INI

n &~~., &=n rB„&~~'",'&
i=1 &=1

INI

=detB Q &rj'q(o~)& . (93)
i=1

A similar computation can be made for the zero modes of
D, giving

~ &yo'q) =detC* ~ &(to'"'q ),
i=1 i=1

with

IdetcI —[det( & y( ) e +y(N) ) )] ) (95)
l J

With this we write our Jacobian as
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~ ()v)
]

det D
[

r
d ( ( ()v)t 24P+ ()v) ) )

—)/2]()()v)[ 'Y

d t( ( y(N) e
~ —y(N) ) )

—) /2]()( —iv)

l J
(96)

The phases y+ and y of the determinants of the ortho-
normalization matrices are in principle arbitrary but we
shall see in the following section how this arbitrariness is
suitably eliminated.

IV. FKRMION DETERMINANT AND
PHASE AMBIGUITIES

In the case of the CSM, the analogue to (14),

N&0:

D S (x,y)=5(x —y) —Po(x,y),
S (x,y)D =o(x —y) .

This implies

S (x,y)=G (x,y) —9(N) f d z Po(x, z)G (z,y)

—0( —N) f d z G (x,z)P() (z,y),

(102)

(103)

det(D +el) , dD
det'D = lim Tr (D +el)

dt's

e~O+ dA
with G (x,y) being the Green's function (without spec-
tral decomposition) given by

where now

D =iB+ez 3' 'P++aezgP+, 0~a~ 1,

(97)

(98)

and

G (x,y)=(e + + P++P )GF(x —y),

h+(x) =f(x)+a[/(x)+ip(x)] .

(104)

(105)

with S constructed from the Laplacians D D and
D D in the same way as in (74). So we can still define

dD
ln det'D =Tr S

dA dc'
(100)

simply does not work, because in the present case we do
not have a well-defined distribution (D +el) with a
spectral decomposition similar to (15). The reason for
this lies in the zero-eigenvalue sector of the spectrum of
D: as the number of zero modes of D and D is
different, we cannot create a "scalar" from yo and Po
that would carry the I/e singularity of (D +e 1 ) '. We
could also say, in a more physical manner, that putting a
mass in the Dirac operator is equivalent to not treating
the left-handed fermions as purely free any longer, be-
cause a mass term mixes them with the right-handed
ones. As the fermions that really matter to us are the
right-handed ones (fz =y~)t)~ ), we should not use this
trick to deal with nonsingular operators here.

However, even though (D +el )
' is not well defined,

the same is not true for S, given by

y (x) (y)
S (x,y}= (99)

~0 n

[(} —() (f+a(P+ip))]~p, =o,

[r), +B,(f+a(P —ip))]P; =0,
(106)

(107)

and the point-splitting method to regularize ultraviolet
divergences, we find

Tr S = —2al [a„]—I [A( ', a„]
l~i

+0(N) g (y() (P+ip)(p() )
i =1

lzvl—~)( —N) y (y (y+ p)y;), (108)

where (see again [19])
2

r[a„]= f d x a„az(N)5„8~

—(a„+i3„)—'(a.+i3.) a.

(109)

Using the equations of motion for the zero modes of
D, yo—:y; (0), and for those of D, Po =P; () ),

This is a completely well-defined expression (as long as
we take care, just as in the case of the Schwinger model,
of the ultraviolet divergences), a very natural one, as it
has the nonsingular situation as an obvious limit (in
which case S is a true inverse of D ) and contains the
Hermitian case, where all can be derived from a "reason-
able" definition of det'D, Eq. (11).

The equations that S has to satisfy are now

N &0.

and

r[a( ', a„]
2

f d x A„( ' a„(N)(5„—ie„)
4m

—(a„+i8„)—(a+i3 ) a

(110)
D S (x,y)=6(x —y),
S (x,y)D =5(x y) P() (x,y);——(101} a~(N) being the arbitrary parameter refiecting regulari-

zation freedom. Integrating over cz we find
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det'D —~[.„]-~[A'~) ~ ]
,
=e " ~ '~ exp 0(N) f da g ((pot(P+ip)po ) exp —0( N—)f da g ($0 (P+ip)$0 )det'D'"' i=1 i=1

Expressing po in terms of (Po(
' and (to in terms of $0(

I

a(P+ iP)P+ (N)0'o. ij 0'o.
i=1

—a(@—i p)P
1 Ji=1

(113)

we get
—r A(~' a

P ' P [det( ( (N) e
( + (N) ) )]()(N)/2[d t( (y(N) 2~~ —y(N) ) )]8( N)/2—

det'D'N' l

INI

Xexp i0(N) f da y ((P; p„,- & exp —i0( —N) f da g (p pp )
0 0

(114)

The main new feature of (114) is the presence of the phases involving traces over the null subspaces of D and D t of the
longitudinal part of a„, the field p. These terms are canceled in the Schwinger model due to the occurrence of only

dD
Re Tr G Po

in the expression of the fermion determinant. Considering now Eq. (96) for the Jacobian, we obtain

J[g(N) g ]
—e v v ' P

—I [a ]
—I [A,a ]

v

lNl

Xexp i0(N) y++ f da g ((Po p(PO exp i0( N) y ——f da g ($0 pro )
0 t l

(115)

and, defining 5,& as

S„=,'(P„.F„.) —inJ[ ~(,N), a„],
we see that the generating functional is given by

—S ~[A, a ]+ (J A )+ (q'S( r]'), (N)Z[J„Z,Z]=y fr~„e " ~ ' ~ ~ ~ d«D(N)
N

det( ( g&(N) (P(N) ) )
—1/2 g (

—
C (N) )( 1)N

l
i =1

—S~[A(~', a ]+(J A )f+a e '()' " " " " z(N)[+, +] .
N

0(N) 0( —N)

det( (+(N) +(N) ) )
— / ~ (+(N)t )

I J i=1

(117)

Imposing now invariance under change of the representative of the gauge field homotopy class, 5Z [J„,21, 21]/5f (x)=0,
and noting that

det'D' '=det'D' ' [(21((N)+ I] f(x)+0(N)tr[PO '(x,x)]—0( —N)tr[Po '(x, x)]

and

det((@' ' 4&' ')) ' = det(((I)' —' 4&' ')) ' tr(P' '(x x))5f(x) ~J j
(119)

det( (~(N) ~(N) ) )
—1/2 —det( (~( N) ~(N) ) )

—1/2tr( P (N)
( x x ) )5f (x) OJ 0, 0. 0

we obtain
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—S [A( ) a ]+(J A )

5f (x)
Z[J, il, i)]= g . f2)p2)$ (e "' ~ """"'~ Zp'[ri, ri])

5$(x)
—S [A "&a ]+(J A )

X i8(N) 5 )++f «& &qo,'pro, &

+i 0( N)— 5 5
5f (x)

-f—, «X &0o,'pbbs,
i =1

az
Clp(x )

4m
(121)

I&l
&

a~
) = —f d g&q.'pq. &+,'&(y —f) p&—

x-= f d g &4 pp:&+ '
&(y —f)o &

— &(y+f)o &,

, &(q+f) p&,

To get a null result to (121), we fix the phases y+ and y by choosing them to be

(122)

(123)

where the last term in both of the above equations is annihilated by 5/5$ 5/5f a—nd represents a residual phase ambi-
guity, parametrized by v. It is used in the next section to diagonalize the efFective action without allowing P and p to
carry topological charge. We see then that invariance of the generating functional is achieved only by carefully adjust-
ing the phases of the orthonormal sets of zero modes. The fermionic sources are responsible for uncovering this phase
ambiguity.

Finally, using (119)and (120), we can compute explicitly det'D'

det'D~+~=e + [det( &
q)(&) q)(&)

& )i/2]8(&)[det( &~(N) ~(N)
&

)i/2]s( —N) (124)
t J I J

so that we obtain our last expression for the generating functional,

N i =1

with

II&&."'~
& (125)

S,ir[A„' ', a„]=S,s — [az(N)+1]&f f & .
8~

(126)

Expression (125) will be our starting point for the computation of correlation functions in the CSM in the next sec-
tion.

V. CORRELATION FUNCTIONS IN NONTRIVIAL SECTORS OF THE CHIRAL SCHWINGER MODEL

It is not difficult to see that all correlation functions of the kind

& P(x, )I,i)'j(x, ) . $(x~)I ~g(xz) &, (127)

where 1 „represents any Dirac matrix or product of them, vanish due to the impossibility of pairing the adequate num-
ber of functional derivatives of il and il over the generating functional to produce a non-null result when ri, ii~0 (we
are of course excluding the trivial sector from this analysis). The correlation functions of bosonic fields are also zero.
The only objects that remain to be considered are

y( , )&

and

Z[o, ~,gZ [0] 5il(x~) 5il(x i )

I f2)p2)/exp —S,~[A„' ', a„]+g [P(x, )+ip(x, )] det
Z 0

C'"'(x ) . . a' '(x )0I 1 0~ 1

C', '(x ) . a,''(x )

(128)
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G (x], . . . , x~) —
& P(x~)1(](x~ ]) 1'(x] ) &

1 ~ 5
(Z [0] gg(x~)

Z [0,g, g]
6

5g x,

1

Z 0 f2)p XlP exp —S,~[ 2 „' ', a„]—g [P(x, ) +ip(x; ) ]

X det

~(x) (x ) . . . ~($) ( )

(129)

We see that the only contribution to G' ' (G' ') is from the Nth sector, N )0 (N (0). The determinants of zero modes
give

and

T

Izvl 1
det[NO '(x )]=exp g f (x;) g (z; —z. ) ]3]

i ij=1
i)j

(~)~det[yo]+) (x )]=exp —g f(x;) Q (z; —
&&) S (01) .

i ij=1

(130)

(131)

Defining

j (x)=+ g 5(x —x;), (132)

for X )0 and X (0, respectively, a final functional integral has to be computed,

I[j]=f&p&4e

where

(133)

S,~]p, g, j]= ]f+P]CI Cl — ]a„N)+]I] (f +Pl)28' 4m

[aR(N)+1]&p p& — [aR(N)+2 —v]&(f+p) p&+&j (f+p+ip)& .
Sm 8~

(134)

We can diagonalize S,~ by changing variables, first from p to o., through

. aR(»+2 ~ 4~i
2[aR (N) —1] aR (N) —1

(135)

where aR(N)%1 and

AR(x —y ) = — 1n ~x —y ~

1

2'
is the Green's function of . The effective action then becomes

(136)

0 l ]= & (f +]I~»[ —]u'( )](f+]It') &

1

28'

1
[aR(N) —1]&~ ~ &+] (~)&l(f +4) &+

8m. aR(N) —1
(137)
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where we have defined

[att (N)+ 2 —v]
p, (v) = att (N)+ I—

4m 4[ates (N) —1]

3[a~ (N) —v]
P(v) =

2[a~ (N) —1]

(138)

(139)

lar function, we find I =0, showing that nontrivial sec-
tors decouple from the theory.

Finally, we note that if we take att(N) =1 from the
start and perform all computations with that value, it is
impossible to diagonalize S,~ with a topologically trivial

p field.

VI. CONCLUSIONS

The asymptotic behavior of o is

o — + [az(N)+6 —v]ln~x~ .
Ixl ~ att (N) —1

(140)

This fixes v to be

v=att (N)+6, (141)

because we assume that o. does not carry topological
charge. To decouple P from j and f, we use the transla-
tion

a~(N) —3
~=f+y+

att N —1

where

b, (p;x —y) = — (Ko[p/x —
y/ ]+1n[x —y ),1

2&p

(142)

(143)

g ln~x, —x,
aR ij
[a~(N) —3]

et' g b(px; —x ) .
2[a~ (N) —1]

From the asymptotic behavior of cp,

/N/ln/x/

2e& [a& (N) —3]

(144)

(145)

and the trivial homotopy hypothesis, we extract the con-
dition

att(N)= —1, for all NAO . (146)

This then implies

Eo being the zeroth-order modified Bessel function. The
effective action is then rewritten as

S,a= (y ( p)tp) ——[att(N) —1](crClcr )
1 2 1

28R 8m

We have performed a complete analysis of chiral elec-
trodynamics in two dimensions (2D) in nontrivial topo-
logical sectors. We have concluded that, unlike the case
of the Schwinger model [9], where all topological sectors
contribute to the minimal correlation functions (vanish-
ing in the trivial sector), there is no effect of nontrivial to-
pology here. The reason for this relies on two aspects of
the theory: the zero-mode structure of chiral gauge
theories in 2D, which provides a very peculiar form for
the generating functional, and the necessary choice of a
regularization (att = —1), that provides a crucial sign for
the term g; hF (x; —x ) which comes from the diagonali-
zation of the effective action. This behavior of the CSM
is due to the presence of the longitudinal part p, since it
does not decouple for any value of att(N). Again, this
can be contrasted with the Schwinger model, where, for
aR = 1, p disappears from S,~.

We have also learned that the effective action has a
very important ambiguity in nontrivial sectors, which is
decisive for the complete solution of the theory. The
mathematical requirement of invariance of the functional
integral under changes of background was shown to be a
highly nontrivial one, at least when chiral gauge theories
are concerned. This requirement and a consistent pro-
cedure of bosonization have allowed us to fix completely
the form of the effective action and thus solve the theory.

Our analysis has been performed in the so-called
"gauge-noninvariant formalism" [27]. It would be in-
teresting to look for the effects, if any, of a Wess-Zumino
term on the longitudinal part and in the fixing of az(N).
Here also the inclusion of the external sources may be im-
portant, as one can expect from the results of Ref. [28].

Furthermore, one should try to establish whether these
properties occur in the non-Abelian case and in higher di-
mensions (three and four) as well. Progress in these
directions will be reported in the future.
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