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Optimization in the extended variational approach to SU(2) gauge theory on the lattice
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The linear 6 expansion is applied to SU(2) gauge theory on the lattice, with a trial action based on sin-
gle links. In contrast with previous calculations using this action, we use the principle of minimal sensi-
tivity to determine the arbitrary parameter Jwhich occurs in the interpolating action. We obtain a good
fit to the Monte Carlo data on the weak-coupling side of the transition region: this can be combined
with results using a different trial action to cover the entire range of P. There is no sign that the pro-
cedure fails to converge.

PACS number(s): 11.15.Tk, 11.15.Ha

I. INTRODUCTION

with the property that S& o=A,So, while S& ] =S, in-
dependent of A, . The vacuum-generating functional, or an
appropriate Green's function, is then evaluated as a trun-
cated expansion in 6, which is finally set equal to 1.

Because one can necessarily only calculate a finite
number of terms, the truncated expansion will contain a
residual A, dependence which would not be there in the
infinite sum, and it is therefore necessary to have some
criterion for choosing the optimum value of A, . The cri-
terion which has been most widely adopted is the princi-
ple of minimal sensitivity (PMS). This chooses A so as to
minimize, at least locally, the dependence on A, of the re-
sult being calculated. Thus, if Rx. (A) is the result trun-
cated at order E, the criterion reads

BR+
aA.

(2)

The importance of this (or some similar) ingredient of
the linear 5 expansion (LDE) can hardly be overstressed.
In the first place, it is here that nonperturbative depen-
dence on the coupling constant g emerges, as it does in

Over the last few years, a promising new analytic ap-
proach to field theory has emerged and has been applied
to a variety of problems (see, e.g., Ref. [1]). The method,
the linear 6 expansion, is nonperturbative in character;
i.e., it is not an expansion in the coupling constant, al-
though the Feynman diagrams encountered are not radi-
cally different from those of conventional perturbation
theory. An important ingredient of the method, which
makes it a generalization of the variational method, is the
optimization of an arbitrary parameter A, appearing in the
Lagrangian and/or action.

The essential idea is to construct an action S& which
interpolates linearly between the action S of the theory
one is trying to solve and the action So of a soluble
theory chosen to reAect as much of the physics of S as
possible. That is,

Ss =5S + A.( 1 —5)So

=AS() +5(S —ASo ),

variational principles, of which the LDE can now be seen
as a generalization. Second, it is the PMS criterion which
produces a convergent sequence of approximants out of
what would otherwise be an asymptotic or divergent
series. This latter property certainly holds in practice in
a large number of different situations, and it has recently
been proved rigorously [2] in d=O field theory, i.e., in the
evaluation of fdx e s" by rewriting the exponential as
exp[ —5gx —

A, (1—5)x ].
The linear 6 expansion has much in common with oth-

er nonperturbative approaches to field theory. At 0 (5) it
can be variously identified, depending on the context,
with the Gaussian approximation [3] or mean-field
theory. The calculations of Killingbeck [4] on the anhar-
monic oscillator can now be recognized as an early appli-
cation of the LDE which goes beyond first order, and the
generalization of the Gaussian approximation, developed
independently [5] by Okopinska and others, is again the
linear 5 expansion by another name.

In the context of lattice gauge theories, there have been
several applications to the calculation of the average pla-
quette energy Ez, to be compared with the results of lat-
tice Monte Carlo calculations. Depending on the choice
of the trial action So, the expansion can be more ap-
propriate to the strong-coupling (P (( 1) or weak-
coupling (13))1) regime. In the strong-coupling regime,
an approach based on choosing a maximal tree of pla-
quettes in four dimensions [6], following earlier work in
three dimensions [7], has proved very successful in repro-
ducing the whole of the strong-coupling side of the curve
for SU(2). The results of an O(5 ) calculation are shown
in Fig. 1.

An attempt was made earlier [8] to calculate the
weak-coupling side of the curve using a noncompact
quadratic action So which was the weak-coupling limit of
S. Although at first sight this would appear to be the ap-
propriate So to use, difficulties with gauge invariance and
the computational effort involved in evaluating the result-
ing lattice Gaussian integrals limit the practical utility of
this particular choice of the action. In the event, it
proved very difficult to go beyond O(5); nonetheless, a
hybrid "optimized I/P expansion" turned out to give a
reasonably good fit to the data.
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FIG. 1. Order-5 linear 6 expansion, based on the action of
Ref. [6], for the plaquette energy Ep in the strong-coupling re-
gime. Monte Carlo points from Refs. [13,14].

FICx. 2. Order-6 "variational curnulant expansion" of Ref.
[9], based on the action of Eq. (5) and the criterion BF, /BJ=O,
for E~ in the weak-coupling regime. Also shown (dashed line) is
the augmented 0 (P') character of Ref. [13].

Independently, a related approach had been developed
by Zheng, Tan, and Wang [9], termed the variational cu-
mulant expansion. Although not formulated as such, it
can now be seen as a variant of the linear 6 expansion,
with a trial action So based on single links:

So= g trUI,
I

(3)

with a multiplicative factor J taking the role of k. The
crucial difference from the LDE as now generally formu-
lated lay in the criterion used for determining J.
Influenced by the rigorous inequalities on the free energy
F which occur at 0 (5), they imposed the condition
BF& /BJ =0, even though the actual quantity being calcu-
lated was the plaquette energy EP to some higher order
[up to 0(5 )]. This is clearly at variance with the spirit
of the P MS: the resulting values do not satisfy
BE~/BJ=O. The calculations were only moderately suc-
cessful (see Fig. 2), and it was found necessary to impose
a gauge-fixing condition, whereby all the timelike links
were set equal to unity, to improve the agreement with
experiment.

The shortcomings of the criterion BF, /BJ=O were
recognized by Kerler [10], who took the calculation to
0 (5 ) and suggested a new criterion based on looking for
"accumulation points, " where the graphs for several
different orders converged. While being somewhat ad
hoc, this approach did give improved numerical results
and encouraged an extension [11] of the calculations to
0(5 ). However, the conclusion of that paper was that
going to higher orders failed to produce an improvement,
and doubts were cast on the convergence of the pro-
cedure.

It is our experience in other contexts that the linear 6
expansion, used in conjunction with the PMS criterion,
does converge, and in zero dimensions it can be proved
[2], by saddle-point methods, that the LDE produces a
sequence converging to the exact answer with an error
like exp( —cK) for large K. Thus it seemed worthwhile to
reexamine the calculations of Refs. [9—11], using the

same action, but the standard PMS criterion BEP/BJ=O
for determining J. This calculation is given in the next
section, followed by our conclusions.

II. OPTIMIZATION FOR SU(2)

As explained in the Introduction, we are using the
same bare action as in Refs. [9—11]. We consider pure
SU(2) gauge theory on a hypercubic lattice with action

S =P g trUp,
P

(4)

where UP is the product of group elements U& around the
plaquette and p= 4/g . We choose a trial action
So=JQItrU&, as in Eq. (3). The variational parameter is
J, taken to be the same on all links. The linear interpolat-
ing action is then of the form'

Ss=J g trU(+5 pg trU~ —Jg trUI
L P I

where the expectation value of a variable X with respect
to So is defined as

(X)o= f QdUe 'X
Zo

~Here we are using the notation of Zheng, Tan, and Wang [9].
The P of Il erler [10] dilfers from this by a factor of 2: Ps. =2Pz.

The parameter 5, which was not included explicitly in
those references, is the formal expansion parameter
which generates the "variational cumulant expansion" [9]
when the free energy, or connected vacuum-generating
functional, is evaluated. That is,

Z =e = dUIe 'e
I

(
5(S —So)

)
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and (9)

Z = J g&U, e '=[f (J)] ',
where f (J)=I&(2J)/J. Here NI is the total number of
links and I„(x) is the modified Bessel function of order r.
Expanding the exponential in Eq. (6) gives

where the subscript C denotes the connected expectation
value. This will, of course, be truncated as some finite or-
der E, and 6 then set to equal to 1. The plaquette energy
EI, is obtained from 8' the free energy of the system, by

E
P

r
/

/

/
I

Here d =4 is the number of space-time dimensions.
The general methodology for evaluating the expecta-

tion values has been described in Ref. [9]. The crux of
the matter is that the exponential brings down powers of
S whose expectation value has to be evaluated under the

group integration f QldU&e . To 0(6 ) for Ep one
simply has to evaluate ( tr Up )0. The invariance of S0 un-
der the group transformation U~

= V U, V and the SU(2)
identity f [d V] Vl, V&

= ,'5;~5kl r—eadily give the result

(trUI U2 ~0 (trUltrU2 ~0

=
—,'(trU, ) (trU )

E

(b)

Applying this twice, one finds that

(trUp )0= (trU] U2U3Uq )0=2cu),

where

(trUI )0=2co, =(1/f)df /dJ .

(12)

E
P

4

/

/

/
/

In general,

((trU)")0=ru„=(1/f)d "f/dJ" .

In first order an additional plaquette U& is brought down
from the exponent. By connectedness, this must have at
least one link in common with U~, which means that it
either has just one link in common or is identical to U~.
In the first case, each of the free links gives a factor co&,

while the shared link gives a factor co2. The second case
is more involved, but can be evaluated in a straightfor-
ward way using the relations in Ref. [9]. To evaluate ex-
pectations involving more than two connected plaquettes,
we have another simplifying relation:

(trUt U2trU&U3 )0= (0 trU2trU3+ 2(1 —Q)trU2U3 )0

(13)

where Q=I3(2J)/I&(2J). Proceeding in this fashion, the
expectation values associated with the diferent ine-
quivalent diagrams have been evaluated and the number
of diagrams of each type tabulated.

FIG. 3. Linear 6 expansion, based on the action of Eq. (5)
and the PMS criterion BEI /BJ =0, for EJ in the weak-coupling
regime: (a) order 6, (b) the order-6 Pade approximant P(1, 1),
and (c) order 6'.

We believe, however, that there is a slight mistake in the
number given in Ref. [9] for diagram 15, of 0 (5 ). By breaking
up the diagram into its constituent parts in the timelike gauge,
and by comparison with Ref. [12], we believe that the number
should be 48(9R o

—14R o+ 19RO —7)+36R &.
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Up to this point, our calculation is identical to that of
Refs. [9—ll]. The difference between the various treat-
ments hinges on the criterion used to fix the parameter J.
As already mentioned, Zheng, Tan, and Wang [9] used
the criterion BF] /BJ =0, even though the quantity being
calculated was Ep to 0 (5 ). Kerler worked with Ep it-
self, and devised a criterion of searching for accumula-
tion points, where the results of various different orders
converged. The approach of the present paper is simply
to use the PMS criterion on EI„namely BE~/BJ=O.

The first nontrivial dependence on J appears at 0(5).
A broad minimum of Ep exists for large P, which persists
down to P=1.07. The calculated values are somewhat
above the Monte Carlo points [13,14], as is shown in Fig.
3(a).

There are reasons for believing [2] that odd and even
orders behave differently with respect to optimization.
Indeed, we find that at 0 (5 ) there is no corresponding
minimum. However, if the Pade approximant P(1, 1) is
formed, the results are surprisingly good, as shown in
Fig. 3(b). The values at the minimum give good agree-
ment with the data, and the minimum extends well down
into the transition region, to 13—= 1.23.

Inclusion of the 0 (5 ) terms gives a curve which agrees
well with the data for larger f3. As is to be expected, it
shows a marked improvement on the 0 (5) calculation,
but a disappointing feature is that the broad minimum
disappears well before the transition region, at P=1.47.
This feature corresponds to the change in the accumula-
tion point systematics [10] as one goes from the "upper
part" to the "lower part" of the weak-coupling region. It
is possible to extend the graph downward, however, if
one adopts a weaker form of the PMS criterion. In the
absence of a solution to HEI, /BJ =0, one can instead look
for the values of J where the slope is least, i.e., a point of
infIection: 9 Ep/9J =0. Adopting this "weak PMS" al-
lows one to extend the curve down to P=-1. 15 in the
0 (5 ) case and P=—1.23 in the 0 (5 ) case, as shown in
Fig. 3(c).

A variant of the chosen action is to use a gauge-fixing

procedure, setting timelike links U& =1. This procedure
was found necessary in Ref. [9] in order to obtain results
in reasonable agreement with experiment. We have re-
peated our calculations in this temporal gauge, but find
that in our case the results are not thereby improved.

III. CONCLUSIONS

If one combines the results of Ref. [8] and the present
paper (Figs. 1 and 3, respectively), it can be seen that the
linear 5 expansion provides a viable calculation method
for the evaluation of the average plaquette energy. By
judicious choice of the trial action So, the method can
deal with both large and small coupling constants. The
different contributions can be evaluated using the elegant
techniques of group characters, and connectedness is
easily implemented (in contrast with the strong-coupling
expansion).

If the PMS criterion is used for determining the arbi-
trary parameter in the LDE, the results continue to im-
prove as one goes to higher order, and we do not see any
sign of the breakdown of the expansion. As is em-
phasized in Ref. [2], for fixed A, the LDE indeed gives a
divergent alternating series, but when A, is optimized or-
der by order, the result is a convergent sequence of ap-
proximants. It would be interesting to extend the calcu-
lation to 0(5 ): Figure 3 of Ref. [11] shows that in the
upper part of the weak-coupling region the broad
minimum for odd orders indeed converges rapidly to the
Monte Carlo result.

Given the success of the technique as applied to the
plaquette energy, one can be optimistic about its applica-
tion to other quantities and features, such as the phase
structure of the mixed SU(2)-SO(3) action, SU(2) at finite
temperatures, string tension, mass gap, etc. Some of
these topics have already been treated by Tan and Zheng
[15], but always with a criterion based on the first-order
free energy rather than the quantity being calculated.
Work on these extensions of the method is currently in
progress.
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