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Saddle-paint solutions in Rang-Mills —dilaton theory
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The coupling of a dilaton to the SU(2)-Yang-Mills field leads to interesting nonperturbative static
spherically symmetric solutions which are studied by mixed analytical and numerical methods. In
the Abelian sector of the theory there are finite-energy magnetic and electric monopole solutions
which saturate the Bogomol'nyi bound. In the non-Abelian sector there exists a countable family
of globally regular solutions which are purely magnetic but have a zero Yang-Mills magnetic charge.
Their discrete spectrum of energies is bounded from above by the energy of the Abelian magnetic
monopole with unit magnetic charge. The stability analysis demonstrates that the solutions are
saddle points of the energy functional with an increasing number of unstable modes. The existence
and instability of these solutions are "explained" by the Morse-theory argument recently proposed
by Sudarsky and Wald.
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I. INTRODUCTION

As is well known, the Yang-Mills (YM) equations are
scale invariant which excludes globally regular (i.e. , non-
singular with finite energy) static solutions [1,2]. The
usual method for circumventing this nonexistence result
is to introduce a Higgs field. The coupling of the Higgs
field has two effects. First, it breaks scale invariance. Sec-
ond, a non-Abelian gauge group G gets spontanously bro-
ken to a subgroup H. If the homotopy group 7rri i(G/H)
is nontrivial (where D is the number of space dimen-
sions), then the coupled YM-Higgs theory has topolog-
ically stable solutions. A prominent example is the 't
Hooft —Polyakov monopole [3] in the SU(2)-YM theory
with a triplet Higgs field.

A spontanously broken gauge theory may admit an-
other class of globally regular solutions if sr~(G/H) is
nontrivial. This homotopy group is isomorphic to the
group of loops in the configuration space (i.e. , space
of static, finite energy configurations). Nontriviality of
+D(G/H) means that there are noncontractible loops
passing through the vacuum. The argument, due to
Taubes [4) and Manton [5], of how such noncontractible
loops lead to a nontrivial solution runs as follows. Con-
sider all loops in a fixed homotopy class starting and
ending at the vacuum. On each loop there is a configu-
ration of maximal energy and the infimum of these en-
ergies gives a saddle point of the energy functional (and
therefore the static solution). Because of the noncom-
pactness and infinite dimensionality of the configuration
space, this argument is obviously not rigorous, and to
actually prove that the minimax procedure converges is
a difficult technical problem [6]. Static solutions corre-
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sponding to saddle points of the energy functional were
called sphalerons to emphasize that, in contrast with soli-
tons, they are unstable. The existence of a sphaleron was
first shown by Taubes [4] in the SU(2)-YM theory with
a triplet Higgs field and by Manton [5] in the SU(2)-YM
theory with a complex doublet Higgs field.

Alt;hough sphalerons were originally discovered in
spontanously broken gauge theories, it should be stressed
that the Higgs mechanism is by no means necessary for
the existence of a sphaleron. Actually, this is already
clear in the SU(2)-YM theory with a complex Higgs dou-
blet, where the gauge group SU(2) is completely bro-
ken and the homotopy group relevant for constructing
a sphaleron is 7rs(SU(2)) Z. Thus, in this case the
role of the Higgs field is just to break the scale invari-
ance while the gauge group itself has a nontrivial third
homotopy group [7]. This suggests that a sphaleron may
exist in the SU(2)-YM theory coupled to other fields (of
attractive force), provided that the coupling (i) breaks
scale invariance, and (ii) does not alter the topology of
the configuration space of pure SU(2)-YM theory.

In this paper I consider a simple example of a cou-
pling which satisfies these two requirements, namely the
coupling of a dilaton. The dilaton P is a real (massless)
scalar field which couples to other matter fields (with La-
grangian L ) through the term e 2a&Lm, where u is the
dilaton coupling constant. I will show that static spheri-
cally symmetric SU(2)-YM-dilaton equations have glob-
ally regular solutions with the following properties: (a)
there exist a countable family of solutions X„(n c N);
(b) the energy E[X„] increases with n and is bounded
from above; (c) the solution X„has exactly n unstable
modes. This family of solutions is in striking analogy to
the Bartnik-Mckinnon (BM) solutions [8] of the Einstein-
SU(2)-YM equations, which have the same properties
(a)—(c). In both cases the solution Xi may be interpreted
as a sphaleron (for BM solutions this was first observed
by Mazur [9]; see also [10]).

A natural question arises: why do two theories with
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completely different dynamics have qualitatively the
same spectrum of solutions? The answer was recently
proposed by Sudarsky and Wald (SW) [11]. They pre-
sented a heuristic but suggestive argument which ac-
counts for the properties (a)—(c) (except for the bound-
edness of energy) in the case of BM solutions. This ar-
gument is formulated in the spirit of Morse theory for
Hamiltonian systems and exploits the existence of topo-
logically inequivalent multiple vacua in the SU(2)-YM
theory [which is related to the fact that ns(SU(2)) Z].
A detailed description of the SW argument will be given
in Sec. VII. Here, let me only note that in the case of
the solution Xq, the SW argument is, in essence, equiv-
alent to the minimax procedure for paths joining two
topologically inequivalent vacua. However, in contrast
with the minimax construction, the SW argument can
be naturally extended (admittedly, under additional as-
sumptions) to account also for the existence of solutions
X„with n ) 1. Although the SW argument was orig-
inally formulated in the context of Einstein-YM theory,
it is essentially insensitive to the concrete form of cou-
pling, and applies almost without modifications to the
YM-dilaton theory. In this sense, SW predicted the ex-
istence of solutions found in this paper. On the other
hand, the results of this paper lend support to the SW
argument.

The existence of the upper bound for the spectrum
may be understood by considering the U(1) sector of the
YM-dilaton theory. Surprisingly enough, there are finite
energy Abelian solutions which describe magnetic and
electric point monopoles. The finiteness of energy is due
to the regulating effect of the dilaton which weakens the
short distance singularity. Moreover, these solutions sat-
urate the Bogomol'nyi bound [in the U(l) sector], hence
their energies are equal to their charge. It turns out
from numerics that the limiting solution X~ (whose en-

ergy bounds the spectrum from above) corresponds to the
Abelian magnetic monopole with unit magnetic charge.

The YM-dilaton theory and the Einstein-YM theory
may be embedded in a single Einstein- YM-dilaton theory
governed by the action

1
d zg —g —R —2(V'P) —e '~F

G

This theory is characterized by a dimensionless parame-
ter a = a/~G. When n ~ oo, the action (1) reduces to
the YM-dilaton theory. When o; = 0, the action (1) be-
comes the Einstein-YM theory (plus trivial kinetic term
for the scalar field). Finally, the case n = 1 corresponds
to the low-energy string theory. It was shown by the
author elsewhere [12] that the theory defined by the ac-
tion (1) has static spherically symmetric (globally regular
and black-hole) solutions with properties (a)—(c), for all
values of o, . This paper specializes to the limiting case
o. ~ oo. It seems instructive to consider this case sep-
arately, because it involves the essential features of the
general case, but has an advantage of being considerably
simpler, which allows to obtain some analytical estimates
on the parameters of solutions. Also, the nonperturba-
tive effect of the dilaton can be clearly seen in this model.

II. FIELD EQUATIONS

The dynamics of the SU(2)-YM field coupled to a dila-
ton is defined by the action

S= — d x 2(V'P) +e ~F (2)

where F = dA + eA A A is the YM curvature of the
SU(2) connection A and P is the dilaton. Hereafter, for
convenience I put the coupling constants a = e = 1,
which is equivalent to choosing a/e as the unit of length
and 1/ae as the unit of energy.

The field equations derived from (2) are

D(e ~*F) =0, (3)

+2/ + e 2/F2 0
1 -2
2

(4)

where D is the SU(2)-covariant derivative.
I wish to find static spherically symmetric solutions to

these equations that are globally regular, i.e. , nonsingular
and with finite energy.

The most general spherically symmetric SU(2) connec-
tion has the form [13]

A = arsdt + brsdr + (uteri + d72)d6

+(cot mrs + ii)'r2 —dri ) sin 8dp (5)

where a, b, ur, and d are functions of (r, t) and r,
(i = 1, 2, 3) are generators of SU(2) Lie algebra. Us-

ing the residual gauge freedom the radial gauge b = 0
can be imposed. When the connection is static, i.e. , a,
m, and d depend only on r, one can also set d = 0 by a
constant gauge transformation. Hence, the general static
spherically symmetric SU(2) connection is described by
two functions: the electric potential a(r) and the mag-
netic potential i'(r). Now, I assume further that a = 0.
Actually, this is not a restriction because one can show,
following the argument given in [14], that there are no

globally regular solutions with nonzero electric field.
The purely magnetic YM curvature is

F = ~'~qdr A d8+ m'7.2dr A sin8dp

—(1 —ur )v.2d8 A sin 8d(p, (6)

where prime denotes differentiation with respect to r. For
F given by this ansatz and for P = P(r), the equations

The paper is organized as follows. In the next section
the field equations are derived and some scaling prop-
erties are discussed. In Sec. III the explicit Abelian so-
lutions are described. In Sec. IV the c priori behav-
ior of globally regular solutions is obtained. In Sec. V
the numerical results are presented and some qualitative
properties of solutions are discussed. The deep analogy
between these solutions and the BM solutions is empha-
sized. Section VI is devoted to the stability analysis.
Finally, in Sec. VII the SW argument is summarized and
some possibilities of proving rigorously the existence of
numerical solutions are suggested.
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(3) and (4) reduce to the system

1 -2(e ~ro')'+ —e ~u)(1 —u) ) = 0,r2 (7)

The second solution is

P=ln~ 1+ —
~r) (15)

E[ro, P] = 4rt. Tpp r Gr )

where Tpp is the local energy density:

(r P')'+2e ~ ur' + ' ' =0. (8)

These equations may also be derived from the variation
of the energy functional

and its YM curvature is

F = —rs dr) A sinr)dp, (16)

which corresponds to the Dirac magnetic monopole with
unit magnetic charge. There is also an electrically
charged Abelian solution related to (15) by the duality
rotation:

l,z zp 1,2 (1 —ro )
47cTpp = —P + e —to +

2 r 2r4 (10)

Let me make two remarks which will be useful in the
subsequent discussion. First, note that, in general, the
energy functional E is extremized only against variations
with bP(oo) = 0. However, it is also useful to consider
more general variations for which bP(oo) g 0. Then, the
variation of energy around a solution has the form

b'E = D bg(oo),

where D = lim„~ rzP' is the dilaton charge. To avoid
confusion I want to emphasize that the "surface term" on
the right side of Eq. (11) is not of the Regge-Teitelboim
type (in particular it cannot be canceled by adding cor-
rection to energy) but it is rather a term which appears
in variational problems with a free end.

Second, note that Eqs. (7) and (8) have a "scaling"
symmetry. Namely, if ro(r) and P(r) are solutions so are

ro), (r) = u)(e"r),

Pp(r) = P(e"r) + A .

Under this transformation the energy scales as

E[u)p, fg] = e E[ro, f] .

(12)

III. ABELIAN SOLUTIONS

The existence of this "scaling" symmetry excludes, via
Derrick s argument, nontrivial static finite energy solu-
tions with vanishing dilaton charge D [nota bene this
also follows immediately from Eq. (8)]. However, when
D g 0, Derrick's argument does not apply because for
the variation induced by the transformation (12) bp(oo)
is nonzero, and therefore, as follows from (11),the energy
is not extremized. Hereafter, I will assume that all solu-
tions satisfy P(oo) = 0, which can always be set by the
transformation (12). This choice sets the scale of energy
in the theory.

These solutions have very interesting properties. The
dilaton dramatically changes the properties of U(1) point
monopoles (electric and magnetic). Without a dilaton,
the energy density of a point monopole diverges at r = 0
as Tpp 1/r, whereas in the present case Tpp 1/r .
Thus, although the solution (15) is singular at r = 0,
its total energy is finite and equals one. This result may
be viewed as nonperturbative cancellation of two infi-
nite self-energies: the positive one of the point magnetic
monopole and negative one of the dilaton.

Since this solution will play an important role in the
discussion of non-Abelian solutions, it is useful to see
how one can obtain it in a systematic way. Namely, in
the ro = 0 sector, the energy (9) can be written as

r'y'+e & =0. (19)

Solutions of this equation automatically satisfy Eq. (8)
with m = 0. Elementary integration of this equation gives
the solution (15). Because this solution is so simple it is
hard to believe that it has not been derived and discussed
previously; however, I know of no previous discussions.
For completeness let me also note that there is a simple
multimonopole generalization of the solution (15), which
describes a collection of monopoles in static equilibrium.

IV. BOUNDARY CONDITIONS

Now I will specify the boundary conditions for the glob-
ally regular solutions. They are determined by the re-
quirement that (i) the local energy density be finite for
all r,

E[p] = —
~

rp'+ —e
~

dr + e ~
~p . (18)

1

p

Thus, if p(0) = oo [and p(oo) = 0], the energy is bounded
from below by the value of magnetic charge (here set
equal to one) and attains a global minimum E = 1 on
solutions of the Grst order Bogomol'nyi-type equation

The equations (7) and (8) have two explicit Abelian
solutions. The first one is the vacuum solution

Tpp ( const & oo, (20)

m = +1 (14)
which imposes boundary conditions for m and P at r = 0,
and (ii) the energy be finite,

for which the energy has the global minimum E = 0. E & oo, (21)
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which imposes boundary conditions for tU and P at infin-
ity.

It is easy to construct asymptotic solutions to Eqs.
(7) and (8) satisfying these boundary conditions. The
solution near r = 0 is

m =1 —br +O(r ),
P=c —2br +O(r ).

At r = oo the asymptotic solution is

~mr = 1 —d/r + O(l/rz),

y = e/r+O(1/r') .

(22)

(23)

Lemma 2. The function tu oscillates around zero be-
tween —1 and 1 (or IiiiI—:1).

Proof. It follows from Eq. (7) that if tU'(ro) = 0 then
at 70

Here 6, c, d, and e are arbitrary constants. It is easy to
check that all higher-order terms in the above expansions
are uniquely determined, through recurrence relations,
by b and c in (22), and d and e in (23).

Using these boundary conditions one can get the fol-
lowing elementary a priori results for the solutions of
Eqs. (7) and (8).

TABLE I. Initial data (b, c) and energies of the first five
globally regular solutions. Here b is the initial value corre-
sponding to the solution with c = 0. The actual initial value
is given by b = e 'b.

n
1
2
3
4
5

b

0.26083011
0.35351804
0.3750017
0.378754
0.379373

1.711
3.374
5.158
6.967
8.778

E
0.804
0.9659
0.9944
0.9992
0.99993

the function m oscillates a finite number of times in the
region between m = —1 and m = 1 and then goes to +oo.
For b ) b~ all orbits become singular at a finite distance
(in a sense that iit' becomes infinite).

The numerical results strongly indicate that there exist
a countable family of initial data (b„,c„),n c N, deter-
mining globally regular solutions Ã„= (ur„, P„). Here
the index n labels the number of nodes of the function
m. The values of initial data and energies of the first five
solutions are given in Table I. The functions m and P for
the several lowest-energy solutions are graphed in Figs.
1 and 2.

sgn m" = sgn m(m —1) . (24)

This implies that m cannot have local maxima for to )
1 and local minima for tc ( —1. Since tc(0) = 1 and
Itu(oo)I = 1, this gives ImI ( 1 for all r ) 0. Thus from
(24), w"tU ( 0, which concludes the proof.

Lemma 2. The function P is monotonically decreasing.
Proof. As above, this follows immediately from the

maximum principle applied to Eq. (8).

0.0

Finally, note that, for the asymptotic behavior (23),
the radial magnetic curvature, B = rs(l —to2)/r2, falls
off as I/rs, and therefore all globally regular solutions
have zero YM magnetic charge.

0.5—

1.0
10
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10 '10 10 2 '10 1 10 IO
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V. NON-ABELIAN SOLUTIONS

Let us assume that there exists a two-parameter fam-
ily of local solutions defined by the expansion (22). Note
that this is a nontrivial statement because the point r = 0
is a singular point of Eqs. (7) and (8), so the formal
power-series expansion (22) may have, in principle, a zero
radius of convergence. A generic solution with initial
data (22) certainly will not satisfy the asymptotic condi-
tions (23) (in fact, the solution may even become singular
at some finite distance). The standard numerical strat-
egy, called the shooting method, is to find initial data
(b, c) for which a local solution extends to a global solu-
tion with the asymptotic behavior (23). Actually, only
6 is a nontrivial shooting parameter, since one takes an
arbitrary c, say c = 0, and after finding a solution ad-
justs the value of P(oo) to zero using the transformation
(12). For generic orbits with c = 0 and b ( b~ 0.3795

0.0

(b) RADIUS

iTTTI] I I I I liil1~ ~ T I

10 ' 10 ' 10 ' 10 '
'1 '10 10 ' '10 ' 10 ' '10

FIG. 1. The solutions ul for (a) n = 1, 3, 5 and (b) n =
2, 4, 6. Notice the intriguing coincidence of zeros for solutions
with the same parity.



PIOTR BIZON 47

1 0.0

9.0
(1 ~2)2—2P &2+ (

2r2 (28)

2.0

RADIUS

Since the energy is extremized at P = 1, it follows from
(26) that, on shell,

Iy = I2 .

Next, integrating Eq. (8) one gets D = —2I2 (D is the
dilaton charge defined in Sec. II), and therefore Eq. (29)
yields

(3o)
0.0—

'lO '1L IO ' lO 1

I
I I t I I[

10 ' 1C '
lO

'

FIG. 2. The function P for the first three globally regular
solutions.

~p(") = ~(p")

4ii(&) = 4(p&)

For this family the energy (9) is given by

(25)

The solutions display three characteristic regions. The
energy density Too is concentrated in the inner core region
r ( R~, where R~ is approximately the location of the
first zero of m. This region decreases with n and shrinks
to zero as n —+ oo. In the second region, Rq ( r ( B2,
where Rq is approximately the location of the last but one
zero of to, the function to slowly oscillates around m = 0
with a very small amplitude (see Fig. 1). In this region
the solution is very well approximated by the Abelian
magnetic monopole solution (15) (see Fig. 2). This re-
gion extends to infinity as n ~ oo. Finally, in the asymp-
totic region r & Bp, the function m goes monotonically
to m = +1 (hence, the YM magnetic charge is gradu-
ally screened) and for r -+ oo the solution tends to the
vacuum (tit = +1, P = 0).

Because of these properties, the solutions are in strik-
ing resemblance to the BM solutions [8] of the Einstein-
YM equations —the dilaton coupling has almost the same
eKect as the gravitational coupling. In both cases the
equilibrium configurations result from a balance between
repulsive YM force and attractive, gravitational or dila-
tonic, force, There are indications that this analogy is
even deeper. Below I will discuss two facets of the ap-
parent duality between gravity and dilaton interacting
with the YM field.

First, I will show that in the YM-dilaton theory the
energy of a static solution can be expressed as a surface
integral at spatial infinity. To show this, I will first derive
a simple virial identity. Consider a one-parameter family
of Geld configurations defined by

X = iii=0, p=lni 1+ —
~

(
~) (31)

As I have shown in Sec. III, in the U(1) sector of the
YM-dilaton theory, the static solutions satisfy the Bo-
gomol'nyi inequality E ) Q. The limiting solution X~
saturates the bound in the Q=l sector.

The behavior of the BM solutions (in isotropic coordi-
nates) is similar: as n ~ oo the YM field tends to the
Abelian magnetic monopole while the metric develops a
horizon and becomes the extremal Reissner-Nordstrom
black hole solution with unit magnetic charge. Thus,

x~M = [m=o ds' = —e 2~dh2

+e (dx +dy +dz )], (32)

where

Thus the energy of a static solution can be read oK from
the monopole term of the asymptotic expansion (23) of
the dilaton field. This is a remarkable property which
reminds us very much of the situation in general relativity
and shows a relation between the dilaton field and the
conformal degree of freedom of the metric.

Second, the most striking analogy between our solu-
tions and the BM solutions is their spectrum of energies
(see Table I and compare with Table I in Ref. [15]). In
both cases the energies increase with n and are bounded
from above by E = 1 (in suitable units). This cannot be a
coincidence; but what distinguishes this particular value
of energy which provides the common upper bound? The
answer is remarkably simple. The limiting X solutions
(whose energies give upper bounds) of our family and the
BM family saturate the Bogomol'nyi inequalities in the
Abelian sectors of respective theories and therefore their
energies are equal to the unit magnetic charge. To see
this, consider first the dilatonic solutions. As was dis-
cussed above, the second region By & r & Bq, covers the
whole space as n —+ oo, since in this limit R~ —+ 0 and
R2 ~ oo. As n grows the amplitude of oscillations of the
function tu decreases and goes to zero as n —+ oo. Thus,
for n ~ oo the solution X„ tends (nonuniformly) to the
(singular) Abelian magnetic monopole described in Sec.
III

E[urP, PP] = P Ii+P I2 (26)
1

U =ln 1+—
Tj

(33)

Ii ——— r P' dr,
2 (27) It is well known that this solution saturates the Bogo-

mol nyi inequality in Einstein-Maxwell theory [16]. Ac-
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tually, the limiting solutions (31) and (32) can be mapped
one into another by the duality transformation U ~ P
and o. ~ I/a. in the Abelian sector of the theory defined
by the action (1).

Prom the content of the last two paragraphs it is clear
that to prove rigorously that the energy is bounded from
above by one, one needs in the YM-dilaton theory (and
in the Einstein-Yang-Mills theory in the case of BM so-
lutions) a sort of Bogomol'nyi inequality with reversed
sign, E & Q, which is saturated by the limiting Abelian
solution. Unfortunately, I was not able to find such an in-
equality. It would be probably easier, but also much less
interesting, to find an upper bound which is not sharp
(for the BM solutions that was done in Ref. [15]). Also,
it is not difficult to obtain nonstrict bounds on initial
parameters. For example, multiplying Eq. (8) by P, inte-
grating by parts and combining the result with Eq. (29)
yields the identity

(P —1)e ~ iu + dr=0,(1 —~')'
2r2

which implies that p(0) & I.

VI. STABILITY ANALYSIS

(j. —~ 3
rzy + (r2yl)I + 2

—2Q I2 +
2r2

=0, (36)

where dot denotes di6'erentiation with respect to time t.
Now, I take the perturbed fields iu(r) + &u(r, t), and

P(r) + bg(r, t), where (iu(r), f(r)) is a static solution,
and insert them into Eqs. (35) and (36). Linearizing and
assuming the harmonic time dependence for the pertur-
bations, &u(r, t) = e' ~((r) and bP(r, t) = e'~~/(r), one
obtains an eigenvalue problem

In this section I address the issue of linear stability of
the static solutions described above. To that purpose one
has to analyze the time evolution of linear perturbations
about the equilibrium configuration. I will assume that
the time-dependent solutions remain spherically symmet-
ric and the YM field stays within the ansatz (6). This
is sufficient to demonstrate instability because unstable
modes appear already in this class of perturbations. The
spherically symmetric evolution equations are

1 -2(e—~au) + ('e ~iu')' + —e ~iu(1 —w ) = 0,r2

—g" + 2P'(' + 2iu'@' ——(1 —3iu )( = o g,r2 (37)

(r @) —4e —~ iu( ——iu(1 —iu )( —
I

u) + ~@ =o r g./ / —2 / / f,2 (1 —u) )
r 2r2 )

It is easy to check that if the perturbations satisfy the
boundary conditions

$(0) = 0,

g(oo) = 0,

@(0) = const,

@(oo) = 0,

—(—// /( ——(=o(r(1 ~ r) rz (4o)

This equation has infinitely many negative modes be-
cause the zero-energy solution satisfying $(0) = 0 has in-

then the above system is self-adjoint; hence, eigenvalues
oz are real. Instability manifests itself in the presence of
at least one negative eigenvalue.

Solving the eigenvalue equations (37) and (38) with
the boundary conditions (39) is a straighforward but te-
dious numerical problem. I have done that for several
lowest-energy static solutions using the two-dimensional
shooting method. The two shooting parameters are Q(0)
and o' . It turns out that the solution Ai has exactly one
unstable mode of frequency o —0.0225. Each succe-
sive static solution picks up one additional unstable mode
(I have checked this up to n = 4). This is consistent with
the fact that the limiting solution X', given by (31), has
infinitely many unstable modes. To prove this, consider
the perturbations of Ã~ with bP = 0. Then, Eq. (37)
reads

finitely many nodes as can be seen easily from the asymp-
totic solution.

The result that the solution X„has n unstable modes
fits very nicely to the interpretation of solutions. In
particular, for the interpretation of the solution X~ as
a sphaleron, it is crucial that it has exactly one unsta-
ble mode. However, remember that I have considered a
restricted class of perturbations, and by doing so some
directions of instability might have been supressed. If
there are additional unstable modes outside the ansatz
(which I doubt), the interpretation of solutions given by
Sudarsky and Wald would have to be revised.

V'II. SUDAB, SKY' AND V'fALD'S AB,CUMENT

Sudarsky and Wald have recently proposed a heuristic
argument which "explains" the existence and instability
of the BM solutions of the Einstein-YM equations. This
argument is, in principle, applicable to other theories in-
volving the SU(2)-YM field, which are not scale invariant
and possess a stable solution. Below I outline the SW ar-
gument in application to the SU(2)-YM-dilaton theory.

Let I be a space of all functions (A, , Pg, defined over
R, for which the energy E is finite. Let I be a subspace
of I' with P(oo) = 0. The static solutions are extrema of
energy on I'. One such extremum is the vacuum solution
(A, = P = 0) for which energy has a global minimum
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E = 0. Now, the key feature of the SU(2)-YM group is
the presence of "large gauge transformations, " i.e. , topo-
logically inequivalent cross sections of the YM bundle,
classified by the homotopy group mrs(SU(2)) Z [17].
As a consequence of this the energy functional E has a
countable set of disconnected global minima correspond-
ing to the trivial vacuum (A, = P = 0) and all large gauge
transformations of it. To avoid complications with the
group of small gauge transformations t, it is convenient
to pass from I' to the space of gauge orbits I' = I'iG.

Now, to apply Morse theory methods in Banach spaces,
one needs a sort of compactness condition (such as the
Palais-Smale condition). A convenient way of implement-
ing such a condition (which is here simply assumed to
hold without giving any justification) is to introduce on
I' a Riemannian metric G~~ (upper case latin letters de-
note indices of tensor fields on I'), such that the flow
generated by the vector field M = G++7—'~E carries
each point of I' to a critical point of E. As discussed
above, there exists a countable set of global minima of
E. Since this set is disconnected, the fIow defined by
M+ cannot carry all points of I' to global minima (or
local minima if any exist), because this would contradict
the connectedness of I'. Thus, the set I'~ ( I' of points
which do not Bow to local minima must contain at least
one critical point of E. A critical point on I'i with small-
est energy E~ is a saddle point on I' with exactly one
unstable direction. This is believed to account for the
existence of the solution Xq.

Actually, there is a countable set of local minima of E
restricted to I'~, namely X& and all large gauge transfor-
mations of it. Hence, one can repeat the above argument,
replacing I' by I'i (and assuming that I'i is connected),
to predict the existence of a submanifold I'2 ( I'q with
a point X2, whose energy E2 minimizes E restricted to
I'2. The point X2 is an extremum of E on I', which has
the two-dimensional space of unstable directions. This is
believed to account for the existence of the second static

solution X2. All higher n solutions are predicted by the
repetition of this argument.

It seems very unlikely that the SW argument in its
present form can be converted into a rigorous proof.
However, a similar argument should be possible for
spherically symmetric connections (although in this case
there is a potential difficulty in implementing sufficiently
strong decay condition in I' [17]). Then, the powerful
methods of equivariant Morse theory are available, and
in fact these methods were successfully applied in related
problems [18]. In my opinion this is a very promising di-
rection for future research. Another possibility of proving
rigorously the existence of numerical solutions found in
this paper is to apply the methods of the dynamical sys-
tems theory. This approach was used recently by Smoller
and his collaborators [19,20], who proved the existence of
the BM family of solutions to the Einstein- YM equations.
A similar proof should be possible for the YM-dilaton
equations although it might be more difficult, because
here the corresponding (nonautonomous) dynamical sys-
tem is four dimensional whereas in the Einstein- YM case
it is three dimensional.

Note added. After this paper was submitted for pub-
lication I received a paper by G. Lavrelashvili and D.
Maison, Phys. Lett. B 295, 67 (1992), which overlaps
and agrees with my numerical results.
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