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Analytic solutions of the Yang-Mills field equations with external sources
of higher topological indices
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We construct new analytic solutions to the SU(2) Yang-Mills equations with external sources associat-
ed with higher topological indices. By manipulating the parameters in the external source, we show that
branching can occur in the total energy versus total external charge plot.
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I. INTRODUCTION

The static Coulomb solution in Abelian gauge theory is
stable and unique and plays an essential role in classical
as well as quantum electrodynamics. However, it does
not seem to enjoy the same role in Yang-Mills (YM)
theories since it was first found by Mandula [1] that it is
unstable when the strength of a spherically symmetric
external source exceeds a certain critical magnitude.
This has provoked many further efforts into searching for
new solutions of the YM equations with external sources;
see Ref. [2] for reviews. Notable among the analytic solu-
tions obtained so far are the charge screening solutions
and the magnetic dipole solutions found by Sikivie and
Weiss [3] and subsequently the type-I and type-II solu-
tions constructed by Jackiw, Jacobs, and Rebbi [4]. The
solutions can be roughly classified as follows. Firstly we
note that the unit vector e'(x) from the external charge
density jo(x) =q(x)e'(x) provides a mapping from S~,
defined by I =R, R )0, to the internal sphere
e'(x)e'(x) = 1. The e'(x) takes over the role of the Higgs
field in the topological solution of the YM-Higgs system.
This yields the gauge-invariant topological charge M,
known as the magnetic charge [5], which can be used to
characterize the gauge field solution and the external
source. For each value of M, we can have two different
types of solutions depending on the asymptotic behavior
of the gauge field A,' when the charge density q(x) van-
ishes at infinity. The solution is called type I if the
asymptotic A,' vanishes identically, and is called type II
if the asymptotic A, becomes pure gauge:

~, (x)= —t U-'(x)a, U(x),

where U(x) is a gauge transformation. The terms type I
and type II are generalized from those of Ref. [4] where
the case for M =1 is discussed. For M =0, the Abelian
Coulomb solution is of type I while the non-Abelian
Coulomb solution [4] is of type II; the magnetic dipole
solution [3] also belongs to the M =0 class. For M =1,
the type-I and type-II solutions are as given by [4]. For
M =0 or 1 one can construct solutions with or without
spherical symmetry. For M ) 1, solutions are necessarily
nonspherically symmetric and so far only perturbative
solutions for weak sources [2] and numerical solutions [6]

have been constructed.
An explicit expression for the magnetic charge M of

the gauge field and the external source system can be
written down [5]:

(2a)

where

ak = AI', e',
n'=~'/p, p. =~ ) +~~+~3

(2b)

When ak is regular everywhere, the first term of the in-

tegrand does not contribute and we have

M= E ke
'J'dSn'e'c} e Bke',= 1

8~ ~' T~ oo
(3)

e '( x ) =5;sin 8 cos( n P ) +5zsin0 sin( n P ) +53cos8 . (4)

To construct solutions with higher M, it is convenient to
fix the polar angle 8 to a constant so that e'(x) now maps
S' to S'. In particular for O=vr/2, expression (4) be-
comes

e'(x) =5;cos(n P)+5zsin(n P) . (5)

The gauge-invariant magnetic charge M can now be ex-
pressed as [6]

„dPi (C'C')'"1
(6a)
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In passing we note that there are solutions which do not
have a definite M value and hence cannot be classified in
the above manner.

(6b)

which is an element of the second homotopy group sr2[e].
Note that the magnetic charge as defined by Eq. (2a) is

gauge invariant but the homotopy class as given by ex-

pression (3) can change under singular gauge transforma-
tion [5]. Expression (3) is also known as the Kronecker
index associated with e'(x). Assuming ak has no singu-

larity line then M takes integer value n if
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The purpose of this paper is to demonstrate that ana-
lytic solutions can actually be constructed for M & 1.
Our task is facilitated by the axial-symmetric ansatz
found by the authors of Refs. [3,6]. This ansatz reduces
the YM equations to equations similar to those for the
magnetic dipole solutions [3], from which new solutions
can be constructed. Our solutions have finite energy and
finite total external non-Abelian charge. The electric
field vanishes exponentially fast at large distances while
the magnetic field has the magnetic multipole behavior.
Our solutions lead to M =2n. In Ref. [7], the magnetic
dipole solution and the Abelian Coulomb solution, which
are supported by the same charge density distribution,
are shown to bifurcate from each other. Since for M ~ 1

there is no Abelian Coulomb solution, branching of the
new solutions from the Abelian Coulomb solutions is out
of the question. However, following Ref. [8], we show
that branching can occur in the energy versus total exter-
nal charge plot for the new solutions provided that the
parameters in the charge distribution are suitably mani-
pulated.

II. SOLUTIONS

The SU(2) YM equations in the presence of an external
static source are

(D„F~"),=j, , (7a)

Eqs. (10a) and (10b) by employing the method of Ref. [3].
Namely, we first choose a suitable functional form for B„
that has the appropriate boundary behavior; the function
N„ is then derived from Eq. (10b). With the explicit B„
and @„, the source density is evaluated via Eq. (10a).
Thus we write

B„=ca f„(y,0)P„'(cosg)r

y=rla, r =p +x3,
(1 la)

f„=tanh(y "+'),
&2(2n +1) 2n h( 2n+i)

n
— y sec

(1 lb)

(1 lc)

the source density q is computed from Eq. (10a). At
small y, Bn and N„vanish respectively as r" and r " while
at large y, f„and @„ tend respectively to one and zero
exponentially fast. The field strengths are

where c denotes the norm of Bn, a indicates the size of
the external charge distribution, and P„'(c os8) is the asso-
ciated Legendre polynomial. To ensure finite energy, the
function f„(y,8) must tend to one sufficiently fast at
large y and must tend to zero as y —+0. For our purpose,
an appropriate solution for Eqs. (10a) and (10b) is

I" =a A —a 3 +gc'"A'3 (7b)

where our metric is g,-;= —goo= 1 and we shall set the
gauge field coupling constant g =1. Following Sikivie
and Weiss [3] and basing on the perturbative analysis [6],
an ansatz leading to solutions with the Kronecker index
M can be written down:

Eai y aoi

= —e'8'@„—[cos(n P)5' —sin(ng)5" ]P'C&„B„,

B«= ~EWF~ =5~a~'J g (g y )jk 3 j n k

(12a)

(12b)

A 0 =e'4„(p,z ),
A "=53/'A „(p,z ),
j', =e'q (p, z )5, ,

(8a)

(8b)

e'=5;cos(nP)+5zsin(n P), (8d)

when P' is the unit vector P'=E'J x~/p, p=(x, +x2)'~,
and P is the azimuthal angle. This ansatz reduces the
YM equations into the coupled nonlinear equations [6]

2

At large distances, E" vanishes exponentially fast
whereas B" is of the order y

" '. Thus solution (lib)
and (1 lc) is a magnetic multipole solution.

The charge distribution q(x), calculated from Eq.
(10a), is regular, vanishes at origin, and decreases ex-
ponentially fast at large y. The total charge of the exter-
nal source projected along the e'(x) direction is finite:

Q= f d x j0(x)e'(x)

=fd x&„B„
—V2%„+N„A„—— =q (p, x3 ),

P
(9a) 4&2vr(n + 1)! I c

(2n+1)(n —1)' '
a '"

(9b)V — A +N A ——=0.2 1 2 n
n n n

P

For n =0 these equations are just those found in Ref. [3]
and apart from the magnetic dipole solution [3], many
other solutions, e.g. , magnetic multipole solutions, have
been constructed [9,10]. Defining B„=—3„—n /p (n )0),
Eqs. (9a) and (9b) become

2

2(n —I )a

where

I, = f dy[y 'tanh y sechy],

2nS=
2n +1

(13a)

(13b)

—V N„+@„B„=q, (10a)

V — +@„B„=O.1
(lob)

P
Note that in transforming Eq. (9b) to (10b), no extra
singularity is introduced. We can now proceed to solve

(14a)

One finds

The total energy H can be evaluated from the integral

H= ' f d x[(E') +—(B') ]

=fd x[—'(Ve ) +e B J.
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k2C2
+

4~ a n —i
(14b)

with &0840

k& =4n (2n +1)Iz 4—n (2n +1) I3+(2n +1) I4,
2 (n +1)!
3 (n —1)!

10835

and

Iz= f dyy'sech y,
I3 dy y' + 'tanhy sech y

I4= f dyy'+ tanh y sech y .

All the above integrals are finite and hence the total ener-

gy H has a finite value. Note that Q and H are
parametrized by c and a.

i0825

470 480 490 5i0
Q

FIG. 2. Plot of H vs Q for the solution (11) when n =5,
a=10, P=6.3827, a, =0.85103, and the parameter a ranges
from 0.78 to 0.91.

III. BIFURCATION

c =aa —p, (15)

where a and p are constants to be determined so that Q
and H can have their respective extrema occurring at the
same parametric value. Setting the first derivative of Q
with respect to the parameter a equal to zero, we obtain
the condition

n —1 n)2 .
n 2 A

(16a)

We now proceed to show that in the energy H vs total
charge Q plot, branching is possible. As a working
definition bifurcation is said to occur if there exists at
least a common point in the parametric space at which H
and Q have their respective stationary values [8]. From
expressions (13a) and (14b) and for our purpose, it is
sufficient to impose a linear relation between the parame-
ters c and a,

The vanishing of the first derivative of H with respect to
the parameter a leads to

ckz [(n —1)P+a(3 —n )a]=k
&

a"

and on substituting a from expression (16a), we get
n 2

n —1 p n —1 P
(n —2)~ n —2 a (16b)

Q,„=4&2~k(aa, —P) a,

whereas H has a local maximum for n )4,

(17a)

H „=4m k, k~(aa, —P)'+
a an —I

C C

(17b)

Thus for a given value of P, a can be computed from Eq.
(16b); the critical values a, and c, are then calculated
from Eqs. (16a) and (15), respectively. It is straightfor-
ward to show that at a =a, and c =c„Qhas a local max-
imum for n ) 1,

3040—

3020—

and for n = 3 and 4, H has a local minimum and
inAection point, respectively. In Figs. 1 and 2 we exhibit
the cusps in the energy H vs total charge Q plots for n =4
and n =5, respectively. In Fig. 1, Q,„=20. 287,
H„,, =2995.5 and in Fig. 2, Q,„=512.31,
H,„=10844.3. Note that H increases with the integer
n.

2980—

2960—

2940—
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IV. REMARKS

We end with some remarks
(i) Using the expressions (6) it is easy to verify that for

our new solution the topological charge M of the source-
field system is 2n Substituting . the ansatz (8) into Eq. (6b)
we find, after some straightforward calculation,

FICy. 1. Plot of H vs Q for the solution (ll) when n =4,
a =8.4502, P= 10, a, = 1.7751, and the parameter a ranges from
1.4 to 2.8.

C'C'= 3„+-n

P

2

(18)
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U =exp —tt 'o'
4

P'= —5'sin(nP)+5' cos(nP),

where o' are the Pauli matrices, we obtain

A 'o =53%„(p,z ),

(19a)

(19b)

(20a)

g t'ai A „+—e'+ —53
p p

' (20b)

Using Eq. (6a) and noting A„=B„+n/p, one easily ob-
tains M=2n since pB„vanishes at large p. For the
choice of e'(x) as given by Eq. (8d) and with
A„=B„+n/p, both terms in Eq. (6b) contribute to M.
For the numerical solution of Ref. [6], pA„vanishes at
large p. This means the second term in Eq. (6b) does not
contribute to M and thus M =n. It is evident that our
analytic solution and the numerical solution of Ref. [6]
are not related by gauge transformation.

(ii) Gauge transforming Eqs. (8) by using

first term in Eq. (6b) gives no contribution and the value
of M is contributed solely by the gauge field 3 '&, namely,
the term (A„+n /p)e' in Eq. (20b), where e' is given by
Eq. (8d) and A„=B„+n/p. Similarly for the numerical
solution of Ref. [6] in the Abelian gauge frame, it is the
second term in Eq. (6b) that leads to M = n

(iii) The solution (11) is not unique; there may exist
many solutions which can also lead to branching in H vs

Q plot. For n =1 and 2, the linear relation (15) between
the parameters c and a will not generate branching

(iv) That higher M solutions can be derived from the
reduced equations (10) which are the same as Eqs. (9) for
n =0 is not surprising. In Ref. [10], the type-I solution
with topological charge M =1 is derived from the mag-
netic dipole solution with M=0 by comparing their
respective reduced equations. IVote that no gauge trans-
formation is involved.

(v) Our solutions are of type II and only lead to
M=2n, n =1,2, 3, . . . . We are currently searching for
solutions leading to odd integer values of M.

j"„=53q (p, z )5 (20c)
ACKNOWLEDGMENT

Hence the source is now specified by e"=53, the Abelian
gauge frame. One can again compute M by using Eqs.
(6). One finds M=2n. In the Abelian gauge frame, the We thank Y. Yeo for discussions.

[1]J. E. Mandula, Phys. Rev. D 14, 3497 (1976); Phys. Lett.
67B, 175 (1977); J. E. Mandula, D. I. Meison, and S. A.
Orszag, ibid. 124B, 365 (1983); M. Magg, ibid. 78B, 481
(1978).

[2] H. Arodz, Acta Phys. Pol. B14, 825 (1983); E. Malec, ibid
B18, 1017 (1987); H. Arodz, Nucl. Phys. B207, 288 (1982).

[3] P. Sikivie and N. Weiss, Phys. Rev. Lett. 40, 141 (1978);
Phys. Rev. D 18, 4809 (1978).

[4] R. Jackiw, L. Jacobs, and C. Rebbi, Phys. Rev. D 20, 474
(1979); R. Jackiw and P. Rossi, ibid. 21, 426 (1980); L.
Jacobs and J. Wudka, ibid. 25, 1114 (1982); C. H. Oh, R.
Teh, and W. K. Koo, ibid. 25, 3263 (1982).

[5] J. Arafune, P. G. O. Freund, and C. J. Goebel, J. Math.
Phys. 16, 433 (1975); C. H. Lai and C. H. Oh, Phys. Rev.
D 33, 1825 (1986).

[6] M. P. Isidro Filho, A. K. Kerman, and H. D. Trottier,
Phys. Rev. D 40, 4142 (1989).

[7] C. H. Oh, J. Math. Phys. 25, 660 (1984); C. H. Oh, S. N.
Chow, and C. H. Lai, Phys. Rev. D 30, 1334 (1984).

[8] C. H. Oh and R. R. Parwani, Phys. Rev. D 36, 2527
(1987);J. Phys. A 23, L871 (1990).

[9] R. Teh, W. K. Koo, and C. H. Oh, Phys. Rev. D 23, 3046
(1981).

[10]C. H. Oh, Phys. Rev. D 25, 2194 (1982).


