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Plaquette expansion in lattice Hamiltonian models
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The Lanczos method in operator form is applied to a general lattice Hamiltonian and expressions for
the first few Lanczos matrices in terms of the connected Hamiltonian moments (H" ), and the number
of plaquettes, N~, are obtained. Expansions in 1/N~ suggest a very simple general form for the first few
terms in the I /N expansions for all a„and P„.For the one-dimensional Heisenberg spin chain it is

demonstrated that the ground-state eigenvalue of the tridiagonal Lanczos matrix derived from this pla-
quette expansion approaches the true infinite lattice limit as the number of terms in the plaquette expan-
sion is increased.

PACS number(s): 11.15.Ha, 11.15.Pg, 11.15.Tk

The calculation of the spectrum of quantum chromo-
dynamics (QCD) is a long outstanding problem represen-
tative of the difficulties inherent in the nonperturbative
study of field theories. At present one of the most
promising and often used methods of study is the numeri-
cal evaluation of path integrals in the lattice gauge for-
malism [I] by Monte Carlo simulation. Despite the for-
midable technology which has been brought to bear the
lattices involved in the largest computations are still quite
modest. The complimentary method to that of path in-
tegrals is the Hamiltonian formalism either on a conven-
tional lattice [2] or, more recently, in light-cone quan-
tized form [3]. Here again the lattices or bases of states
currently accessible is frustratingly small.

Against this background of numerical work there has
been steady interest in analytic approaches to the nonper-
turbative study of field theories. In this category one
would include (but not exhaust the list) variational ap-
proaches [4], extrapolations of the strong coupling expan-
sion [5], the Lanczos method and variants applied in
operator form [6], and the t expansion [7]. The Lanczos
method in operator form and the t expansion are particu-
larly lucid as both encapsulate the physics in the analyti-
cal calculation of Hamiltonian moments ( H" ) with
respect to some well chosen trial state. The t expansion
has the advantage of computing in the infinite lattice lim-
it; however, the reliability of the method is undermined
to some extent by the need to extrapolate to the t —+ ~
limit. The Lanczos method on the other hand does not
suffer from such ambiguities, being a straightforward tri-
diagonalization of the Hamiltonian in question.

In the numerical computation of the low-lying eigen-
states of Hamiltonian matrices the Lanczos method of
tridiagonalization is often employed due to its efficiency
and linear memory requirements. In the case of the large
lattice limit of Hamiltonian models, with S states per site,
the largest possible value of N, the number of sites, will
be severely limited since the basis of states grows as S

The Lanczos method in operator form circumvents the
storage problems associated with the increasing basis size
as N~ ~ by being analytic in this quantity. One accom-

modates arbitrarily large bases at the expense of the accu-
racy of the calculated eigenvalues of the system. While
this tradeoff may be beneficial at some intermediate
values of N the direct analytical application of the Lanc-
zos method is of limited use for large N since, in general,
the computation of large orders of ( H" ), required in the
calculation of larger Lanczos matrices, is dificult.

In this paper it will be demonstrated that the elements
of the (tridiagonal) Lanczos matrix, ct„andp„,for a lat-
tice Hamiltonian admit an expansion in 1/N, where N
is the number of plaquettes in the lattice, and that the
terms in this expansion appear to have a simple form in
n. The dependence on the physics via the Hamiltonian
moments is such that higher orders of (H") are only re-
quired when higher orders of the expansion are comput-
ed. Application of this expansion to the Heisenberg mod-
el gives convergence to an upper bound on the ground-
state energy density as N —+ ~. Furthermore the upper
bound appears to approach the true infinite lattice
ground-state energy density as the expansion order is in-
creased.

Consider a Hamiltonian H defined on a lattice of N
plaquettes. Starting with a trial state ~u& ) one obtains a
basis [ ~u„)] in which H is tridiagonal, according to the
Lanczos recursion

where the elements of the Lanczos tridiagonal matrix e„
and P„aregiven by

ct„=& u„iHi v„&,
P„=& v„+,iHiu„& .

(2)

In practice the full construction of the basis {~u„)] is not
required if one is interested only in the low-lying states of
the system since the eigenvalues of the tridiagonal Lanc-
zos matrix rapidly converge to those of H as the con-
struction proceeds.

From (I) it can be seen by inspection that the Lanczos
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matrix elements a„andP„canbe written solely in terms
of moments of the Hamiltonian with respect to

~
U i ), i.e.,

a„=a„((H),&H'), . . . , (H'"-')),
/3„=P„((H&, &H'), . . . , &H'")) .

Instead of writing the Lanczos matrix in terms of (H" )
it is convenient to use connected Hamiltonian moments
(H" ), which scale with the volume as N~. The connect-
ed moments are related to ( H" ) by [7]

n —2 n —]
(H" &, =&H" &

—g &H'+'& &H" ' ') . (4)
p=0

The N dependence is made explicit by defining c„as
(H"),:c„—N~ .

It is a straightforward task (though increasingly tedious)
to calculate a„and P„in terms of c„and N . For the
first few a„and f3„(forbrevity only the 3X3 matrix is
listed here) we find

cubi
=c IN

N c,c2+c3
CX2

=
C2

2NpC]C2 +4Npc2C3NpCJC2C3+C3+Npc&c2c4
—2c2c3C4+C2C52 4 3 2 3 2 2

CX3
=

c2(2N~c 2
—c 3+cpc4)

(6)

2NpC2 C3 +C2C43 2

p2—
C

2
2

The expressions for a„an13„appear cumbersome; however, upon expansion in I /N an ordered structure becomes ap-
parent:

a)=c)N

a2=c )Np+
C3

C2

C3
a3=C&N +2 +

C2

33c 3 4c2c3c4+ c 2c5
2

~ ~ ~

2C2 N

n4=ciN +3 C3 +3
C2

33c 3 4c2c3c4+ c 2c5
2

2c4,

1 + ~ ~ ~

N

C3
a5=C, N +4 +6

C2

3c 3 4c2c3c4+ c 2c5
3 2

2C2

1 + ~ ~ ~

N

a6=c(N +5 C3 +10
C2

33C 3 4C2C3C4+ C 2C5
2

2C2

1 + ~ ~ ~ ~

N

132=2c2N +
2

C2C4 C3

C2
2

p3=3c~N +3
2

C2C4 C3 +
C2

2
C2C4 C3

P4=4c~N +6 +4
C2

—12c3+21c2c3c4 4c2c4 6c2c3c5+c2c64 2 2 2 2 3

+ ~ ~ ~

2C2

43+ 2 3 4 2 4 2 3 5 2 6
2 2 2 2 3

2C25

(7b)

2
C2C4 C3

p~=5c2N +10 +10
C2

—12c 3 +21c2c 3c4 —4c 2c 4
—6c 2c 3c5+c 2c6

4 2 2 2 2 3

+ ~ ~ ~

2C2

The expansions (7) suggest a general form:
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a„=c,N„+(n —1)
C2

C3 1+ —(n —1)(n —2)
2

3 23c 3
—4c2c3c4+ c2c5

2c4,

1 + a ~ ~

2
C2C4 C3

/3„=nc2N + —n(n —1)
C2

1
4—12C3+21C2c 3c4 4C2C4 —6C2c3c5+c2c62 2 2 2 3

+ n—( n —1)(n —2)
6 2C2

(8)

Assuming the validity of the plaquette expansions (8)
for a„and /l„one can immediately write down the ex-
panded Lanczos matrix of any order once the required c,
have been calculated. At some critical order of the Lanc-
zos matrix the expansion will break down (for fixed N );p
one is then interested in how close to the actual spectrum
the eigenvalues of the Lanczos matrix approach before
the breakdown occurs. The breakdown point will depend
on the model in question through the c„.

To investigate the convergence properties of this
method we apply it to the case of the one-dimensional
Heisenberg model defined on a lattice of N spins
(N =N). The Hamiltonian is

H = g S(i) S(i + 1 ),

The connected Hamiltonian moments for this model
with respect to the Neel state ~v, )—:

~
J, 1'1111'.. . ) have

been computed [8] up to ( H ' ),. Since for definite
values of c„the calculation of the Lanczos matrix is far
less time consuming than the general case we are able to
determine the plaquette expansion to 1/N for the

P
Heisenberg model. We find

a„=——N +(n —1)—(n —1)(n —2)
1

4 P NP

1 1
(n ——1)(n —2)(26n —51)

9 N2
P

1——(n —1)(n —2)(65n —309n +423) +1

9 N

where S(i) is the spin operator at the lattice site i and
periodic boundary conditions [S(N+1)=S(1)]are adopt-
ed. In the infinite lattice limit the ground-state energy
density Eo/N is known to be

P„=—N — n(n ——1)+ n(n ——1)(n —2)2 n 3 2 1

4 P 4 P

+ n(n —1)(n —2—)(13n —27)
1 1

9 NP

Eo
lim = —ln2+ —= —0.443 147 .

~ N 4
(10) + n (n —1)(n —2)(94n —633n+ 1143) +1 1

45 NP

Given the plaquette expansion of the Heisenberg model
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FIG. 1. The ground-state eigenvalue, A,o("'(m, N~)/1V~, as a
function of the Lanczos matrix size (or iteration) for various ex-
pansion orders, r =0 to r =3, at X~ =128. The dashed line is
the true infinite lattice ground-state energy density.
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FIG. 2. Behavior of the I" =3 expansion for increasing lattice
sizes. The dashed line is the true infinite lattice ground-state en-

ergy density.
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FIG. 3. Dimension of the maximum Lanczos matrix (corre-
sponding to the point of infiection), as a function of the number
of plaquettes.

FIG. S. The ground-state energy density @o"', plotted for ex-
pansion orders r =0 to r =3.

to order 1/N" we construct the Lanczos matrix of in-
creasing dimension m and examine the ground-state ei-
genvalue A,o"'(m, X ) as a function of m. In Fig. 1 the
ground-state energy density Ao'"'(m, X )/X is plotted for
various expansion orders up to 1/N for a typical case
(Nz = 128). For both I /X and I /% expansions there is
no critical point and the eigenvalue converges (for the
case of 1/N the Lanczos procedure terminates when
P„(0).For higher expansion orders the expansion
breaks down as one naively expects for m such that the
last term in the expansion becomes significant. Figure 2
shows the point of breakdown occurring for larger values
of m as the number of plaquettes is increased. The
ground-state energy density evaluated just before the
breakdown converges as N —+ ~. To see this we assume
the Lanczos iteration corresponding to the point of
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n
4

-0.440-

inAection, m;, to be the last true point before the break-
down occurs. The linear dependence with N of the max-
imum Lanczos matrix (i.e., that corresponding to the
point of inAection) is shown in Fig. 3. Taking
Po'"'(m, , & )/N as the ground-state energy density corre-
sponding to a given lattice size we see in Fig. 4 the con-
vergence of this quantity as N —+ oo for the different ex-
pansion orders, i.e.,

Finally we plot the infinite lattice limit of the ground-
state energy density Do"' for each expansion order in Fig.
5 indicating the approach to the true infinite result.

In this work it has been demonstrated that there exists
a plaquette expansion of the Lanczos matrix of lattice
Hamiltonian models and that its form is not only simple,
but also uniform for all models; the physics enters solely
via the connected Hamiltonian moments. The plaquette
expansion allows one to write down the Hamiltonian in
tridiagonal basis to a given order in 1/N immediately
once the required connected Hamiltonian moments have
been calculated. Working in the Heisenberg model it was
shown that the ground-state energy density obtained
from the plaquette expansion approaches the infinite lat-
tice result. If this phenomenon holds in general then the
plaquette expansion may be useful in the calculation of
the spectrum of various models in the infinite lattice lim-
it, particularly since the amount of computational work
once the Hamiltonian moments have been calculated is
minimal. It still remains, however, to prove that the pla-
quette expansion to any given order in 1/N is valid to all
orders in the Lanczos matrix.
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FIG. 4. Convergence properties of the quantity
Ao ( m;, N~ ) /N~ as N~ ~ ao . The dashed hne is the true infinite
lattice ground-state energy density.
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