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Relativistic bound-state problem in the light-front Yukawa model
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We study the renormalization problem on the light front for the two-fermion bound state in the
(3+1)-dimensional Yukawa model, working within the lowest-order Tamm-Dancoff approximation. In
addition to traditional mass and wave-function renormalization, new types of counterterms are required.
These are nonlocal and involve arbitrary functions of the longitudinal momenta. Their appearance is
consistent with general power-counting arguments on the light front. We estimate the "arbitrary func-
tion" in two ways: (1) by using perturbation theory as a guide and (2) by considering the asymptotic
large transverse momentum behavior of the kernel in the bound-state equations. The latter method, as it
is currently implemented, is applicable only to the helicity-zero sector of the theory. Because of triviali-

ty, in the Yukawa model one must retain a finite cutoff A in order to have a nonvanishing renormalized
coupling. For the range of renormalized couplings (and cutoffs) allowed by triviality, one finds that the
perturbative counterterm does a good job in eliminating cutoff dependence in the low-energy spectrum
(masses ((A).

PACS number(s): 11.10.Gh, 11.10.Ef, 11.10.St, 11.15.Tk

I. INTRODUCTION

Most of our intuitions about bound states in quantum
mechanics come from solving Hamiltonians. A variety of
methods exist in quantum mechanics to handle Hamil-
tonians. One would like to apply Hamiltonian methods
also to study relativistic systems. In fact, such an at-
tempt has a long history, for example, the Tamm-Dancoff
method [1,2] in equal-time field theory in the early 1950s.
The equal-time Tamm-Dancoff method was eventually
abandoned due to severe ultraviolet problems.

What are the major obstacles encountered in trying to
solve relativistic Hamiltonians? First of all, the Hamil-
tonians of equal-time field theory contain vertices which
cause particle creation from the vacuum state. Thus,
Hamiltonian diagonalization leads to vacuum diver-
gences. In perturbation theory one can avoid vacuum di-
agrams but in nonperturbative methods one has to deal
with them. Moreover, the vacuum state in equal-time
field theory is thought to be quite complex and responsi-
ble for many nontrivial phenomena. One must solve for
the vacuum state of the Hamiltonian of equal-time field
theory before proceeding to calculate the rest of the spec-
tra. A second obstacle arises from truncations which are
unavoidable in any practical calculational scheme. In rel-
ativistic field theory any physical state is a superposition
of an infinite number of bare multiparticle states. In
practice one truncates this number (Tamm-Dancoff trun-
cation). Even after the particle number truncation there
are still, in general, an infinite set of energy scales which
get coupled via the interactions. In practice, one can in-
troduce momentum cutoffs to regulate the theory. The
introduction of particle number truncation and momen-
tum cutoffs produces violations of Lorentz invariance.
One may try to recover Lorentz invariance by introduc-

ing noncovariant counterterms. This is generally con-
sidered to be a very unpleasant situation.

The light-front Tamm-Dancoff (LFTD) method was
proposed [3] recently to overcome some of the problems
in the equal-time Tamm-Dancoff method. A related ap-
proach is discretized light-cone quantization (DLCQ)
proposed by Pauli and Brodsky [4]. The LFTD method
is the Tamm-Dancoff truncation of light-front quantum
field theory [5]. In the light-front formulation longitudi-
nal momentum is either positive or zero. One may intro-
duce a longitudinal momentum cutoff e and in the pres-
ence of nonzero e all troublesome vacuum diagrams sim-
ply disappear and the bare vacuum state becomes an
eigenstate of the Hamiltonian. One can also introduce a
transverse momentum cutoff A to regulate ultraviolet
divergences. Note that particle truncation and momen-
tum cutoffs spoil Lorentz symmetries. One has to remove
the cutoff dependence from the observables and recover
the lost Lorentz symmetries. We have avoided the origi-
nal vacuum problem but now the construction of the
proper Hamiltonian is a nontrivial renormalization prob-
lem.

How does one proceed with the renormalization prob-
lem of Hamiltonians? Even when one studies relatively
simple systems the analysis gets rather involved [6—8].
For the light-front field theory there is a proliferation of
possible terms in the Hamiltonian based on power count-
ing (see Appendix A). The source of this is the existence
of two different dimensional variables, transverse distance
xi and longitudinal distance x, which makes nonlocal
counterterms inevitable in the renormalization of light-
front Hamiltonians in any practical schemes. As a start-
ing point one may take just the canonical Hamiltonian.
For a Tamm-Dancoff calculation even in one space and
one time dimension the canonical Hamiltonian is quite
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unsuitable. Even for simple problems one has to allow
the masses and the couplings to depend on the Fock
space sectors [9—13]. But, in general, we need more dras-
tic modifications. One may utilize the rich nonlocal
structure of counterterms not only to remove the cutoff
dependence from the low-energy observables but also to
recover the lost Lorentz symmetries.

Our ultimate aim is to study the bound-state problem
in QCD. However, light-front QCD is plagued with
divergences arising from both small longitudinal momen-
tum and large transverse momentum. To gain experience
with the renormalization program it is useful to study a
model where only one type of divergence arises. Thus,
we have chosen the two-fermion bound-state problem in
the (3+ 1)-dimensional light-front Yukawa model for our
initial investigations.

We study the two-fermion bound-state problem in the
lowest-order Tamm-Dancoff approximation retaining
only two-fermion and two-fermion —one-boson states. By
eliminating the three-body sector algebraically we arrive
at an integral equation for the two-body state, which has
both self-energy and one-boson-exchange contributions.
There are divergences associated with both types of con-
tributions. First, to discuss the renormalization aspects
of the problem associated with one-boson-exchange con-
tribution we ignore self-energy corrections and analyze
the divergence associated with the ladder equation. The
light-front ladder approximation has been studied previ-
ously for P models [14] which do not suffer from the
divergence problem. A study of the pseudoscalar Yu-
kawa model [15] has utilized form factors to regulate the
divergences. Recent studies [16] on positronium em-
phasize the handling of the Coulomb problem in momen-
tum space. An analysis of the asymptotic behavior of the
bound-state wave function in the (3+1)-dimensional Yu-
kawa model in lowest-order light-front Tamm-Dancoff
approximation is carried out in Ref. [17].

In order to analyze the divergences associated with
one-boson exchange and remove them via counterterms
so as to renormalize the theory we use a momentum
space slicing called the high-low analysis which was in-
troduced [18] in the context of lattice theories. Here we

apply it in the study of Hamiltonian renormalization
problem. We refer the reader to Appendix B for an out-
line of this approach. A lowest-order perturbative
analysis provides the so-called "box counterterm, " which
is nonlocal. We test the reliability of this counterterm in
different helicity sectors. We also study the effect of a
particular nonlocal noncanonical term in removing the
divergences and renormalizing the helicity-zero sector.

After gaining some experience with the divergence
problem in ladder approximation we return to the origi-
nal model and study the self-energy effects. To remove
the divergences we first introduce a sector-dependent
mass counterterm. The remaining divergence is removed
by a redefinition of the coupling constant. Here we face
the well-known problem of triviality, i.e., for a fixed re-
normalized coupling the bare coupling becomes imagi-
nary beyond a certain ultraviolet cutoff. This has been
observed previously for the Lee model [19] and also for
the meson-nucleon scattering problem in equal-time

Tamm-Dancoff method [20,21]. In 3+ 1 dimensions for
nonzero mass of the exchanged boson the coupling has to
be above a critical value for the bound states to exist. On
the other hand, for a given cutoff triviality puts an upper
bound on the allowed coupling constant. The interesting
question is whether there exists a window where one can
change cutoffs in a range considerably larger than the
particle masses and compatible with couplings large
enough to produce bound states. The answer is in the
afhrmative and we proceed to remove the cutoff depen-
dence using boson-exchange counterterms.

The light-front Tamm-Dancoff approximation breaks
rotational invariance with respect to the two transverse
directions. This is visible in the spectrum which does not
exhibit the degeneracy associated with the total angular
momentum multiplets. As is expected the violations are
very small at weak coupling and they become more visi-
ble at stronger couplings. We investigate to what extent
we can recover the degeneracy by adjusting the finite
parts of the counterterms, and find that the degeneracy
can be removed.

The plan of this paper is as follows. In Sec. II, we
derive the integral equation of the bound-state problem in
the lowest-order Tamm-Dancoff approximation. Calcu-
lations in the absence of self-energy corrections are de-
scribed in Sec. III and we return to self-energy correc-
tions in Sec. IV. Section V contains our summary and
conclusions. The power counting, possible structure of
allowed terms in the Hamiltonian and the origin of non-
local terms are brieAy described in Appendix A. The
high-low analysis is outlined in Appendix B. Finally, Ap-
pendix C contains the explicit form of the kernels in the
bound-state equation before renormalization in the
helicity-zero and helicity-one sectors.

II. THE FERMION NUMBER TWO SECTOR
IN LOWEST-ORDER

TAMM-DANCOFF APPROXIMATION

We use the following convention for light-front coordi-
nates:

x+ =x'+x', x =x' —x', x'=(x ', x'), (2.1)

a "6 =—'a+6 +—'a b+ —a'6'
P 2 2

(2.2)

(2.3)

The projection operators

(2.4)

can be obtained from the equation of motion and we
find

are used to define g+ =4+4 and g =A 'I'. The in-
dependent degrees of freedom are P+, (g+ ), and P. The
canonical light-front Hamiltonian for the (3+ 1)-
dimensional Yukawa model is given by

P =
—,
' Jdx d x [2t'(g ) 8+/ +m P +dpi/].

(2.5)
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[ia r). +y (mF+gP)]P+ .
1

lB

The integral operator 1/8+ is defined as

(2.6)
The destruction operators for the fermion and antifer-
mion with momentum k and helicity o. are, respectively,
b (k) and d (k). They satisfy the anticommutation rela-
tions

f(x )= , f—dy e(x —y )f(y ) .

We define

with

(2.7)

(2.8)

[b (k), bp~(k')] =2(2~) k+6 (k —k')5 p,
[d (k), dp~(k')] =2(2') k+5 (k —k')5 p,
[b (k), bp(k')] =0, [d (k), dp(k')] =0 .

The spinor

(2.16)

and

We define

1 [ia'.a'+ y'm F]q +,
la+

(2.9)

(2.10)

1/2

u (k)= [m A +(k++o.'.k')&+]y
mF

(2.17)

0
0 +2mF,
0

g(x)=g+(x)+y (x) . (2.1 1)
0

In terms of g+(x), g(x), and P(x) we can rewrite the
canonical Hamiltonian as

and

P =Po +P;„,
with

(2.12) 1

0 +2mF

I' =—'fdx d x m P+r)P "rjP

+2(P+) [ia 8 +y mF]

are the positive-energy solutions of the Dirac equation
for a fermion at rest. The spinor v (k) is constructed
from u (k) by charge conjugation. The spinors are nor-
malized such that

and

X [ia' a'+y'mF ]q+1

lB

P;„,=—' dx d x 2g +2g 1

l

(2.13) u~u~. =2mF6~~, U~v~ = —2mF5aa'

The scalar field is given by

P(x)= f [d k][a(k)e '" +at(k)e'" "],
[a (k), a t(k') ] =2(2m. ) k+5 (k —k'),

(2.18)

(2.19)

(2.20)

(2.14)

g(x)=g f [d k][b (k)u (k)e '" "+d (k)v (k)e'" ]

(2.15)

and all other commutators vanish. We consider the fer-
mion number two sector of the theory where the two fer-
mions belong to two different flavors. Their destruction
operators are denoted by b (k) and B (k), respectively.
The simplified Hamiltonian for our problem is given by

with

[d3k]= dk d k

2(2') k+ where

free + int

I

I'&„,= f [d k] at(k)a(k)+g f [d k] [bt (k)b (k)+Bt (k)B (k)],k+ k+

&;., =g y f [d'k, ]f [d'k, ]f [d'k, ]2(2~)'S'(k, —k, —k, )

(2.21)

cT I, 0 2

X [b (k, )b (k2)a (k, )u (k, )u (k2)

+b (k~)b (k, )at(k3)u (k2)u (k, )

+B (k, )B (k2)a (k3)u (k, )u (k~)

+B (k2)B (k, )a (k3)u (k2)u (k, )] .

(2.22a)

(2.22b)
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We have used the notation (k ) =k . Note that we have dropped instantaneous interactions from P;„, for simplicity.
Denote the fermion number two state that is an eigenstate of P with momentum P and helicity cr as ~%(P,o)).. The

normalization is

(~(P,~')~~(P, ~)) =2(2 )'P+S'(P —P )S... .

In the lowest-order Tamm-Dancoff approximation,

~'P(Po)) = g J [d'k, ]f [d'k, ]4,(Po ~k, cr„k,cr, )b (k, )8 (k, )~0)
0' )cT2

+ g f [d k&]f [d k2] I [d k3]@3(P,cr ~k&o&, k'&o2, k'3)bt (k& )Bt (k&)at(k3)~0),
0 )c72

(2.23)

(2.24)

where @z is the two-particle amplitude and 43 is the three-particle amplitude and ~0) is the vacuum state. For nota-
tional convenience we introduce the amplitudes 0'2 and 4'3.

and

+p(P, o ~k)1r1, kpap)=2(21r) P+5 (P —k, —k~)QX, X2%2' '(K,X„K2X2) (2.25)

43(P Cr ~k/cr 1 kpcrp k3 ) 2(277) P 6 (P k1 k2 k3 )/x $X2X3 p3 (K]X / yK2X2rK3X3 ) (2.26)

where x, =k,.+/P+, K, =k, —x, P . Since the wave functions are independent of the Lorentz frame we can take P =0
without any loss of generality. We have the constraints g x, = I and g K; =0. In the restricted Fock space, the normal-
ization is

2 l 2 lK)d K2f dx1dxp& l —g x, 3
6 g K; [%~' '(K,x, , K2X2)]

2(2~)

K2d K3+ y fdx, dx, dx3~ I gxj 3 2
~ QKj [+3 (Ktx]&K2X2&K3X3)]'=I .

[2(21r) ]
(2.27)

By projecting the equation of motion

[P+P- —(P')']~+) =~'~e)

'&~2 l . l+3 (q 1 &yl &K2&X2)

(with P set to zero) on to a set of free states we arrive at the coupled system of equations:

mF+(K, ) m„+(K, )M—

(2.28)

u (K, x, ) u, (q, ,y, )

X
QX1 Qy1

(K, x„q2,y2)

u (K2, xp ) u, (qz, y2 )

+counterterms
QX2 Qy2

and

mF+(K, )M— mF + (Kp) m11 + (K1+K2)
(Kt, X1',KP, X2 )

X3

1 2 l=g g +~ (
—

K~,x, +x3)
, , QX3 QX1+X3

u~ (K1X1) uq ( K2X1+X3)

Qx,
u (K~, x~) u, ( —K, ,x2+x3)

+g g %2' '(K„x, )

,, Qx, Qx, Qxz+x,
+counterterms . (2 30)
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After eliminating %'3 one ends up with the following equation involving %2 and the eigenvalue M:

M 4'2 (K,x)= (Mo + Tsp ) P2 (IC x)+
2 g Id q dy K (~,x;q,y;M )

' ' ' 'q ' '(q, y)+counterterms
4m

(2.31)

where

and

mF+k
Mo=

x (1—x) (2.32)

TsE is the se1f-energy term that is generated when %3 is eliminated and the boson is reabsorbed by the fermion that
emitted it:

[M —(m~+k )/x (1 —x)]x (1—y)+ [4mF —m~ ]
TsE d q dy' ——+4'' x y denominator

y (1 —y) 2 (1—y)(1 —x +xy)denominator=q +ymz+ k + mF —y(1 —y)xM
1 —x 1 x

and K is the boson-exchange kernel,

+ [x ~(1—x)] ', (2.33)

(2.34)

(zl xq 1 yM2)1212
u( i~ ;xo)u(q, y;s, ) u( —~, 1 —x;o.2)u( —q, l —y;sz)

&xy &(1—x)(l —y)
a+2(~ q )

(2.35)

mF+k mF+q
a =/x —

y/ M —— +
2 x(1—x) y(1 —y)

mF+k
mg +2m' +

x 1 —x

2 2mF+q x 1 —x—+ (2.36)

Equation (2.31) is schematically shown in Fig. 1. The
counterterms in Eq. (2.31) are necessary to remove diver-
gences both in the "self-energy" term TsE and in the
"boson-exchange term" involving the kernel
K (a. ,x;q,y; M ). TsE has an ultraviolet quadratically
diverging term (which also has an "infrared" logarithm

FIG. 1. The schematic representation of the light-front
Tamm-Dancoff equation. The second line represents self-energy
contributions and the third line represents boson-exchange con-
tributions.

at y~0) and a subleading ultraviolet logarithmically
diverging contribution. In the lowest-order Tamm-
Dancoff approximation these can be removed via the
analogue of mass and wave-function renormalization.
This will be described in detail in Sec. IV. We will see
that wave-function renormalization can be absorbed as a
"partial" coupling constant renormalization. We say
"partial" here because the Tamm-Dancoff truncation
does not allow for vertex corrections and the coupling
"runs" solely due to Z2. This, however, does not change
the sign of the P function and one sees that even in
lowest-order Tamm-Dancoff the "triviality problem" of
nonasymptotically free theories is revealed. Restrictions
coming from triviality will be explained and quantified
again in Sec. IV. Suffice it here to mention that due to
triviality one should not attempt to take the ultraviolet
cutoff to ~ if one wants the renormalized coupling to be
nonvanishing, and hence to have interesting physics such
as bound states. On the other hand, even granting the
presence of a finite cutoff, one still requires that the low-
energy physics be insensitive to where exactly this cutoff
is placed.

The other possible source of divergences lies in the
next to last term in Eq. (2.31). The kernel K has terms
that go to a function of only x and y as ~q ~

~ oo. So un-
less %2 vanishes faster than ~q ~

the integral over d q
will diverge. We find in our calculations that many spin
components of %2 fall

off

onl as ~q ~

for large ~q ~

and
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not faster. So we are forced to include counterterms to
remove this divergence. We will call these counterterms
Boson-exchange counterterms as opposed to the self-
energy counterterms of the previous paragraph. The
boson-exchange counterterms represent a new type of
counterterm that does not have an analogue in equal-time
perturbation theory. In order to investigate these new
counterterms in isolation, we consider a simplified model
in the next section in which TsE is dropped from Eq.
(2.31) and all self-energy corrections including triviality
considerations are ignored. After experimenting with
several ways to handle boson-exchange counterterms, we
then go back, in Sec. IV, to the full problem, Eq. (2.31).

Our set of three-dimensional coupled TD integral
equations, Eq. (2.31), can be reduced to two-dimensional
equation by taking advantage of helicity conservation.
We first expand

im
%~' '(a, x)=g 4 ' '(k, x;m)

&2~
(2.37)

where k = a. ~. In the I@ ' '(k, x;m)I basis the kernel
in Eq. (2.31) becomes

Because of helicity conservation, the kernel V will be
such that for given J, value only four ampli-
tudes 4 ' '(k, x;m)=4" t(k, x;J,—1), 4t~(k, x;J, ),
4&~t(k, x;J, ), and @~((k,x;J, +1) contribute. So one
has at most a system of four coupled integral equations to
solve. The P integrals in Eq. (3.28) can be done analyti-
cally. One finds that the divergence structure for the
remaining q integral depends on which J, sector one is
dealing with. Only in the J, =O and J, =+1 sectors does

V(k, x, m;q, y, m';M )

dd dd'
e

—imP im'P'~(k y
. yi .M2) 1 2' 1 20 O, S S

7T

(2.38)

one need a boson-exchange counterterm.
In the J, =0 sector one can further reduce the number

of equations that are coupled so that one only needs to
deal with systems of two coupled equations. Using the
notation

4&' +—(k, x) = —[N" ~(k, x; —I )+4~ (k, x; 1)],1

2

4 —(k,x)= —[@~~(k,x;0)+4 "(k,x;0)I,
2

(2.39)

one finds that N'+, N and 4', 4 + mix, respectively,
with each other. We will refer to these two sets in the fu-
ture as the (1+,2 —) and (1—,2+) sectors. We will see
that preponderance of the wave function will be in either
2 which has the singlet spin configuration or 2+ which
has the triplet spin configuration.

III. CALCULATIONS IN THE ABSENCE
OF SELF-ENERGY CORRECTIONS

A. Results without counterterms

1. J, =O

The relevant equations in this sector are

In this section we discuss renormalization of Eq. (2.31)
and the bound-state spectrum of the fermion number two
sector ignoring the effects of self-energy corrections, i.e.,
after dropping the TsE term in Eq. (2.31). We first inves-
tigate what happens if one just introduces an ultraviolet
cutoff A to regularize ~a.

~
and ~q ~

and do not include
any counterterms at all. This will demonstrate how
severe the divergence structure is. We will see that
boson-exchange counterterms are required in the J, =0
and J,=+1 helicity sectors.

(M —Mo)4' (k, x)=
2 1 q dq dyI V(k, x;q,y;M )' '' 4' (q,y)+ V(k, x;q,y;M )' ' +@ +(q,y)I (3.1a)

(M —Mo)N +(k,x)= f q dq dy t V(k, x;q,y;M )
+' 4' (q,y)+ V(k, x;q,y;M )

+' +4 +(q,y)I, (3.1b)

and there is another set of coupled equations with 4' (N +) replaced by N'+(N ). The explicit form of the kernels V
are given in Appendix C. One finds that V ' and V +' + both approach a function of x and y, independent of k or q
for large q relative to k:

lim V(k, x;q, y;M') —' —=+f (x,y)
q ))k

4m.=+
x (1—y)+y(1 —x)+ ~x

—
y~

(3.2)

We will see in a moment that N —fall off as q for large
q. So this information combined with Eq. (3.2) tells us
that one can expect the q integral in Eq. (3.1b) to diverge
logarithmically with the cutoff A. This diverging contri-
bution comes in with opposite signs in the (1—,2+ ) and

I

(1+,2 —
) sectors. In the former sector one has an "at-

tractive diverging potential" whereas in the latter sector
the diverging contribution is "repulsive. " Hence cutoff
effects are likely to be more severe in the (1—,2+ ) sec-
tor. These expectations are born out by our calculations.
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We have solved Eq. (3.1) using Gauss-Legendre quad-
rature to evaluate the q and y integrals. By restricting
the external variables, k and x, also to just the quadrature
points one ends up with a finite matrix problem. Note
that the "eigenvalue, " M, appears on both the left- and
right-hand side (RHS) of Eq. (3.1). We dealt with this by
first inserting a guess for M ~M&zpUt on the RHS and
solving the resulting matrix eigenvalue problem to obtain
an output M tp t which then became the M'

p t for the
next iteration. This procedure was iterated until
M tp t M

p t to one part in 10 . Usual ly four or five
iterations suSced to achieve convergence. We use N&

quadrature points for the q (and k) variable and X2 points
for y (and x). More precisely, we first changed variables
from (k, x) to z =2[k(A+m~)/(k+m~)A] —1 and
x =2x —1 and picked Gauss-Legendre quadrature points
for these new variables. To solve the matrix eigenvalue
problem we have used the EISFAcK [22] routines. Most
of our data come from (N„Xz)=(8,32). We have
checked that results for M are stable with respect to
changes in N, and Nz to one part in 10 . For our param-
eters we chose mz =0.25, 0.5 (all masses are measured in
units of the fermion mass mF), and a=0. 395, 1.184,
1.579, 1.974. In Fig. 2, we show results for m&=0. 25
and +=1.184. For these parameters we find one bound
state each in the (1 —,2+ ) and (1+,2 —) sectors and plot
the bound state M as a function of the cutoff A (note
that with our convention of measuring everything in
units of the fermion mass, the threshold is at M =4).
From Fig. 2 one sees that there is sensitivity to the cutoff
and that it is worse for the (1 —,2+) states. Clearly
some counterterm must be included in the calculations to
eliminate cutoff dependence.

In Figs. 3(a) and 3(b) we show plots of k 4&'+—(k, x) and
k 4& —(k, x) versus k at fixed x for mz =0.25, a=1.184,
and A =50. One sees k W approaching nonzero con-
stants for large k, indicating that N is behaving as k

Norm' —= f k dk dx ~4' —(k, x)
~

(3.3a)

normalized such that

Norm' +Norm + =Norm' +Norm =1 . (3.3b)

The results are presented in Table I(a) for weak coupling
a=0.395, mz =0. 1 and Table I(b) for strong coupling

TABLE I. Relative norm of two-particle states. (a) m& =0.1,
+=0.395. (b) m =0.5, +=1.974. (c) m& =0.1, +=0.395. (d)

m~ =0.5, (x=1.974.

Helicity

3.972

3.972

(a)

State

TT —ll
v'2

T i+IT
v'2

T T+ ll
v'2

Norm

0.0000

1.0000

0.0122

0.9878

(b)

In Figs. 4(a) —4(d) we present
~ N~ versus k and x for the

same parameters. Note that the wave functions are plot-
ted on an arbitrary scale to show the shape of the various
wave functions. The large components are in Figs. 4(b)
and 4(d). Also note that the wave functions in Figs. 4(a)
and 4(c) peak away from k =0 indicating an l&0 com-
ponent.

Useful information can be obtained by calculating the
relative strengths of the different spin contributions to
the eigenfunctions. We evaluate
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FIG. 2. The bound-state mass M vs the cutoff A in the
helicity-zero sector for m~ =0.25 and o.=1.184.
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0.0034
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a = 1.184, mz =0.25. One sees that in both the

configuration, ( T J, + J, $ ), dominates over f 1' or . Re-
call that ne1t er, noh

'
h S, or L are independently conserved

nl J =S +L, is a good quantum number. The
,=0 sector havefact that the lowest states in the J, =0 sector ave

tl S =0 spin content tells us that L, )0
contributions are small. Table I shows, however, t at
contributions from higher L, increases gradually wit t e
coupling o.. e pre oTh d minance of L =0 persists alsoZ

when we later include counterterms into our calculations.

2. J, =I

I th' tor one must solve a system of four coupledn is sec
1n egra et 1 equations. The amplitudes Cs (,x;m =

t~ k 1) N" t(k x'1), and @ (k, x;2) are coupled to(,x; 7

1+2,S1 S2each other. The relevant kernels V(k, x;q,y;M
are 1s e in1' t d Appendix C. One finds that the kernel
Vt~'"~ approaches the same limit f (x,—y) as m q.
when q becomes large relative to k. All other kernels fall

f ith . Using the same methods as descri ed
bove for the J =0 sector, we have calculated M . or
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FIG. 7. Fourth-order light-front time-ordered diagrams for
the two-body interaction which give rise to the box counter-
term.

(a)
FIG. 5. The bound-state mass M vs the cutoff' A in the

helicity-one sector for m& =0.25 and a = 1.184. 3.790

stant becomes an arbitrary function. It is convenient to
subdivide the study of these counterterms into two
categories. One we will call the asymptotic counterterms,
and the other we will call the perturbative counterterms.

3.780

1. Perturbati Ue counterterm

Studies of the simple models discussed in Appendix B
and the general power counting arguments of Appendix
A show that equations such as Eq. (3.1) should be supple-
mented by a counterterm of the form

3.770

3.760
10'

I I I I I I

102

G(A) f q dq dy F(x,y)P(q, y) . (3.4)

For the Yukawa model we have not been able to solve for
I I I I

3.950 I I I I I I ---e--
3.790

3.780

3.850

3.770

3.800

3.760
10'

I l I I I I I

102

3.750
10'
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102

FIG. 6. The bound-state mass M vs the cutoff A in the
helicity-two sector for m& =0.25 and +=3.948.

FIG. 8. (a) The bound-state mass M vs the cutoff A in the
helicity-zero sector for the state (1—,2+) for m~ =0.25 and
a = 1.184. No counterterm, dashed (triangle); one box counter-
terrn (C =2.3026), dot-dashed (diamond}. (b) Same as in (a) but
for the state (1+,2 —).



47 RELATIVISTIC BOUND-STATE PROBLEM IN THE LIGHT-. . . 1609

G(A)F(x, y) exactly. One can, however, estimate
G(A)F(x, y) perturbatively. The lowest-order (order a )

perturbative counterterms correspond to graphs shown in
Fig. 7. We call these "box counterterms. " Applying Eq.
(B30) of Appendix B to the Yukawa model, one finds that
Eq. (3.1) should be modified according to

V(k, x;q,y;M )

~V(k, x;q, y;M )
+ + —V (x,y),

where

(3.5)

V (x,y) = —(a) [C+ln(A)] O{x —y) x(1—y)
ln(1 —y)

xy

lnx
(1 —x)(l —y) 1 —y

+O(y —x)[x~y] .

(3.6)

Similarly,

V(k, x;q,y;M )

~V(k, x;q,y;M ) ' —V (x,y)

and, in the J, =1 sector

V(k x'qy'M ) t't"

(3.7)

I I I I

e

3.790

3.780

3.770

~V(k, x;q,y;M )tt'tt —V (x,y) . (3.8)

C in Eq. {3.6) is an arbitrary adjustable constant. We
have redone our bound-state mass calculations with the
modifications (3.5), (3.7), and (3.8). The results are
presented in Figs. 8 and 9 for mz =0.25, a=1.184, and
C=2.3026. In Fig. 8, we show the results with and
without the box counterterm for J, =O. In Fig. 9, we
show the same effect for J,=1. Results for other C
values are summarized in Table II. One sees that the
cutoff independence is improved. So one has an (almost)
finite calculation involving arbitrary parameters, namely,
a different C for each sector. One could consider adjust-

ing the parameters to fix (1) the absolute scale of the
bound-state energies, (2) the splitting between the two
states in the J, =O sector, and (3) the J, =l bound state
relative to the J, =0 states. The last adjustment, i.e., the
tuning of the J, =1 state could be exploited to try to
force the spectrum into j multiplets. That means, if we
interpret Table I to imply that l )0 orbital momentum
contributions are small, that the J, =1 state should be
made degenerate with the J, =O (1—,2+) state. The
J, = 1 state (and a similar J, = —1 state) together with the
(1—,2+) state will then form a j =1 triplet level. The
remaining (1+,2 —

) state in the J, =0 sector could be in-
terpreted as a j =0 singlet level. Table II shows us that
for the mz and a values chosen, all eigenvalues do not
depend strongly on either C or the state. Adjusting the
C's allows us to move eigenvalues around only in a limit-
ed way. It is possible, however, to make the J, =1 state
degenerate with either of the two J, =0 states. The split-
ting among the two J, =0 states remain small. Not
surprisingly one cannot take too large C's without gen-
erating strong cutoff dependence.

We emphasize that the box counterterm is only an ap-
proximation to the full counterterm required to renor-
malize the bound-state equations. It introduces the con-
stants C and we have tried to use them to impose rota-
tional symmetry on the small number of bound states at
hand. In the future one will have to seriously explore
ways to adjust arbitrary functions rather than constants.
In the box diagram we have picked a particular function
[Eq. (3.6)], dictated by perturbation theory, and adjusted
just the coefficient multiplying it. One way to improve on
the present calculations may be to expand the "arbitrary
function" in terms of a complete set and systematically
increase the number of terms kept in the expansion. The
expansion coeKcients will be the analogues of the current
C's.

3.760
I pl

I I I I I I

I02

FICx. 9. The bound-state mass M vs the cutofF A in the
helicity-one sector for m& =0.25 and +=1.184. No counter-
term, dashed (triangle); one box counterterm (C =2.3026), dot-
dashed (diamond).

2. Asymptotic counterterm

We have also explored the possibility of eliminating
divergences nonperturbatively by subtracting the large
transverse momentum limit of the kernel. This type of
counterterm we eall the asymptotic counterterm. In the
Yukawa model we have been able to employ such coun-
terterms only in the J, =O sector. Instead of Eqs. (3.5)
and (3.7) one then has
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withV(k, x;q,y;M )

~ V(k, x;q,y;M )
+' ++ V (x,y),

V(k, x;q,y;M )

V (x,y) =f (x,y) (3.1 1)

of Eq. (3.2). One can show that this extra term would
arise if one added to the canonical light-front Hamiltoni-
an of Eq. (2.5) another term:

(3.9)

V(k, x;q,y;M ) ' —V (x,y) (3.10)

2

I „„=-g fd'x'dx-dy-. +H. c.
(y , x&)

(3.12)

term would not be acceptable in a renormalization pro-
gram based on perturbation theory to all orders in the
coupling, where it is assumed that arbitrary constants
and functions are small.

In Figs. 10(a) and 10(b) we show the results for the
lowest bound states in the J, =0 (1—,2+ ) and (1+,2 —)

sectors, both with (squares) and without (triangles) the
counterterm V . One sees that with the asymptotic
counterterm cutoff dependence has been eliminated for

where P; stands for the u (k) part of the fermion field P
in Eq. (2.15) for fermion type E' The. additional interac-
tion (3.12), although not part of the canonical Hamiltoni-
an, is allowed by power counting rules of light-front
quantized field theory. But we note that g in front of this
term has to precisely match the g in the canonical Hamil-
tonian. The power of g is the same as in the effective
Hamiltonian in the two-body sector. Hence a term such
as Eq. (3.12) cannot be created perturbatively. Such a

(a)
—2.3026

10
20
35

3.810
3.812
3.814

3.792
3.792
3.792

50
75

100
0.0

3.786
3.786
3.786

10
20
35

3.816
3.818
3 ~ 820

50
75

100 —4.4998
10
20
35

3.791
3.791
3.792

3.786
3.786
3.786

50
75

100—2.3026
(c)50

75
100

3.794
3.796
3.798

10
20
35

3.807
3.806
3.806

10
20
35

3.769
3.765
3.764

0.0
50
75

100

3.806
3.806
3.806

—4.4998
50
75

100

3.764
3.764
3.766

10
20
35

3.795
3.795
3.794

—2.3026(b)
50
75

100

3.794
3.795
3.795

10
20
35

3.802
3.800
3.799

0.0 10
20
35

3.782
3.781
3.781

50
75

100

3.798
3.797
3.797 —4.4998

50
75

100

10
20
35

3.781
3.782
3.782

3.794
3.793
3.793

TABLE II. Flexibility with box counterterm. (a) (1—,2+ ) state. (b) (1+,2 —) state. (c) Helicity-one state.
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3.9
- (a)

I I I
I

.X. - . . - . -X- - - - . -X ~

3.8 3.8—

3.7 3.7

3.6 3.6
X ~ ~ ~

3.5
iol

I I I

102

I I I

101
I I

102
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FIG. 10. (a) The bound-state mass M vs the cutoff A in the helicity-zero sector for the channel (1—,2+) for m&=0. 25 and

a=1.184. No counterterm, dashed (triangle); asymptotic counterterm, solid (square); asymptotic plus constant, dotted (cross). The
two dotted lines correspond to the two different choices of the constant counterterm which differ only by a sign. (b) Same as in (a) but
for the channel (1+,2 —).

yAcT yAcT G A ~

where we take, for G~,

(3.13)

Gp

1+( G„/6)ln( A/)M )
(3.14)

G„and the scale )L(, in Eq. (3.14) are not independent. A
change in p can be compensated by adjusting G„such
that 1/G„—6(in(p) =const. This "constant" is arbitrary
and plays the role of C in Eq. (3.6). In Figs. 10(a) and
10(b) we show bound-state energies in the presence of the
modified asymptotic counterterm [Eq. (3.13)] for two par-
ticular choices of the constant (crosses). One finds that by

the (1—,2+) states and improved for the (1+,2 —)

states. We also find that this counterterm modifies the
large-k behavior of the amplitudes (II(k,x) making them
fall off faster than before.

The asymptotic counterterm, as it stands, does not in-
clude any arbitrary constants that can be tuned to renor-
malize the theory to some experimental input. This
differs from the case with the box counterterm where
such a constant appeared. One may, however, add to
V an adjustable piece, which, in general, involves an
arbitrary function of longitudinal momenta. In the
present investigation we have added a simple term to
V c, motivated by Eq. (B22) in Appendix B. The
coefficient of this term then introduces some Aexibility in
adjusting energy levels. In (3.9) and (3.10) we replace

=g (M —M())o, (4.1)

o.
2 is still logarithmically divergent. In terms of a

cutoff A for the d q integration in (2.3), one finds

adjusting the constant a much wider range of possible ei-
genvalues can be covered, compared to the situation with
the box counterterm.

In the cases
~ J, ~

= 1 the asymptotic kernel is a function
of longitudinal and transverse momenta. Therefore, the
corresponding asymptotic counterterm would also be a
function of both the longitudinal and transverse momen-
ta. According to power counting, however, transverse
divergences are removable by counterterms that depend
only on longitudinal momenta, and transverse momen-
turn dependence in counterterms should not be necessary.
Therefore, we do not consider further the asymptotic
counterterms.

IV. CALCULATIONS INCLUDING
SELF-ENERGY CORRECTIONS

We now discuss effects of introducing the self-energy
term TsE given in Eq. (2.33). Note that in the bound-
state problem the self-energy is a function of the bound-
state energy M . The most severe ultraviolet divergence
in (TsE), &, is a quadratical divergence. We eliminate

this divergence by subtracting at the threshold
M =MD=(m~+k )/[x(1 —x)]:

' s'(M2)-' s'(M2) ' sE)(~~)
0

A+A, A+Ah
o(M~)= —

m I dy(1 —y) ln +ln
0 a b

(4mf2 —m82)~ 1 A2+ Af A2+ A. 1
dy —ln —ln +

M —M x 2 2, 1 —xf
A +Af A +Ab

ln —ln
Af Ab

(4.2)
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with

A& =ymir+ (1—y) m& &

3,= A&
—y (1 —y)x (M —Mo),

Ab=A& —y(1 —y)(1 —x)(M —Mo) .

(4.3a)

(4.3b)

(4.3c)

The logarithmically divergent piece of (4.2) corresponds
to wave-function renormalization of the two fermion
lines. One finds

~log div part

0TsE
2

, gdl.

A +A~= —(27r) f dy (1—y)ln

(4.4)

(M —Mo)%2' '(k, x)= XBE+ (M —Mo)
4~ 4~

(4.&)

where XsE stands for the term with the kernel K in (2.31).
One can now rearrange terms in Eq. (4.5) giving (we
suppress all spin indices)

(M —Mo ) 1+ W(A) 4= XBE
4~ 4~

+ (M —Mo)
4m

X [o + 8'(A)]% .

(4.6)

The RHS of (4.6) is not finite One m. ust still deal with
the divergent piece 8' on the LHS of the equation.
Define

One can absorb this divergence into a new definition of
the coupling constant. The way this works is as follows.
After the subtraction (4.1), but ignoring all boson-
exchange counterterms, Eq. (2.31) becomes

and k, and therefore effectively changes the kernel. In
lowest-order Tamm-Dancoff the divergent parts of TsE
can hence be absorbed into a renormalized mass and cou-
pling. It is, however, not clear whether this method will
work in higher orders and this issue should be investigat-
ed further.

Before proceeding let us consider Eq. (4.7) more care-
fully. Inverting the equation one has

a(A) =
1 —(a~/47r )W(A)

(4.10)

2.2

One sees that for every value of nz other than e~ =0
there will be a cutoff A at which the denominator in
(4.10) vanishes and a becomes infinite. Beyond that point
a would be imaginary. This is just a manifestation of
"triviality" in this model. The only way the theory can
be sensible for an arbitrary large cutoff A~ oo is when
a~ ~0. In practice, this means that for fixed cutoff there
will be an upper bound on o.'z. Taking this bound to be
the point at which the denominator in (4.10) vanishes,
one ends up with the triviality curve of Fig. 11. The
curve is shown for m~=0. 25; however, we have found
that m~ dependence is very mild. In solving our bound-
state equations we will always have to work with A's and
uz's below the triviality curve. If the cutoff is too large
we may be forced into a theory with very small a~ so
that no bound states exist. It should be noted, however,
that although the triviality curve is fairly insensitive to
the boson mass mz, the number of bound states does de-
pend on its value. The smaller mz the more bound states
one has for given A and e~. Our choices for m~, o,z,
and A were made with all these constraints in mind.

In Figs. 12—14 we show results for bound-state ener-
gies in the J, =0 and 1 sectors. These are to be compared
with Figs. 5, 8, and 9 of the previous section where self-
energy corrections were ignored. One finds again two
bound states for J, =0 and one bound state for J, = l.
Even after eliminating divergences coming from the self-

1+(a/4m ) W'(A)
(4.7)

then one can trade a A-dependent bare coupling o. in
favor of a finite renormalized coupling az. Equation
(4.6) then becomes

( M Mo )4 = ( aii—/4rr )XBE

+(a~/4m )(M Mo)[cr+ 8'(A)]—%' (4.8) 1.6

or

a~ /4m.
(M —Mo)4= XBF . (4.9)

1 —(o.i, /4ir )[o, p)+ W(A)]

One sees that the form of Eq. (4.9) is identical to what
was solved in the previous section (where we ignored all
counter terms) with a replaced by aii /[ 1 —( o'ii /
4m2)(o. + p')]. One should note that o. is a function of x

1.4

1O' 102

FIG. 11. The critical coupling vs the cuto6'A for mz =0.25.
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energy, that is, after carrying out a subtraction at
M =Mo and introducing a renormalized coupling, one
still has the divergences appearing in the boson-exchange
term. For the (1—,2+ ) sector where the boson-
exchange kernel has an attractive diverging piece, one
sees that self-energy corrections have made the cutoff
dependence more severe. This is because for large
~a'

~

=k, the effective coupling in Eq. (4.9),

4.000

3 950

1 I I I I I

k M
1 —(az /4m )(a'~k M~~+ W)

(4.11)
3.900

is larger than uz and this enhances sensitivity to large-k
behavior. In those channels in which the boson-exchange

4.000 1 I 1 I I I
I 3.850

&OI

I I I I I I

102

3.950 h-
0 ~ ~ —.~

FIG. 13. The bound-state mass M vs the cutoff A with self-
energy correction in the helicity-one sector for m&=0. 25 and
az =1.184. No boson-exchange counterterm, dashed (triangle);
one box counterterm (C =2.3026), dot-dashed (diamond).

3.900

3.850
iOI

4.000

I I I I I

102

i I I I I

divergence is repulsive the replacement of a by a,&„„„
will deemphasize the large-k part of the wave function.
The boson-exchange counterterms for the most part re-
moves the cutoff dependence of the solutions, especially
within the range of A allowed by triviality considerations.
This will be demonstrated below.

In the previous section we discussed two ways to re-
move divergence coming from boson exchanges, the box
counterterm and the asymptotic counterterm. We have
combined self-energy corrections and box CT by modify-
ing Eq. (4.9),

3.950 (M —Mo)4=
o,'~ /4m.

1 —(&g/4~ )[o( p, + W(A)]

X [XBE+Bc~], (4.12)

3.850
ioi

s» s

$02

FIG. 12. (a) The bound-state mass M vs the cutoff A with
self-energy correction in the helicity-zero sector for m& =0.25
and az =1.184 for the (1—,2+) state. No boson-exchange
counterterm, dashed (triangle); one box counterterm
(C =2.3026), dot-dashed (diamond). (b) Same as in (a) but for
the (1+,2 —) state.

where Bc~ in the square brackets incorporates the coun-
terterm (3.6) in the appropriate spin channels and the x
and k dependences in a,tr„,;„. Note that [XsE+Bcr] is
correct through order czz whereas we have kept all or-
ders of a~ in the effective coupling a,tr„„„,of (4.11). In
Figs. 12 (helicity zero) and 13 (helicity one) we show the
results for the bound-state energies as a function of A (di-
amonds) and compare with the "no box CT" case (trian-
gles). One sees that the box CT is able to modify
significantly the high-momentum part of the problem and
render things fairly insensitive to the cutoff. Finally, in
Fig. 14 we demonstrate what happens when one has self-
energy corrections plus the asymptotic CT for the
helicity-zero bound states.
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FIG. 14. (a) The bound-state mass M vs the cutoff A with
self-energy correction in the helicity-zero sector for m& =0.25
and aR =1.184 for the (1—,2+) state. No boson-exchange
counterterm, dashed (triangle); asymptotic counterterm, solid
(square}. (b) Same as in (a) but for the (1+,2 —

) state.

V. SUMMARY AND CONCLUSIONS

Attempts to solve relativistic Hamiltonians often result
in equations containing divergences. One can regu1ate
the divergences using cutoffs. The cutoffs violate Lorentz
invariance. From practical considerations one is also
forced to introduce particle truncation which, in turn,
also spoil Lorentz invariance. One can try to renormalize
the theory by introducing appropriate counterterms (non-
local if necessary) to remove the divergences and also to
recover the Lorentz symmetries. In the case of light-
front field theory counterterms are, in general, nonlocal
and noncovariant. Even though the spectrum of hadrons
is of utmost interest light-front Hamiltonian of gauge
theories is plagued with divergences arising from both

small longitudinal momenta and large transverse momen-
ta. To familiarize ourselves with the renormalization
program we have initiated a study of the bound-state
problem in the light-front Yukawa model where only the
divergence arising from large transverse momenta causes
trouble.

When one tries to choose a Hamiltonian in light-front
field theory one is immediately faced with a novel issue.
In equal-time theory one can either start from the canoni-
cal Hamiltonian or rely on power counting. Either way
one can come up with a Hamiltonian with a finite number
of terms. The situation is drastically different on the
light-front because of the existence of two different di-
mensional variables x and x . The canonical Hamil-
tonian still has only a limited number of terms but if one
relies solely on power counting an unlimited number of
terms emerge. Nonlocal noncovariant terms can be gen-
erated also by the analysis of perturbation theory which
is guaranteed to remove the divergence to a given order
in perturbation theory.

In this work we have attempted the renormalization
procedure both by adding noncanonical terms and by
adding counterterms discovered in perturbation theory.
In principle, one would like to remove the cutoff depen-
dence for any coupling and any cutoff. However, in the
present Yukawa model, because of triviality, we cannot
go to large coupling for moderately large cutoffs. In or-
der to have nontrivial physics a finite cutoff has to be re-
tained. On the other hand, we show that within the
present approximation we do get bound states and sensi-
ble low-energy physics that is insensitive to the cutoff.
The general analysis has indicated that the finite part of
the counterterm is an arbitrary function and not just a
constant. In this work we studied the consequence of just
an arbitrary constant. If we were to add an arbitrary
function we would need a continuous set of conditions to
fix this function. In the Yukawa model this will inevit-
ably take us to a consideration of the two-fermion
scattering problem which is an important project that
needs to be carried out in the future. Imposing rotational
symmetry on scattering amplitudes should place severe
constraints on the counterterms. Will one then also ob-
tain a rotationally symmetric bound-state spectrum or
are additional counterterms required' Alternatively, if
one works in a regime in parameter space that exhibits a
large number of bound states, does fixing rotational in-
variance in the low-lying states ensure correct degenera-
cies in the higher levels? We note, on the other hand,
that even if the invariant masses of low-lying bound
states cannot be predicted, but are instead input to fix
counterterms, one would nevertheless end up with
knowledge about wave functions and hence gain a lot of
information about the structure of bound states. Clearly,
however, a lot more work is necessary before light-front
field theory is established as a viable method for relativis-
tic bound state problems.

We view the present work as a first step in confronting
the problem of renormalization of light-front Hamiltoni-
an field theories. It is of interest to apply similar methods
in theories with asymptotic freedom after suitable
modifications to the Tamm-Dancoff truncations.
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APPENDIX A: POWER COUNTING,
POSSIBLE INTERACTIONS,

AND THE STRUCTURE OF DIVERGENCES

Power counting can be utilized to construct possible
terms in the Hamiltonian. First we outline this pro-
cedure in equal-time theory. We compare and contrast
the situations in equal-time and light-front field theories.
As an example consider the Yukawa theory of fermions
and scalar bosons. Let us denote the scalar field by P and
the fermion field by f. Let x be the dimensional variable.
Then the canonical dimensions are m =1/x, a=1/x,
/=1/x, i'= 1/x ~ . The canonical dimensions of the
Hamiltonian H and the Hamiltonian density & are 1/x
and 1/x, respectively. Then possible terms in & accord-
ing to the power counting are m p, (ay/at)2, ay ay,
mug, ga ag, /PE, a, P, a3$, and P . Here a, and a3
have canonical dimensions 1/x and 1/x, respectively.
Note that this exhausts the possibilities in 3+1 dimen-
sions. When we analyze the divergences we find that the
counterterms required are also of the same form as sug-
gested by power counting.

The situation is remarkably different in light-front field
theory. It was observed that in light-front coordinates
one has two dimensional variables x and x [23]. One
also has the inverse derivative operator 1/8 which ap-
pears even in the free-fermion Hamiltonian. Recall that

not g, is the true fermion dynamical variable in
light-front theory. The various canonical dimensions are
a =1/x-, a'=1/x, /=1/x', 1i+=I/(x +x ),
H =x /(x ), &=1/(x ) . Terms in & allowed by
power counting are aip, a3$, p, m p~, a p aip,
m'(1(+)'(I/a+)1i+, (1(+)'[(a')'/(a+)]P+, m (g+) (1/
a+ )q+y, (q+ )')" a'(1/a+ )q+y, (q+ )'y(1/a+ )yq+,

Here a, and a3 have canonical dimensions 1/(x )

and 1/x, respectively. We have listed all the terms that
appear in the canonical Hamiltonian and the ellipsis indi-
cates terms that are allowed by power counting but do
not appear in the canonical Hamiltonian. An example of
such a term is a four-fermion interaction of the form
(g ) I 1(+[1/(a+) ](1ij+) I 1'+ where I is a Dirac ma-
trix.

The divergences in light-front theory are, in general,
nonlocal in sharp contrast to the equal-time case. Recall
the relationship between energy and momentum in
equal-time theory, E =)/k +m . Thus, energy diver-

gences occur when momenta get very large and hence the
divergence has an entirely local structure. This situation
is to be contrasted with the light-front case where

J2
k =(~ +m )/k+. Because the energy factorizes into
k+ and ~ the subtractions are not constants. That is, for
example, when ~ gets very large the energy diverges no
matter what k+ is. Thus, in general, we get a divergent
constant multiplied by a function of k+. Similarly for the
case when k+ gets very small. In position space this
translates into divergences at small x being nonlocal in
x and spread out over the light cone. Thus, the sub-
tractions needed may not be of the same form as the
terms appearing in the canonical Hamiltonian. One may
require noncanonical nonlocal terms consistent with the
power counting of the previous paragraph.

APPENDIX B: HIGH-LOW ANALYSIS

0&k &L: low region,

L & k & A: high region .

We split the amplitude

P(k)=Pi(k): 0&k &L,
P(k)=P~(k): L &k &A .

(B2)

(B3)

Thus, we end up with a system of two coupled equations:

From a Fock-space point of view any relativistic
bound-state problem in field theory is a twofold infinite-
dimensional coupled channel problem. The state vector
for any system can be expanded in terms of multiparticle
amplitudes [P„I and there are, in principle, an infinite
number of them coupled via the eigenvalue equation. In
practice, one truncates this series and arrives at an equa-
tion for the dominant amplitude. The resulting equation,
in general, contains a very complicated effective interac-
tion. The single-particle momenta in this equation runs
from zero all the way to the cutoff. Thus, there are still
an infinite number of energy scales involved in the prob-
lem. All these different energy scales get coupled via the
effective interaction. Our aim is to solve the theory in the
low-energy domain. However, depending upon the na-
ture of the effective interaction, if one simply solves the
theory one usually finds that the low-energy observables
show strong dependence on the high-energy cutoff. By
introducing suitable counterterms one should renormal-
ize the bound-state equation so that (a) the cutoff' depen-
dence is eliminated from the low-energy observables and
(b) sufficient fiexibility exist in the finite parts of the coun-
terterms so that one is able to renormalize to some exper-
imental input.

The basic ideas of the renormalization program can be
illustrated with a simple example. Consider an eigenval-
ue equation of the form [24]

kP(k) g f dq V(k, q—)P(q) =Ep(k) . (B1)
0

We introduce an intermediate scale L. L is assumed to be
large compared to the low-energy eigenvalues and small
compared to the high-momentum cutoff A. We divide
the momentum space into two domains:
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k/1 (k) —g f dq VII (k, q)QL(q)
0

—g f dq VIH(k, q)QH(q) =Eel (k), (84)
L

kIH(k) g—f 'dq VHi(k q)4L(q)
0
—g f dq VHH(k, q)&H(q)=E&„(k) .

L
(85)

Now assume that

VLH (k, q) = VHL (k, q) =
VHH (k, q) =f . (86)

This assumption fails in many realistic field theories in-
cluding the Yukawa model. It is nevertheless instructive
first to discuss toy models where (86) holds. To find the
possible structure of counterterms, first we perform a per-
turbative analysis. Assuming g, the strength of the in-
teraction, is very small one can ignore the second term in
the interaction in Eq. (85) and solve for P(k)H in terms of

I

g f—ln f—dq Pl (q)=Eel (k) . (87)

Thus, to order g we need a counterterm of the form

g f lnAf dqP(q) . (88)
0

Once we have determined the generic form of the coun-
terterm we abandon perturbative analysis and start from
a modified equation:

kP(k) g f —dq V(k, q)P(q)+G~ f dq $(q)=EQ(k) .

(89)

Again, performing the high-low separation we have

P(k)L and substitute back into Eq. (84). Thus, we arrive
at

k/1 (k) —g f dq V«(k, q)P~(q)
0

and

kg~(k) —g f dq V«(k, q)pi (q) g f d—q VLH(k, q)&H(q)+G& f "q PL, (q)+G~ f 'dq 00(q)=«L(k)

kp (k) g f dq —V (k, q)QL, (q) g f dq—VHH(k, q)QH(q)+G, f dq 41.(q)+G& f dq NH(q)=EWH(k) .
0 L 0 L

(810)

Solving for PH exactly from Eq. (811)we have

A (gf —G~ )ln( A/L )

1 —( f —G )1 (A/L)f d

I

kP(k) g f dq[ —V(k, q) f]P(q)—
A

1+ A„ln(A/p) fo (818)

Substituting back into Eq. (811)we find

ky, (k) —g f 'dq [V«(k, q) f]y,(q)—

(812)

1 —(gf —G~)ln(A/L) o

(813)

If we now set

(814)

thus

1 —A Aln(A/L)

AL
(815)

we find Eq. (813) to be independent of A by requiring

We have renormalized the original equation in the sense
that the low-energy eigenvalue E is independent of the
high-energy cutoff and we have an arbitrary parameter C
which can be adjusted to fit the ground-state energy level.

One can motivate both the asymptotic counterterm
and one-box counterterm of Secs. III and IV as different
choices in our analysis. Our starting point is Eq. (818).
For a fixed p we are free to choose A„at wi11. The sim-

ple asymptotic counterterm corresponds to 3„=0.
However, subtracting the asymptotic behavior of the ker-
nel with the term gf causes the wave function to fall off
more rapidly than it would otherwise at large q. As a re-
sult the [ 3„/(1+A„lnA/p)] fP dq in Eq. (818) is finite,

and this term can be retained as an arbitrary adjustable
finite counterterm.

The perturbative counterterms correspond to A„=gf
then expanding in g inA/p. Equation (818) then be-
comes

kP(k) —g f dq I V(k, q) —f](h(q)

1—lnA =
A~

1—lnL =C = —lnp, (816) gf g ( gf lnA/p)"f —dq P(q)=—E .
n=0 0

(819)

aIld

1+ &„»(A/p)
(817)

Keeping the first two terms in the expansion we get the
so-called "box counterterm"

kP(k) —g J dq V(k, q)P(q)
0

The renormalized equation is therefore
+g f lnA/p, f dq P(q)=E . (820)
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Note that the box counterterm contains f indicating
that it involves the kernel at high momentum twice. We
see this in the graphical view of the box counterterm
shown in Fig. 7. ln p remains a free parameter and in the
Yukawa model calculation we let C = —lnp.

Ideally, one would like to carry out the nonperturba-
tive renormalization program rigorously in the sense that
the cutoff independence is achieved for any value of the
coupling constant and any value of the cutoff. In practi-
cal cases, either we may not have the luxury to go to very
large cutoff or the analysis itself may get too complicated.
For example, the assumption given by Eq. (86) was essen-
tial for summing up the series. In reality VHH may differ
from VLH.

Next we consider simplified two-variable problems that
are more closely related to the equation and approxima-
tions used in the paper. The form of the asymptotic
counterterm that we use can be understood by consider-
ing the equation

P(k, x) —g f dq f dy K(k, q)P(q, y)

=EP(k, x) . (821)
I

This problem contains only an x dependence associated
with the free energy, and no x dependence in the kernel.
Equation (821) is easily solved using the high-low
analysis used above and we find

kP(kx) —g J dq f dy [K(k,q) fj—P(q, y)

f dq f dy P(q, y)=EQ(k, x) .

(822)

The factor of —,
' comes from the integral f odx x (1—x).

This result motivates our choice for G~ in Eq. (3.14).
We now return to the box counterterm in the two-

variable problem. The kernel appearing in the bound-
state problem in the Yukawa model exhibits a very rich
structure. To familiarize ourselves with the renormaliza-
tion problems associated with such complicated kernels
we consider the equation

P(k, x) —g f dq f dy V(k, x;q,y)P(q, y)x(1—x '
o o

=EP(k, x) . (823)

Doing a high-low analysis we arrive at

k L 1 A 1

Pl (k x} g f dq f dy V«(k x'q y)&1 (q y) g f dq f dy VIH(k x'q y)PH(q y)=EEL(k x)
x 1 —x '

o o L 0

k L 1 A 1

P„(k,x) g f dq f—dy V„l(k,x;q,y)gl(q, y) g f dq f—dy V»(k, x;q,y)P„(q,y)=EQ„(k,x) .
x 1 —x '

o o L 0

Assume

(824)

(825)

VIH(k, x;q,y)= VHL(k, x;q, y)=f (x,y), (826)

where f (x,y) is the analogue of f (x,y) in Eq. (3.6).
Note that this assumption which is less restrictive than Eq. (86) is indeed satisfied by the Kernel in the bound-state

problem of the Yukawa model. We will analyze Eq. (823) only to the lowest order in the perturbation theory where
knowledge of VHH(k, x; q,y) is not required.

From Eq. (825) to lowest order in perturbation theory,

f dp f d» (y z)PL(p z) .y(1 —y)
q o o

Substituting back into Eq. (824) we have

k L 1

PL(k, x) gdq f dyV—«(k, x;q, y)PL(q, y)x 1 —x '
o o

(827)

—g ln —f dq f dz f dy f (x,z)z(1 z)f (z,y)gi (q, y)—=EP&(k,x),
0 0 0

and this result motivates the "box counterterm" Va (x,y) in Eq. (3.6). To order g we have found the box counter-
term

f dq f dy K(x,y)P(q, y),
where

(829)

K(x,y)=g ln —f dz f (x,z)z(1 z)f (z,y) . —
0

Thus, perturbation theory indicates that a possible general form of the counterterm is

GA f dy f dq F(x,y)P(q, y) .

(830)

(831)
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The unknown function I'(x,y) is to be determined by a nonperturbative analysis. This problem can be solved exactly for
some specific assumption about VHH(k, x;q,y).

The kernels are as follows.
J =0.

APPENDIX C: EXPLICIT FORM OF THE KERNELS

V(k, x;q,y;M )' —'—= 1 1
mF +

x y

+kq + I, ,
1 1

y(1 —x) x(1—y)

k q
x(1 —x) y(1 —y)

(Cl)

V(k, x;q,y;M )' —' =mF —+-
x y

—k q 1 1Ii+ I2 +mF +
1 —x 1 —y 1 —x 1 —y

k q
x y

(C2)

2 2+-, 1+V(k, x;q,y;M )
'—=mF —+-F x y

k qI2 — Ii + mF
1 —x 1 —y

'I, +qI,
x

(C3)

V(k, x;q, y;M )
1 1

mF +
x

k 2k q
x(l —x) y(1 —y)

+kq +1 1

,
y(1 —x) x(1—y)

(C4)

V(k, x;q, y;M )tt't"

1 1—+-
x

V(k, x;q, y;M )tt't"

1 1

1 —x 1 —y
I, , (C5)

V(k x q y'M )ti'it= k 2k q
x(l —x) y(1 —y)

1

y(1 —x)

1+ I3x(1—y)
(Cl 1)

1 1=mF —+-F x y

V(k, x;q,y;M )tt'~t

'I+ qI,
1 —x 1 —y

(C6) V(k, x;q,y;M )ti'~i

1 1=mF +
1 —x 1 —y

—I ——Ik q
x y

(C12)

1 1 k q+ —I ——I
1 —x 1 —y x y

—k
V(k, x;q,y;M )tt ~t= I3 — I,x(1—x) y(1 —y)

V(k x 'q y'M )t t't t

—mF +1 1

1 —x 1 —y
'I, +qr, ,x

(C13)

V(k, x;q,y;M )ti tt

+kq + I2,1 1

y(l —x) x(1—y)

(CS)

V(k, x;q,y;M )~t'"~= k2 2k
x(1—x) y(1 —y)

—kq I3
1

y(1 —x)

1 1=mF —+-F x y

V(k, x;q y M )t~ "i

1 1=mF —+—2

x y

k
1 —x '

1 —y

1 1
—x 1 —y

(C9)

(C 10)

V(k, x;q,y;M )~t'it

1 1=mF —+—2
F x y

1+ Ijx (1—y)

1 1

1 —x 1 —y

(C14)

(C15)
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V(k, x;q,y;M )t"'lt

1 1=m +F x
'I+ qr, ,

1 —x 1 —y
(C16)

V(k, x;q,y;M )

1 1=m —+—2
F x

+ — I3 . (C20)
1 —x 1 —y

kV(k, x;q,y;M )1"'t"= — I, —
x(1 —x) ' y(1 —y)

+kq + I2,1 1

y(1 —x) x(1—y)

(C17)

The integral

I„= dQ cosI (n —1)u I

o a +b cos(u)
[(n

—i
/&a' —b'= —2ir, , /a/—V'a' b'— (C21)

V(k, x;q y M )tt'tl

=mFF
1 —x

V(k, x;q, y;M )

'I, +qr, ,x (C18)

where b =2kq and [same as Eq. (2.36)]

mF+k mF+qa= /x —
y/ M —— +

2 x( 1 —x) y(1 —y)

mF+k
mg +2mF

1 1=m~ —+-
x y

I~ — I3, (C19)
1 —x 1 —y

2 2mF+q x 1 —x—+ (C22)
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