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An N =1 supersymmetric version of two-dimensional dilaton gravity coupled to matter is considered.
It is shown that the linear dilaton vacuum spontaneously breaks half the supersymmetries, leaving bro-
ken a linear combination of left and right supersymmetries which squares to time translations. Super-
symmetry suggests a spinorial expression for the Arnowitt-Deser-Misner energy M, as found by Witten
in four-dimensional general relativity. Using this expression it is proven that M is non-negative for
smooth initial data asymptotic (in both directions) to the linear dilaton vacuum, provided that the (not
necessarily supersymmetric) matter stress tensor obeys the dominant energy condition. A quantum
positive-energy theorem is also proven for the semiclassical large-N equations, despite the indefiniteness
of the quantum stress tensor. For black-hole spacetimes, it is shown that M is bounded from below by

¢ . . . .
e " where ¢y is the value of the dilaton at the apparent horizon, provided only that the stress tensor
is positive outside the apparent horizon. This is the two-dimensional analogue of an unproven conjec-
ture due to Penrose. Finally, supersymmetry is used to prove positive-energy theorems for a large class
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of generalizations of dilaton gravity which arise in consideration of the quantum theory.

PACS number(s): 04.60.+n, 11.30.Pb, 97.60.Lf

I. INTRODUCTION

Two-dimensional dilaton gravity has recently been
found to be a useful laboratory for studying quantum
gravity in a simplified context [1,2]. Before coupling to
matter, it is a theory with no local degrees of freedom:
The two gauge degrees of freedom and two constraints
absorb the three components of the metric together with
the dilaton.! Thus one can study the interesting global as-
pects of gravity in isolation from the complicated dynam-
ics of propagating gravitons.

In adopting two-dimensional dilaton gravity as a model
for four-dimensional gravity, it is important to know
what features the two theories have in common. For ex-
ample, is there a positive-energy theorem for the two-
dimensional case? In the present paper, we address this
question following Witten’s supersymmetric proof of the
positive-energy theorem in four dimensions [3-5]. The
basic idea is simple. In a supersymmetric theory, H=0Q?
and so must be positive. In Sec. II we review the super-
symmetric version of dilaton gravity and show that the
linear dilaton vacuum is the unique supersymmetric solu-
tion and that this vacuum preserves a nonchiral combina-
tions of the supersymmetries. In Sec. III we prove that
all smooth initial data with non-negative stress tensors on
a spacelike slice asymptotic to the linear dilaton vacuum
(in both directions) have positive energy. In Sec. IV posi-
tivity is proven for a scalar matter sector governed by the
action S; = [[—1(VZ)*+QRZ], despite the fact the as-
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1By the same counting Liouville gravity without a dilaton has
minus one degrees of freedom, a curious fact which obscures
analogies to four-dimensional gravity.

sociated stress tensor is indefinite. The Bondi mass is also
shown to be positive, after noting a correction term linear
in the Z field. This result is then used in Sec. V to prove
a quantum positive-energy theorem for the large-N equa-
tions of [2]. While it is generally believed (or hoped) that
positivity of the total energy remains valid at the quan-
tum level, this is apparently the first example for which a
theorem has been established. In Sec. VI we consider ini-
tial data on spacelike slices bounded by an apparent hor-
izon on one end and asymptotic to the linear dilaton vac-
uum on the other. This corresponds to a black hole. A
sirnple2 groof is given that in this case the mass is bounded
by e %, where ¢ is the value of the dilaton at the hor-
izon. This establishes the two-dimensional analogue of
Penrose’s conjecture that the mass of a three-dimensional
initial data set is bounded by the square root of the area
of the horizons, whose validity is related to cosmic cen-
sorship [6]. Finally in Sec. VII the most general super-
symmetric power-counting renormalizable theory of dila-
ton gravity involving three arbitrary functions of the dila-
ton coupled to matter is considered. Supersymmetry is
used to prove a positive-energy theorem for a large subset
of these theories. In conclusion, positivity of the energy
is a robust feature of dilaton gravity. This increases our
confidence that two-dimensional dilaton gravity is a good
toy model for four-dimensional gravity.

The possibility of further applications to the quantum
theory is a key motivation for our investigations. Recent-
ly, it has become clear that better control over higher-
order quantum corrections is essential for understanding
the problem of two-dimensional black-hole formation
and/or evaporation. Typically, (extended) supersym-
metry has been very useful in this regard. For example,
our result that the linear dilaton vacuum is supersym-
metric strongly suggests that it is an exact solution of the
full quantum theory.
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II. SUPERSYMMETRIC DILATON GRAVITY

The N =1 supersymmetric extension of dilaton gravity
can be worked out using the superfields found by Howe
[7], whose notation we follow, except for the sign of R.
The supersymmetric version of a closely related theory
has been described by Chamseddine [8]. Supersymmetric
dilaton gravity is described by the superspace action

sgzz# [ d*x d*0 Ee **[S +2iD,®D°®—4A], (1)
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a,b are tangent space indices, u,v are spacetime indices,
a,f3 are spinor indices, €y; =1, and D is the superderiva-
tive. All spinors are Majorana. ¥ is, in a notational
abuse, equal to ¥°y!. Further details can be found in [7].
The bosonic part of the action in component form is

SG=$fd2x ce 2[R +4(V$)2+2 AF —4F>

+204 —8AF] . 4)

The equations of motion for the auxiliary fields 4 and F
are

A=0,

(5)
F=—A.

Substituting into (4), one finds

SGZifdzx ee M[R +4(V$) +4A2] . (©)

The supersymmetry variations of the Fermi fields are
SA=(Y¢+F)n,
8x,=(2D,+3y,4)m .

P

o)

A supersymmetric field configuration is one for which all
supersymmetry variations vanish. Setting the back-
ground Fermi fields to zero and the auxiliary fields to
their constant values (5) implies

(Y¢—Am=0, (8)
2D,m=0. 9)

The integrability condition for (9) is that the curvature
vanishes and the metric is therefore flat. Equation (8)
then implies that (V¢)>*=A2. By an appropriate choice of
coordinates, the general solution of (8) can then be writ-
ten in the form

¢=—Ao, 8uv =My » (10)

where o is a spatial coordinate in the 1 direction. The
spinor 7 for which the variations vanish obeys (in these
coordinates)

(y'4+1)n=0, m=const . (11
This is true for one combination of the original two su-
persymmetries.

The solution (10) is known as the linear dilaton vacuum
and will be referred to herein simply as the vacuum. It
spontaneously breaks Poincaré invariance (down to time
translations) as well as half of the supersymmetries. Note
that neither left- nor right-moving supersymmetry alone
is unbroken: only a linear combination of the two, which
squares to time translations.

III. POSITIVE ENERGY
FOR ASYMPTOTICALLY FLAT SPACETIMES

The complete solution space of pure dilaton gravity (6)
consists of the vacuum together with a one parameter
family of black-hole solutions [9]. Nonsingular initial
data exist for the black holes only if the mass is positive,
and so a positive-energy theorem is rather trivially
demonstrated.

More generally, one would like to know if the energy
remains positive when dilaton gravity is coupled to a gen-
eral matter theory with a positive stress tensor. (Positivi-
ty was shown by construction for some special cir-
cumstances in [2].) In this section we shall show that this
is indeed the case if the spacetime is asymptotic to the
vacuum (10) in both spatial directions. In the next sec-
tion, we shall relax this condition and prove a positive-
energy theorem for black-hole spacetimes with matter.

Since the vacuum leaves one supersymmetry unbroken,
a conserved global supercharge can be constructed for
configurations which are asymptotic to that vacuum as
o —t . The standard Noether procedure leads to.

Q=i fdo“V#[e "7y sA]

=je My AT . (12)
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The integral is over an arbitrary spacelike slice, and do is
the line element. 7 is any spinor asymptotically (in both
directions) obeying (11) or, in a general coordinate sys-
tem, (8) and (9).

Since the square of this supercharge is a time transla-
tion, a Witten-like expression for the Arnowitt-Deser-
Misner (ADM) mass can be obtained as a supersymmetry
variation of the supercharge. This leads to

M= [do"V,[2e *eys8.A]

:29M2¢€7/5(y¢_}k)€|+w y (13)

where € is any commuting spinor obeying the analogue of
the asymptotic conditions (11) and normalized so that

—&ysel =1, (14)

and 8, denotes the supersymmetry variations (7) with 7
replaced by €. Note that with these asymptotic condi-
tions the boundary term at 0 = — o in the expression for
M vanishes and has been omitted in (13).

This may be compared with previous expressions for M
[9] by linearizing around the vacuum. Defining

=—Ao+8¢,
¢ (15)
guv——_nyv+huv ’

one finds

M=e9(23,8¢+Ah )| 4w » (16)

in agreement with previous results.
Using the equation of motion,

&S
_ 27 m=T (17)
\/'—g Sgﬁ“’ I

27 88g _

Vi—g 8gh

where T, is a general matter stress tensor, one finds
M= [do"V,[2e ey (V¢ —L)e]
= [dote,"eyPeT,, +2¢ 48 K)y 8.7, » (18)
where
X =8Xu—7uOA -

This expression is valid for any choice of € satisfying the
boundary conditions. Positivity can be made manifest by
choosing an € which obeys

81 =02D,—v,Yé+y A)e=0, (19)

where 1 denotes the direction tangent to the spacelike
slice. This is a first-order differential equation which may
be solved for €. The energy is then simply

M= fdopepvgy“eTm . (20)
A Fierz identity implies that
gyPeey o= —(eyse) , @21

so that €yPe is a timelike vector. At infinity, it is future
directed and must be so everywhere by continuity. The
expression (20) for M is then manifestly non-negative as
long as T, satisfies the dominant energy condition.

Thus we have proven that the ADM energy for space-
times asymptotic to the vacuum is always non-negative if
the matter has non-negative stress tensor and vanishes if
and only if the matter stress tensor does. While super-
symmetry has been used to motivate expression (13), the
result applies to a much broader class of theories.

IV. POSITIVE ENERGY FOR NONMINIMALLY
COUPLED CONFORMAL SCALARS

In this section we shall consider dilaton gravity cou-
pled to matter governed by the action

SZZifdzx\/—_g[—%(VZ)z‘FQRZ] , (22)

where Q is an arbitrary constant. The associated stress
tensor is

T;=1V,ZV,Z—1g,(VZ)P?+Q€, %€V, V,Z .  (23)

TZ has no particular positivity properties. The last term,
which dominates for small Z, changes sign under
Z ——Z. Thus one might not expect a positive-energy
theorem for the gravity-Z system. On the other hand, it
is easy to see that (22) can be supersymmetrized, and so
the H=0Q? relation suggests such a theorem nevertheless
exists. In this section we shall prove that this is indeed
the case.

The presence of a second derivative term in 7'Z implies
a correction to the boundary formula for the mass of the
gravity-Z system:

M=[2e ey (Vp—Ae—QeysVYZe],, . (24)

For spinors obeying the boundary conditions (11), the ex-
tra term is proportional to the spatial derivative of Z. If
M is evaluated at spatial infinity and Z is asymptotically
constant, this extra term vanishes.

An expression for the Bondi mass is obtained simply by
evaluating (24) at right future null infinity (J3). In that
case, however, the extra boundary term is not negligible.
Asymptotically, Z obeys the free wave equation and is
given by Z=Z  (xt)+Z_(x"). Thus, in general, if
there is outgoing (incoming) Z radiation, d_Z (3 Z) will
not vanish on J3 (Jz), and the extra boundary term will
be nonzero.

Integrating by parts, the mass formula can be written
asin (18):

M= [do(e, eyPeTZ +2¢ 8 Ay 8.7,
—QV, (&ysVYZe)] . (25)

The terms involving two derivatives of Z cancel (using
€Y sY €= —€,€y ,€), yielding

M= f dcr”[ey"gyf’ef’gp +2e “2"’851_\7/586)?#
—QV, 2V, (eysyPe)], (26)
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where the reduced stress tensor Tg+ - ’f’vz_[(aﬁup)z_aip] i (xT) . (38)
T2,=1v,Zv,Z2—1g,,(VZ) 27

obeys the dominant energy condition.

The gauge choice (19) for € is not useful for proving po-
sitivity of the gravity-Z system. We choose instead the
modified condition

8X1=1Qe*y \VZe . (28)
One then finds, after some algebra,
M= [dore(1—-20%)ey*eT,, . (29)

Since f‘MJ obeys the dominant energy condition, this ex-
pression is non-negative as long as Z has support only in
the region where

20%%<1. (30)

This last restriction comes as no surprise to those familiar
with the relation between dilaton gravity-Z system and
the large-N quantum equations, to which we now turn.

V. QUANTUM POSITIVE-ENERGY THEOREM

The classical gravity-Z dynamics of the previous sec-
tion is closely related to the large-N quantum dynamics
of dilaton gravity minimally coupled to N scalars. To see
this, note that the Z equation of motion,

—~0OZ=QR , 31)

can be substituted into the trace of Einstein equations to
yield

2¢e X[ —0p+2(Ve)?—2A2]=Q%R . (32)

This is identical to the large-N quantum trace equation of
[2] for

o==

T

The dilaton equation is unaffected by matter, and so it is
also identical for the two cases.

In addition to these two equations, there are the con-
straint equations which are most easily expressed in con-
formal gauge:

(33)

8++=8--=0,
(34)
g+_=_%e2p ’

where x *=x%+x!. The + + constraint equation for the
(Z,p,¢d) system is

0=e 2%(43,pd, ¢—20%¢)+T%, , (35)
where
T% . =13,Z)P+Q3%Z—-20,p3.Z). (36)

The large-N constraint equation is
0=e 2%(43,pd,¢—23%¢)+T2 +TY , (37

where TM is the classical matter stress tensor and

t, is an arbitrary function of x*, which is fixed by
boundary conditions. A similar equation holds for 7_ _.
If (p,¢) satisfy the dilaton and large-N trace equations, it
is always possible to find a ¢, such that the T, con-
straint equations hold. Since the dilaton and trace equa-
tions are identical (after using the Z equations of motion)
for the quantum large-N and classical gravity-Z systems,
it follows that every (p,¢,Z) which satisfy the classical
gravity-Z equations provide a (p,¢) which solve the
quantum large-N equations.

The converse is not always true: Given a solution
(p,¢) of the quantum equations, it is not always possible
to reconstruct a solution (Z,p,¢) of the classical equa-
tions. Attempts to do so may run into singularities in the
Z field. As an example, suppose one has a solution of the
quantum equation such that on the null slice x ~ =xg,
p=0, and

TY ((xq,xT)+THM (xg,x.)=adlx™). (39)

We wish to find an asymptotically constant function
9,Z(xgy ,x ") such that

3, Z(xg ,x T P+Q 3% Z(xg ,x T)=ablx™) . (40)
The general solution is

1
3, Z=+4+20Q |60(—x T )——
* e x xt+a

1

+0(xt)—— |,
(x )x++[3

(41)

where 1/8—1/a=a/2Q?% This is nonsingular only if
a <0 and B>0, which is possible only if a >0, corre-
sponding to a positive stress tensor in (39).

This is, of course, expected: One cannot hope to prove
positivity for every solution of the large-N equations with
unrestricted ¢, since the ¢ can be chosen to correspond
to negative-energy matter.

In physically interesting situations, the 7, are con-
strained. For example, solutions of the large-N equations
have been studied which correspond to black-hole forma-
tion and evaporation. Our results may be used to show
that in these examples the Bondi mass is always positive,
as follows.

A black hole can be formed by specifying that the ini-
tial data on J; correspond to the vacuum, while on Jg
one has some general incoming radiation pulse,

™, =T¢ +TY, >0, (42)

which we take to have compact support. [A shock wave
corresponds to T¥ | =ad(xt—x).] f T, +T9, is
positive, one can always construct an asymptotically con-
stant 3 Z such that

T4 =TY, +T%, (43)

on Jg. The Bondi mass My on Jx (i.e., the ADM mass)
is thus positive by the theorem of the preceding section.
The Bondi mass at finite values of x ~ may then be found
from (29), integrating over the null slice of constant x ~.
It will remain positive as long as 9, Z is nonsingular on
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the slice and has support only in the region e ~2¢> N /12.
When can 90, Z become singular? From the Z equation
of motion,

9,9_Z=2009,9_p, (44)

it is evident that if the scalar curvature diverges, 3, Z
does as well. In fact, this condition is necessary as well as
sufficient. If 9, Z is initially finite on J; and 0, Z even-
tually diverges, there must be a first value of x ~ at which
it does so. Thus 9, Z goes from a finite to infinite value
in a finite interval, and so 3,0 _Z must diverge, together
with the scalar curvature.

We thus conclude that as long as the scalar curvature
is finite and the Z pulse has not crossed the line
e “2=N /12, My is non-negative.

It has been shown [10,11] that when the leading edge
of the pulse first intersects the line e ~2=N /12, a curva-
ture singularity appears, which then continues to the
right along a spacelike trajectory. Thus every null slice
which is prior to the singularity necessarily has 9, Z =0
in the region e “2* <N /12, and positivity therefore fol-
lows from finiteness of the scalar curvature alone.

If the sequence of null slices first encounters the curva-
ture singularity at a finite value of x * (i.e., not on JR), it
is by definition a naked singularity and the end of the
black hole. Our result then implies that the black-hole
mass cannot become negative before it disappears. The
behavior of the mass after the naked singularity will de-
pend on the boundary condition imposed there.

On the other hand, it may be the case [12] that the null
slices meet the singularity at J7. This is then the end of
the spacetime, and our results imply that the Bondi mass
is everywhere positive.

These statements may seem at odds with Refs. [13-16]
in which it was stated, in modified versions of the large-N
equations, that the Bondi mass in fact does get negative
before the black hole disappears. One possibility is that
an analogous theorem does not exist for the modified
equations. In fact, we believe, though we have not
worked out the details, that the methods of Sec. VII can
be used to prove My >0 for the modified equations.

More likely, we believe the discrepancy lies in the
differing definitions of M. Previous work did not in-
clude the crucial Q d_Z term,? which may be regarded as
a quantum correction to the classical mass formula.

We do not know which is “the” correct mass formula.
However, we note that supersymmetry suggests that the
energy should be positive even at the quantum level, as
we have indeed found to be the case with our modified
M.

VI. ENERGY BOUND
FOR BLACK-HOLE SPACETIMES

In four-dimensional general relativity, there is a con-
jecture due to Penrose that the mass M; of an initial data

2Note that if p and Z both vanish on J , which is true in some
gauge for most cases of interest, quantum mass correction is by
virtue of (44) proportional to 9_p.
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set containing apparent horizons is bounded by the
square root of the total area A; of the apparent horizons
[6]. The motivation behind this conjecture is that eventu-
ally the system is expected to settle down to Schwarzchild
with a larger horizon area A4, (by the area theorem,
which assumes cosmic censorship) and less energy (hav-
ing lost some in outgoing radiation). The final mass M,
is then proportional to the square root of the final area so
that

172 172
4;

167

A
167

>

M, >M,=

1

implying Penrose’s conjecture M >V A4 /161r.

This conjecture has been proven only in special cases in
four dimensions [17]. In this section an analogous in-
equality will be proven for two-dimensional dilaton gravi-
ty. The expected inequality can be phrased by noting
that the value of Ae 2% at the horizon plays the role
analogous to that played by V' 4 /167 in four dimensions.
(Indeed, when two-dimensional dilaton gravity is derived
by dimensional reduction of spherically symmetric four-
dimensional black holes [2,10,18], e ~*¢ is proportional to
the area of the two spheres at constant radius.) In the ab-
sence of matter, the black-hole mass is exactly Ae ad o
Adding positive-energy matter outside the black hole
should only increase the total mass, and so one expects a
bound

M>xe 2|, . (45)

Black-hole spacetimes in dilaton gravity are asymptotic
to the vacuum only as 0—+ o and therefore are not
covered by the analysis of Sec. III. In this section we
shall prove that such spacetimes satisfy the energy bound
(45) provided only that the matter stress tensor is positive
outside the outermost apparent horizon.

An apparent horizon is a line along which the gradient
of the dilaton field becomes null [19,1]. The existence of
an apparent horizon can be determined from the initial
data on a spacelike slice. This is in contrast with an
event horizon, whose location can be determined only
when the entire spacetine is known.

In this section we will use an alternative formula for
the mass

M=e %

_1 2
A 2 (Vo) |, (46)

which is similar to a formula employed by Susskind and
Thorlacius [19]. It is easy to check that (46) agrees
asymptotically with (13), though the two are not the same
at finite points. In terms of M, the metric equation of
motion (17) can be written

—2 o — v
2e %,fe,’V,V ,6=2Ag, ,M+T,, . 47)
It is then easy to show using (47) that
M =(dore,) | 2-€V b |T,, . (48)
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Since €V ¢ is timelike and T, obeys the dominant en-
ergy condition, this implies that M increases away from
the horizon. One therefore concludes that M|y is less
than or equal to the ADM mass M|, . On the other
hand, since (Vzlt)2 vanishes at a horizon,

Mly=he 2|, . (49)

So we have established the desired inequality (45). Actu-
ally, this method easily establishes positivity of energy for
the case of two asymptotically flat directions as well, but
the spinorial proof was used in Sec. III because it eluci-
dates the connection with supersymmetry and naturally
generalizes to the models of Secs. IV and VII.

The theorems of this section strengthen the analogy of
two-dimensional dilaton gravity with four-dimensional
general relativity. It would certainly be of interest to for-
mulate and prove (or disprove) cosmic censorship in this
theory.

VII. GENERALIZED DILATON GRAVITY

The action (4) is, of course, a very special form for the
two-dimensional dynamics of a scalar field coupled to
gravity. In many contexts it is of interest to consider a
more general form for the dynamics. At the very least,
quantum corrections will generate corrections to (4) as a
power series in e2?. Indeed, these corrections have been
found to play a crucial role in black-hole dynamics
[20,13-16]. In this section we consider the most general,
power-counting renormalizable, supersymmetric action:?

SG=§fd2x d?0 E[J(®)S
+iK(®)D DD +L(D)] . (50)

Presumably, many choices of the functions J, K, and L
lead to sick theories with unphysical behavior. It is a
difficult (but interesting) problem to characterize the dy-
namics of the general theory. In this section we will ana-
lyze two key properties of these theories: the existence of
a supersymmetric ground state and positivity of the ener-
gy.

We first record the bosonic part of the action following
from (50). The auxiliary field equations of motion are

L
F=——=
2J"
(51)
4—_L | 2KL
J' J12 ’

where J' (L') is the derivative of J (L) with respect to ¢.
This leads to the bosonic action

LL' KL?
270 27

So=5- [ d*x ¢ | IR +2K(V42+ (52)

3Field redefinitions can be used to locally eliminate two of the
three free functions in S;. However, since global considerations
may be important, we will not do this.

The supersymmetry transformation laws are obtained by
substituting (51) into (7). A supersymmetric vacuum is
one for which there is a spinor € such that

L
BA= |Fo——= |e=0, (53)
_ L' KL _
SEXH-— ZDM_YM —27 F €e=0. (54)

These equations imply that
kt=eyte (55)

is a Killing vector,

Viky=0, (56)
which also generates a symmetry of ¢,
kV,6=0, (57)
and is timelike:
k*<0. (58)
Multiplying in (53) by &ys/(—k?)!/2, one finds
d L
= 59
do 2J' (59)
where
N k™
a(x)——f_wdx“(_kz)l/z (60)
is a spatial coordinate. ¢(o) is then the solution of
_ 2J'(¢) d
= — . (61
o= T 44 )

The curvature is determined from the integrability condi-
tion for (54). Given (53), one finds

R=—1(4?+24'F), (62)

where A4 and F are given in (51).

Equation (61) will have a solution for every o as long
as L /J' is everywhere finite. The reason for the absence
of a nonsingular vacuum if J’ has zeros is evident from
(50): The kinetic part of the action degenerates at zeros
of J'. If the right-hand side of (62) is everywhere finite,
then it can be solved to determine the geometry. Thus a
supersymmetric vacuum exists in a wide variety of cases.

Following the steps of Sec. III, an expression for the
mass at 0 =+ o can for spacetimes asymptotic to the
vacuum be found as

M(+ o0 )=—Fy;

J’V¢—§ €, (63)

where € is asymptotically a solution of (53) and (54) nor-
malized according to (14). Integrating by parts as in Sec.
II1, one finds

M(+w)= [dot(e, ey eT,,—J'8 Ay 57,)
+M(—), (64)
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where
— K
SJ#—SGX“+yu785A .
Choosing € so that §_y; =0, one has

M(+ )= [doPe, ey eT,, +M(—w) . (65)

This is manifestly non-negative if M(— o) is.

A sufficient condition for M(— o) to vanish is that
J'(¢(— )) and L(¢(— o)) vanish. This is the case for
the model of Sec. III and is true for a wide range of
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choices of J and L. We do not know the necessary con-
ditions for non-negativity of M(+ o).

We expect that similar results can be derived for gen-
eralized classical equations by adding the Z field as in
Sec. V. This would be relevant to some of the semiclassi-
cal models studied in [13-16].
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