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Quantum vacuum instability near rotating stars
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We discuss the Starobinskii-Unruh process for the Kerr black hole. We show how this effect is
related to the theory of squeezed states. We then consider a simple model for a highly relativistic
rotating star and show ~hat the Starobinskii-Unruh effect is absent.
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I. INTRODUCTION

After decades of investigation, confusion still remains
concerning the nature of the quantum vacuum and the
instabilities that may afnict it. Early investigators re-
garded the breakdown of the quantum vacuum state in
the presence of strong external fields as paradoxical (e.g. ,

the Klein paradox, the Schiff-Snyder-Weinberg paradox).
In more recent years, however, the creation of particles
through such instabilities has been treated as a real and
possibly observable phenomenon [1].

One of the most intensively studied examples of vac-
uum instability is the Hawking black hole evaporation
process [2] where a gravitational field causes thermal par-
ticle production. This process, and its distinctly thermal
character, are associated with the existence of an event
horizon around the black hole. Related to the Hawking
effect, but predating its discovery, is the prediction that
particles will be produced by the rotational motion of the
black hole the so-called Starobinskii-Unruh process [3].
This particular vacuum instability arises because of the
existence of an ergosphere in which particles may reside
with negative energy as measured from the asymptotic
region away from the body. Such an ergosphere leads to
the classical phenomenon of wave amplification known as
superradiance; the Starobinskii-Unruh efFect is the quan-
tum counterpart of this.

Hawking's treatment of black hole quantum processes
provides an elegant unified description of both of the
above eKects, and it is therefore tempting to attribute
both types of radiation to essentially the same origin.
Nevertheless, there remains considerable uncertainty as
to whether the Starobinskii-Unruh effect is primarily a
consequence of the event horizon, or the ergosphere. The
issue becomes relevant when consideration is given to the
possibi. lity of very compact rapidly rotating stars that

might have an ergosphere but no event horizon. One is
led to the question: Would the quantum vacuum in the
vicinity of such an object be stable, or might one expect
the Starobinskii-Unruh eEect to occur in that case too?

In this paper, we study a particular model for a rotat-
ing star, and conclude that there is no particle creation.
In the language of curved space quantum field theory
we are investigating a case in which there is a natural
Killing vector which is timelike (though not hypersurface-
orthogonal) in part but not all of the space-time. Al-
though our model is somewhat artificial, it has the virtue
of permitting a detailed treatment, and therefore leading
to a reasonably secure conclusion.

We shall start by reviewing the phenomenon of classi-
cal superradiance and the Starobinskii-Unruh effect. We
shall then show how superradiance can be expressed as
a squeezing of the vacuum before going on to study our
model in which we consider a quantized scalar field above
a reflecting surface inside the ergosphere of Kerr space-
time. Note, however, that we make no assumptions con-
cerning the metric inside the reflecting surface, in partic-
ular, there may or may not be an event horizon inside.

II. SUPERRADIANCE

In this section we will briefly review the solution of
the scalar wave equation in the Kerr metric [5] and the
classical phenomena of superradiance [6].

The Klein-Gordon equation for a massless scalar Geld

C(x) is

)
9'I ~" ~4=0. (2.1)

We are interested in the Kerr metric which in Boyer-
Lindquist coordinates has the form

2
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(2.2)
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C(~) =, , „,e-'"'+ ~S, (8)R., (r),rz + a2 1j2 (2.3)

where N~ is a normalization factor, S(m(8) is a spheroidal
harmonic, t and m are integers, and ~m~ & t. It is conve-
nient to define a new radial coordinate r„by

where E = (r —r+) (r —r ) = r —2mr + a with r+ ——

M+v M2 —a2 the horizon radius and p2 = r +a2 cos2 8.
As is well known, in the Kerr metric Eq. (2.1) is separable
[5] and gives rise to solutions of the form

III. THE STAROBINSKII-UNRUH PROCESS

Before we discuss our model rotating star we must
set the scene by discussing the Starobinskii-Unruh pro-
cess for the Kerr black hole. We will follow the method
of Ford [7] and hope to clarify it as well as show the
connection between the Starobinskii-Unruh process and
squeezed states which has not previously been elucidated.

The quantization of a scalar field in Kerr spacetime is
achieved first by finding a complete, orthonormal set of
solutions to (2.1). We take as our "in" quantization basis

Grg T + G

dr (2.4)

which ranges over the entire real line, pushing the horizon
off to minus infinity. In terms of this coordinate the radial
equation takes the form

Rout
u)tm

e
—iut eimP S (8)R+ (r)
2vr(2~)'~ (r +a )'~

e ' 'e™Si (8)R, (r)
2vr(2~)'~ (r +a )'~

~ & 0, (3.1)

—V i (r)
~
R„i (r) = 0.f dz

d2r, ) (2.5)

e' 'e ' &Scrim(8)R „, (r)
2~(—2u) )' (rz+ az) &

a&0,

(T) ( ( Q )2 (2.6)

In the asymptotic regions r, —+ Woo the potential V re-
duces to where we have used the property S~tm(8) = S i m(8).

These solutions are orthonormal in the Klein-Gordon
scalar product, that is

where Ah, = a/(2Mr+) is the angular velocity of the hori-
zon.

We can consider two classes of solutions to (2.5).
Waves from Z will be partially scattered back to Z+
by V and partially transmitted through to 'H+. Sim-
ilarly waves may propagate from '8 and be scattered
into either asymptotic region. By virtue of (2.6) these
two classes of solution will have the asymptotic form

where

= &(~ —~')Ai ~mm, (3 2)

R+i (r)
e—i4/P» + A+ ei4JI' ~

aim

T~ ~ —OO)

T, —+OO,
(2.7)

(4'i 4'2) = & 4i ct& 42v' gd~"— (3 3)

and

R , (r) - &

eicdT» + A e 1@if»— '

atm
(2.8)

, B sm T~ ~ OO)

where u = u —mph, , u & 0.
Suppressing the subscripts for convenience, the coeK-

cients A+, A, B+, B satisfy the relations

4)

u)B = u™)B+,

A+ B = —A B+-
GJ

(2.9)

(2.10)

(2.11)

(2.12)

Equations (2.9) and (2.10) show that for cu ( 0, ~A+
~

) 1
and ]A ] & 1, so these modes from 2 and 'R are
refiected to 2+ and 'R+ with an amplitude greater than
they had initially. This is the classical phenomenon of
superradiance. In the next section we shall discuss its
quantum field theoretic analogue.

and all other inner products vanish.
In (3.1) for 2 ( 0 we have a negative energy wave

propagating to X+. This is a consequence of 0& not be-
ing a globally timelike Killing vector. 0& is spacelike
in the ergosphere; however, the combination Bi + AB~,
where 0 = —gi~/g~~, is timelike down to the horizon
upon which it becomes null. Observers following integral
curves of this timelike vector Beld are locally nonrotating
observers (LNRO's). A LNRO near the horizon would
measure the frequency of the superradiant modes in (3.1)
to be —9 = —w+ mAp„[where Ah, = A(r =r+)]. Since
u & 0 for superradiant modes the LNRO would see pos-
itive frequency waves for all modes. For R'"& all modes
are positive frequency at 2+ and 5 . A LNRO near the
horizon measures w for the frequency and thus sees nega-
tive frequency modes in the superradiant regime. We will
assume that (2.5) has no complex frequency eigenvalues.
This should be a reasonable assumption since computer
searches [8] have not revealed any complex frequency
modes. Also it has recently been shown analytically [9]
that (2.1) has no unstable solutions [i.e. , Im(u) ) 0].

The scalar field may now be expanded in terms of the
mode solutions (3.1). We find
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O(a) = )'f u~( ar'R , '"+a ',
" R"," )+) '

lm 0 ~min

~min
out Roll't ~ tou Rlllout

w—l m— w—l m—+ + wl —m ——wl —m)' (3.4)

We promote the expansion coeKcients to operators obey-
ing the usual commutation relations

in -t» ) ( out "t ut l r out "tout
wlml w'l'mI& i wlml w'l'm'i lit wl —ml—(t—wIl& —m~j

= b(~ —~')fail bmm,

S'" =A R "' —B+( i R""—

ural

—m —uL —m J ~Lm&
~l~

gout A+ a Rin gy
—" w Raout

~Lm urlm —u)L —m &

(3.8)

(3 5) have the asymptotic form (for u ( 0)

&wlml0 0)' = (iwlml0 0)' = ~—wl-m~0 0) (3.6)

with all other cornmutators vanishing. By using the
asymptotic expressions (2.7) and (2.8) we can see that
Rwi"l describes unit incoming flux from Z' and zero out-
going flux from 'R while R'ul', R'"„'l describes unit
outgoing flux from '8 and zero incoming flux from 2
Therefore a l and a l, a l will create particlestin j'out - faut

from 2 and 'R respectively. Thus we can define a vac-
uum state ~0, 0);„by S'"

l (r)

T~ ~ —OO)

e'w" + A+ e 'w"* r ~ oo )

f eiwr* + A —e—tw&a

7g ~ OO.

(3.9)

(3.10)

gout A+ ~Rin + g —* (w) ( Rout
~Lm urlm g~ j ~Lm&

S„'"l ——A R'lt + B+ (—") Ri"l
u&0,

which corresponds to an absence of particles from X and

We can show that the mode functions defined by We see that S ult describes unit outgoing flux to 2+ and
zero ingoing Hux to 'H+ while S'"

l describes unit in-

going flux to 'R+ and zero outgoing flux to 2'+. Non-

superradiant modes have similar asymptotic properties.
These modes have identical inner product relations to
(3.2) and hence we can write the field expansion as

o(*) = ) j d (b 's'"' +b'("'"'s*'"') +)
Lm 0 Lm

~min

d~ (b„'"l S'"l + b 'l" S„"~l" )

Lm 0

illd~(b' "wl mS '"wl m+-b -wl m-S"-"l m) (3.11)

We promote the expansion coefficients to operators
with commutation relations equivalent to those in (3.5).
Given the asymptotic properties of the modes defined in

(3.7) and (3.8) b l" and b 'l", b '"l will create par-

ticles propagating to 5+ and '8+ respectively. Thus we

can define a vacuum state ~0, 0),„t by

bwlml0I 0)out = bwlml0I 0)out = b —wl —ml0I 0)out = 0I

(3.12)

which corresponds to an absence of particles propagating
to 2+ and 'R+.

Equations (3.7) and (3.8) represent the Bogoliubov
transformation between our two sets of complete modes.
For superradiant modes they give rise to the operator

relations

&in A+ abo t u~+ ~ ( —w)
~lm ~lm —uL —m&

1/2 „g
&out A —bin ~— w b)out

—uL —m —wL —m ~Lm

(3.13)

For nonsuperradiant modes the equivalent relations do
not mix conjugated and nonconjugated operators. This
means that t0, 0)out and t0, 0);„are equivalent vacua for
these modes. We can now calculate the average num-
ber of outgoing particles spontaneously emitted into the
superradiant modes. For any superradiant mode this is
given by

(N) =;„(0,0/bt "'b "t/0, 0);„=/A+[2 —l. (3.14)

It is possible to express the state ~0, 0);„ in terms of
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"in bout + bt'in 'tout bout + b'tin (3.15)

where

the theory of squeezed states [10]. Temporarily dropping
subscripts for convenience, we can write equations (3.13)
as

r, p and 8 defined by the equations

u=e ' coshr, v= —e ' ~ sinhr,

tu = —e' ~ sinhr, z = e' coshr,

(3.18)

(3.19)

where r, p, and 8 are real numbers and r & 0, It is
possible to rewrite (3.15) as

u = A+
) v= 8+

(—
iY" = Rt St b "'SR a t'"' = Rt St bt'"SR (s.2o)

) i/2a—
(3.16)

and, with the help of (2.9)—(2.12), the following relations
can be verified:

tL=z ) v=tU ) tl xt —v v=1) z z —8) tU=1.

(3.17)

These relations allow us to introduce the new parameters

where S and R are the unitary operators

(rp)exp[&(e 2ivb—out bin&2ivbtout b tin)]

R(8) = exp[ —it)(bt "'b "'+ bt'"b'")].

(3.21)

(3.22)

The operator S(r, &p) is a two-mode squeeze operator and
the operator R(t)) is a rotation operator. If we consider

a function of operator arguments F(a'", a "',at'", a't "')
and a quantum state ix;„), we can show using (3.20) and
the unitarity properties of (3.21) and (3.22) that

IF(- -o at ~to ')ix ) =&x iRiSiF(b'" b
"" b't'" bt "')

= ( iF(b'" b
"' bt'" bt'"')i ) (3.23)

where

(s.24)
p«d = (1 —tanh r) ) (tanh r)" in)(ni.

n=o

Using (3.16)—(3.19) we can write this as

(3.28)

Since we are working in the Heisenberg picture we are
interested in the state ix;„). Thus we can invert (3.24)
using the properties of (3.21) and (3.22). We find

ix;„) = S(r, p+ vr/2+ t))R(—t))ix „t).

1 ( 1p-~=).„ i)

Tlllls

(3.29)

For the special case where we use the in and out vacua
we find

io, o);„=S(r, cp+~/2+ t))io, o) „t, (3.26)
is the probability of finding n particles in the superradi-
ant mode w, l, m. This is the Starobinskii-Unruh process.

since the rotation operator has no effect on the vacuum
state. As all superradiant modes are squeezed, the in
vacua can be written as

IV. SUPPRESSION OF QUANTUM
SUPERRADIANCE

io, o);„= s i (r, p +~/ 2+8)i ,0)0.„,.
~l rn
(3(0

(3.27)

Two-mode squeezed states also occur naturally in par-
ticle creation processes in expanding universes [11]. As
well as their interesting noise properties the two modes
of a two-mode squeezed state are as strongly correlated
as quantum mechanics will allow [12].

In practice one would only be able to measure observ-
ables that depend on the outgoing particles only. Thus
we are interested in finding the reduced density matrix of
(3.26},which is obtained by expressing (3.26) as a density
matrix in the number basis and tracing over the ingoing
modes. We find

In this section we shall investigate the vacuum stability
of a highly relativistic rotating star by considering the
effect a reflecting boundary condition outside the horizon
has on the Starobinskii-Unruh process. If the boundary is
outside the ergosphere then the space-time is stationary
and there will be a stable vacuum. We are interested in
the case when the reflecting surface is sufBciently close to
the horizon so that the space-time still has an ergoregion.
In this case the space-time is not stationary since it does
not possess a Killing vector which is everywhere timelike,
and the stability of the vacuum is an open question.

We should add that there is no equivalent to Birkhoff's
theorem for a rotating star and so the space-time outside
may depend on the details of the star. As we are inter-
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(4.1)

with

Gym~ = & (4.2)

[R'", +a l (x)R'„",' ], ~ & 0
, cVFi x ™

where n~lm(x) is chosen so that the modes vanish at r, =
x and K l (x) is an appropriate normalization factor.

ested in constructing a simple model, we shall take the
space-time outside the star to be given by the Kerr met-
ric. We need make no assumptions concerning the metric
inside the star, in particular, there may or may not be
an event horizon.

As in the previous section, we need to find two sets
of modes that give rise to appropriate in and out vacua.
However, now these modes must also satisfy the bound-
ary condition that they vanish at the surface of the star,
r, = x. For our in vacuum basis set we choose

(F~lme F col mr') =
N -™T'

x6(~ —u)')Ail 6' (4.3)

Z/2
where CC = gre/g—eel= , ( grr + gre/gee, eed we

have used n = (IjN) (cl, +Acl~) as the unit normal to the
t = const hypersurfaces and numerical factors have been
absorbed into the mode normalization factors. In (4.3)
0, N, and ~G~lm~ are positive definite and hence the
inner product has a greater chance of becoming negative
as w decreases and m increases which corresponds to the
superradiant regime. We can define a set 8(x) such that
(w, m) 6 8(x) if the inner product in (4.3) is negative.
We find then that after suitable normalization the modes
will satisfy:

By Gauss's law we know that the inner product (3.3) of
the above modes is time independent since the modes
vanish on the timelike hypersurfaces r, = x and r, = oo.
This means that the inner product must vanish when

Also the integrals over 8 and P are unaffected
by the boundary condition hence we obtain

(F„l,F„ l .) = 6(~ —~')b«b, (~, m) g'8(x),
(F l, F l ) = b(~ —~')/l«b . , (~, m) e 8(x).

(4 4)
(4.5)

Given that the modes (4.1) vanish on the horizon, correspond to unit incoming flux from 2', and satisfy the above
inner product relations, they are appropriate modes to define the in vacuum. Thus we can write

u), m fS(x)
"~[li t F l +li l F l ]+).

tm ,me8{x)
(4 6)

We promote the expansion coefficients to operators obey-
ing

1/2
aim'L ) g+ * + p (X)g+

*
~

(4 7)

with all other commutators vanishing. The in vacuum
~0);„ is defined by a,„l ~0);„= a l ~0);„= 0 which
corresponds to an absence of particles propagating from

. To define the out vacua we consider the modes

w & 0, (4.10)

i/2-

~ & 0. (4.11)

(4.8)

(4.9)

where p l (x) is chosen so that the modes vanish at
r, = x and N l (x) is a normalization factor. Since
these modes contain unit flux propagating to 2+ they
are appropriate to define the out vacuum. If we per-
form a Bogoliubov transformation between the in and
out modes we find:

The inner product of modes (4.8) and (4.9) will be the
same as (4.4) and (4.5) where the set 8(x) is unchanged.
This is easily verified by (4.10) and (4.11). Since the Bo-
goliubov transformations (4.10) and (4.11) show no fre-
quency mixing between in and out modes, the in and out
vacua are equivalent [13] and there is no particle creation.

V. CONCLUSION

It should be stressed that the stability of the quantum
vacuum in our model calculation depends crucially on the
reflecting boundary conditions used. In retrospect, our
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result might have been expected on grounds of conserva-
tion of energy and angular momentum: as the quantum
vacuum in the ergoregion is efFectively separated from
the body of the star, there is no way that energy or an-
gular momentum could be communicated to the field to
create particles. In the case of black hole it is possible for
negative energy (as seen from infinity) to fiow across the
horizon giving rise to the possibility of a Aux of positive
energy out to infinity. In the presence of the mirror no
such scenario is possible.

Although a body of the sort modeled here is physically
possible, it is hardly realistic, and the question arises as
to whether the vacuum stability would remain in a more
physically appealing model. We believe that the mirror
electively mimics the center of coordinates of the star in
the case that the modes are allowed to propagate freely
through the interior. This belief was justified in the case
of the Hawking effect [14] where a suitably accelerating
mirror accurately reproduces the eKect of modes being
redshifted by propagating through the interior of a col-
lapsing star and out the other side.

In both Hawking's calculation and ours, however, there
remains some vagueness concerning the generic nature
of the result if account is taken of the effects of inter-
action between the field and the material of the star
through which they propagate. Hawking appeals to the
fact that the relevant modes in his calculation are highly
blueshifted, and so propagate eEectively freely. If, in our

calculation, the modes are allowed to couple to the ma-
terial of the star, then the argument from energy and
momentum conservation need no longer apply, and some
particle creation in the exterior region, on these grounds,
seems possible. However, the details will be very model
dependent and in practice, of course, the intensity of such
radiation is likely to be very low.

We should add that our result appears to contradict
the conclusions of Ashtekar and Magnon [4] who have
given a general argument (based on their complex struc-
ture approach to particle definition) suggesting that par-
ticle production should occur in stars with ergoregions.
However, while their approach ia generally accepted for
static space-times, it has been criticized for stationary
space-times [15] on the basis that it is the Cauchy hy-
persurfaces rather than the Killing vector field which is
crucial for the quantization.

Finally, we should also mention that in our calculation
we have neglected the inclusion of complex frequency
modes of the type discussed by Vilenkin [16]. These
modes form a discrete set, and if any of them fall in the
superradiant regime they will give rise to a novel form of
vacuum instability (classically such modes are exponen-
tially amplified, reminiscent of a laser). The quantiza-
tion of such modes has been discussed by Fulling [1] in
the context of a general study of vacuum instability. We
hope that our calculation will help clarify this general
topic.
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