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Motivated by the apparent dependence of string cr models on the sum of spacetime metric and
antisymmetric tensor fields, we reconsider gravity theories constructed from a nonsymmetric metric.
We first show, by expanding in powers of the antisymmetric field, that all such "geometrical" theories
homogeneous in second derivatives violate standard physical requirements: ghost freedom, absence
of algebraic inconsistencies, or continuity of degree-of-freedom content. This no-go result applies in
particular to the old unified theory of Einstein and its recent avatars. However, we find that the
addition of nonderivative, cosmological" terms formally restores consistency by giving a mass to
the antisymmetric tensor field, thereby transmuting it into a fifth-force-like massive vector but with
novel possible matter couplings. The resulting macroscopic models also exhibit "van der Waals" —type
gravitational effects, and may provide useful phenomenological foils to general relativity.
PACS number(s): 04.50.+h

I. INTRODUCTION

It is a remarkable historical coincidence that modern
string theory can be interpreted as reviving an ancient at-
tempt at geometric unification of forces. Specifically, we
note that (ignoring the dilaton for simplicity) the string
o. model action in conformal gauge is just

I = d z[G„(X)+ B„(X)]0,X"0;X

in terms of local complex world-sheet coordinates z, z.
Here X" is the embedding coordinate of the string in a
D-dimensional spacetime endowed with the (symmetric)
metric G„„and the antisymmetric tensor field B„„.The
action (1.1) thus depends only on the "unified" combina-
tion

(1.2)

and we are led to consider field theories of gravity con-
structed geometrically from the nonsymmetric metric
g„„. One such model was first discussed in 1925 by
Einstein [1] in an attempt to unify gravity and electro-
magnetism (B» was to be related to the Maxwell field
strength). Further treatment by Einstein and his col-
laborators [2], Schrodinger [3], and others [4—6] led to
considerable elaboration of its mathematical structure.
More recently, Moffat [7] has proposed that B„be in-
terpreted as a new field coupled to macroscopic currents.
Following recent usage, we shall refer to this specific the-
ory as NGT ("nonsymmetric gravity theory"), but we

~pBpv = clpev covey, (1.3)

in addition to the usual diffeomorphism invariance.
Hence all dependence on B&„must be through the in-
variant field strength tensor

»p ——cl),BI +opB ~+~ »p, , (1 4)

and indeed the effective string expansion (which is in
powers of derivatives, thereby maintaining consistency)

shall also analyze the whole class of geometric nonsym-
metric theories.

A priori, nonsymmetric geometrization suffers from a
number of weaknesses. Not least is the absence of a nat-
ural way to unify the two initial building blocks G„„and
B„ into a single entity. This objection was originally
raised by Weyl [8] and Pauli [9] in connection with Ein-
stein's attempts; it states that because g„ is a reducible
representation of difIeomorphisms, there is no real mean-
ing in saying that a theory is expressed "solely in terms
of g„." Indeed, any theory involving G„„and 8& can
always be written in terms of g„, since these variables
can of course simply be expressed as the symmetric and
antisymmetric parts of g„. One might hope that this
objection could be removed by requiring the theory to
be "geometrically constructed, " a notion still to be de-
fined, but we shall see that even this constraint turns out
not to be sufficient. A more concrete problem is that the
string ~ model, and hence the perfectly consistent but
nongeometric efFective field theory it generates, is invari-
ant under the local gauge transformation
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begins as the sum of Einstein plus H&2„„ terms. This puts
the effective theory at odds with generic geometric mod-
els constructed from g„„with the number of derivatives
fixed at two, unless such models can maintain the above
invariance —which will turn out to be crucial to their
consistency. Nevertheless, despite these a priori difficul-
ties of the geometric approach, it merits reexamination
not only in view of the string motivation, but because we
will provide a simple (geometric) extension of these ideas
that restores consistency.

In this paper, we will analyze the generic geometric
models, by expanding them in powers of B„„about a
classical symmetric background, and consider the merits
of the resulting "gravity + matter" theories in terms of
standard physical criteria: absence of negative-energy ex-
citations ("ghosts"), of algebraic inconsistencies, or dis-
continuities in the degree-of-freedom content. Our results
are negative for the "geometric" two-derivative theories.
In brief, our argument is that consistency requires the
B expansion to begin with (quadratic) kinetic terms of
H„& form [10], whereas geometric actions homogeneous
in two derivatives produce extensions which necessarily
include dependence on powers of undifFerentiated B„.
These higher-power terms generically violate the gauge
invariance of the leading kinetic term, with the usual con-
s quences that there are either ghosts, algebraic incon-
sistencies, or unacceptable constraints on "independent"
degrees of freedom. For instance, as we already pointed
out in [ll], NGT suffers from curvature-coupled ghosts.
(Of course the fact that the one consistent, R+ H~,
two-derivative model can be formally written as an in-
finite series of "geometric" terms is not to be regarded
as a counterexample. ) We will then show that restora-
tion of consistency can nevertheless be achieved within
the framework of geometric theories by adding "cosmo-
logical, " nonderivative terms which render the B field
massive, thereby sidestepping the problems of gauge in-
consistencies. Such extensions will be seen to provide
viable alternative gravity models to be confronted with
observation.

In Sec. II, we introduce appropriate definitions of geo-
metric theories constructed from nonsymmetric metrics,
and the associated expansion in B„. [We also settle
there and in Appendix B certain questions raised in the
literature concerning equivalence of first- (Palatini) and
second-order formulations. ] In Sec. III, we enumerate the
generic difficulties faced by these models and prove that
they cannot be overcome by deformation of the Abelian
gauge invariance (1.3). Section IV shows in detail how
the two main previously proposed models fail. In Sec. V,
we introduce a new class of consistent geometric gravity
models endowing B„with a finite range, couple it to
macroscopic sources and discuss some possible observa-
tional consequences. All our considerations are intended
to be at the purely classical, low-energy level.

In view of the sometimes confusing statements in the
literature, it may be useful to spell out some of our basic
assumptions. The first of these is that it is meaningful
(if not outright mandatory), particularly at the macro-
scopic level, to expand the theories in terms of their two
independent coupling constants: the usual gravitational

one and a corresponding one for the B field. The theory
must obviously reduce to ordinary Einstein gravity when
the latter is neglected. Secondly, we make the physical
requirement that, when so expanded, the theory have no
ghost —negative energy —modes. For, even at the classi-
cal level, presence of such modes in the excitation spec-
trum simply means, if they fail to decouple, that the uni-
verse is liable to be unstable to their radiation. Indeed,
we will see concretely that, in NGT, such an instability
is unavoidable irrespective of any choice of initial condi-
tions.

II. GEOMETRIC THEORIES

In the standard tradition, a geometric theory is defined
by an action constructed from generally covariant objects
built with the metric tensor g» and the affine connection
I ~~„on the spacetirne manifold. The affinity may either
be an independent field (first order formulation) or a pre-
scribed function of g„, (second order). These concepts
can be largely carried over to models whose metric ten-
sor and affinity are no longer symmetric. The Riemann
curvature tensor is still

Pp+ B pp~ o (2 2)

Note that while P„„is antisymmetric, B„„has no sym-
metries. To construct a scalar curvature requires an in-
verse, g"", which we define by the usual convention

(2.3)

The antisymmetric part of the connection is the torsion
tensor

Z& i IA~ —i (IA PA ) (2.4)

Throughout, we denote unnormalized antisymmetriza-
tion (symmetrization) by square (round) brackets.

When expanding geometric objects in powers of B„,
we assume the symmetric part G» to be invertible, and
use it to move indices. Of course, the naive split (1.2)
can always be composed with a local algebraic field re-
definition, replacing (1.2) by

gpv = t p +Bvp +avBpnB v+PB BapGpv+O(B ) .

(2 5)

Note that the generic form (2.5) incorporates the fr""-
dom of defining the irreducible parts by decomposing a
difFerent "metric" field variable, say (g—g)"g"v, so there
is no loss of generality in this respect. For convenience,
we have collected the relevant expansions in Appendix
A.

A geometric theory in first-order form is one whose
action depends on g and I' through the curvatures de-
fined above, as well as on invariants —built from torsion—
which dimensionally respect the second-derivative re-

(2.1)

but there are now two possible (metric-independent) con-
tractions,
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quirement. For concreteness, consider NOT which is the
simplest generalization of general relativity in Palatini
form,

2
R„,(r) = R,„(r) — or„r „j, (2.13)

z,"G& (g, r) =g—99 R„.(r).
In D dimensions, its field equations are

( 9)-"'&~(v' 99—"")+r".~9 "+ r~. g"

(2 6)
so the Lagrangian ZNGT splits into

,(g, r, r, ) = g—99~ [R„.(r) — o,„r„j],
(2.14)

-r:„g~" 2r„-g~ +, ~„"r.g~ =0, (2.7)

R„„(1)—zi g„„R= 0, (2.8)

where I'„= 2r~~„&~ and R = g" R„„(I'). For D ) 2,
(2.7) is equivalent to

Bg 9» —I i1& gav —I Pv girja 0 )

where

(2 9)

(2.10)

is constrained by the condition

I't„~) ——0.
Combining (2.10) and (2.11) with (2.9) implies

B„(g gg~"'j) —= 0.

(2.11)

(2.12)

The superficial resemblance of (2.8) and (2.9) to the usual
Einstein-Palatini system must be viewed with some cau-
tion. One obvious difference is the fact that now just
I'"„„,but not r&, is determined by (2.9) in terms of 9& .
Instead, I'„plays the role of a Lagrange multiplier im-

posing the constraint (2.12). To see this, note that

then integrate by parts in the second term of (2.14). [In
deriving the field equations from (2.14) one must take
account of the constraint (2.11).] A second difference
from symmetric theories is that neither the metric nor
the affinity have their familiar symmetry properties, and
thus the index ordering in (2.9) is nontrivial. As was
emphasized by Schrodinger, (2.9) gives a well-defined ex-

pansion for I ~ in powers of B&„. [Actually it has been
shown by Tonnelat [5] that (2.9) can be solved in closed
form; however, the resulting expression is extremely com-
plicated. ] This is by no means the only ordering which
does so since, for example, torsion terms may be added
to (2.9) as follows

A gpv reap gav rgv 911~

= aT„~g + bT~„g~~+ cT„pg + dT~ g i1, (2.15)

without altering either its tensorial character or its
generic solvability. [Indeed the tensorial nature of (2.9) is
clearest from the fact that its LHS differs from the usual
covariant derivative of 9» by a torsion term. ] There is,
however, a line of choices in parameter space, namely
a + 5+ c+ d + 2 = 0, for which (2.15) cannot be used

to determine I'~„. We discuss this issue more fully in
Appendix A.

Because torsion is available, the above Einstein-
Palatini generalization may be further extendedi (while
maintaining the second-derivative requirement) to

l:,„„,&(9, I') = g—gg" [R„„(I')+ a P„„(I')+a B~
I' i+b ViT"„+ti T" Tz + ti T rq

+c 9" 9 p T„&T~&+czg" g p T „T&~&+cs g" g p T„&T~&+d r„r.] . (2.16)

To understand the nature of the additional terms in light of the analysis above, let us again decompose I'„as in

(2.10), to rewrite this as

8(,)„„i(g, I', I'„)= g—9 9""[R„„(I')+ ai B~„r„"I&+5 7'pT„+ b2 T„T&

+ci 9 gaPpxT p + c& 9 g~pTpvT&s + cs 9 g~pTpsTvw]
A6 a P A6 a P Ab n P

+rg
~

+ ai —a2+
~
8(g—gg" )+ s ~ Q—gg

2 2D bi l („Pj 5 TX iv
D —1 D —1 D —1

C3
+ ",T.'. ~ 9(g.pg" ..-9-")9'"+ —',T.'.(9"""-'"+9'".-"" )

( )2 9 ggc1pg 9 rprv

(2.17)

( bz l2+
~

di —
D 1+ D»+ D 1(ci+cs) l

v' 99" ——

Historically, NGT wss selected by Einstein because it possesses two (physically ill-motivated [9]) symmetries: transposition
invariance (g„„—+ g„„,I'„"„-+I'„"„,I'„—+ —I'„) and "A-invariance" (I'„—+ I'„+B„A).
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The result is that I'„still imposes a constraint in
some sens" the analogy to gauge-fixing is unmistak-
able, though as we will see, misleading. (Certainly such
a gauge-fixing interpretation is untenable unless b3

c2 —c3 —0, since otherwise it is a nonlinear "gauge"
and Faddeev-Popov ghosts would be required. Accept-
ing this constraint, the model —since it contains the mul-
tiplier I'~ both linearly and quadratically —resembles a
choice parametrized between "Landau" and "Fermi" type
gauges. ) We will not need to use the full generality in
(2.16) in the following; it just serves to show that noth-
ing very dramatic occurs if we allow it, and that the
generalizations (2.15) can be obtained from an action.
The models in which all parameters but ai and a2 are
set to zero have been especially discussed in the litera-
ture. It is clear from (2.17) that if, further, the coef-
ficient of the "I'„constraint" is chosen to vanish [i.e. ,
2+ 2Dai —(D —1)az = 0], then we have an exceptional
case, but otherwise these models are all equivalent [7] to
NGT, Eq. (2.6), and stand or fall with it.

Those members of the general class (2.16) for which the
affinity cannot be solved in terms of the metric are not
viable geometric theories and we do not consider them
any further. On the other hand, all other models can of
course be expressed in second-order form, i.e., in terms
of afBnities which are explicit functions of the metric.
We need therefore only deal with second-order formula-
tions henceforth. For simplicity, we define I'(g) by what
Einstein called the "+—"relation

Bgg» I lpga~ —I p~g~a 0 . (2.18)

R +B(„b I
= 0, 8 (v' —gg~""j) = 0,

from which we learn that

I"'„.(g) = I'"„.(g) .

(2.20)

(2.21)

Thus the field equations are equivalent to those of the
original first-order system, the Lagrange multiplier 6„
now taking the role formerly played by I'„(more pre-
cisely, b&

——D iI'&). On the other hand, the simplest
second-order theory, defined by Eq. (2.19) without the
Lagrange multiplier [and introduced [12] under the name
"algebraically extended Hilbert gravity" (AHG)], is

Second-order geometric theories are then defined by the
requirement that the action depend on g» (and its in-
verses) with all derivatives appearing in general covari-
ants constructed from I'„" (g) defined through (2.18).

As for all theories involving torsion, there is of course
a difference between the first-order theory (2.6) and
the naive second-order theory defined by the same La-
grangian with I'„"„=I'„" (g) determined by (2.18) [see
(2.22) below]. From the discussion above it is clear
that to obtain the equivalent second-order formulation of
NOT a Lagrange multiplier field 6& must be introduced,
and in fact the model equivalent to (2.6) is

g, ~) = q-gg~"~„.(r(g)) -~„a„(g g g~~"~) .

(2.19)

For, upon varying (2.19), we obtain

(g) = v' —g g" & (I'(g)), (2.22)

with I'"„(g) determined by (2.18), and is very diff'erent
from NGT. The consistency of both NGT and AHG will
be critically examined below in Sec. IV.

By this point, the reader may have noted some
pedantry in our introduction of the geometric theories
and their equivalent formulations. Our motivation for
this development was twofold. Firstly, to the extent that
we will be obtaining no-go theorems, it is important to
establish precisely what does not go. Secondly, the liter-
ature contains occasional confusing claims, for example,
about inequivalence of first- and second-order formula-
tions, so it also seems relevant to state exactly what we
believe. At the risk of overkill, we will even give an ex-
plicit derivation of equivalencc for a model where it has
been claimed otherwise, namely the linearizations of (2.6)
and (2.19)—in Appendix B.

To conclude this "kinematical" section, we return to
the fact that with a looser definition of "geometrical, "
one can write any generally covariant action involving
the standard symmetric metric 6» and the matter field
B„ in geometrical form: given any desired term, we may
simply identify G„and B„„asthe symmetric and an-
tisymmetric pieces of g& respectively. Then one is left
with the problem of representing the inverse G~ in terms
of g„and its inverse gi' . Of course the penalty which
one must pay is that an infinite number of terms will now
be required in general to obtain this representation, so
this constitutes far too loose a way to "unify" the fields.
A somewhat more geometric rewriting of a generic term
seems possible if one uses the fact that g" g
which implies that a given string of terms built from the
metric and its inverse ".g. , gi' g pg ~g~, ..., with in-
dices distributed as shown —will be nontrivial. [Indeed,
a counting of parameters —at least to fourth order in the
expansion —suggests that these strings may be used in
combinations of curvature and torsion invariants to re-
produce the desired term to any given order. ]

III. EXPANSION ABOUT
A SYMMETRIC BACKGROUND

In order to understand the consistency problems faced
by generic geometric models, it is simplest to expand the
field equations in powers of the B„ field about a gen-
eral curved symmetric background G'„. Because there
has been some confusion about expandability [13], we
emphasize that our analysis is based on the fact that
the dynamics of these two separate components, G„
and B„,can be described by two independent coupling
constants —namely the usual Einstein K~ and that as-
sociated with the antisymmetric field. We assume (as
is standard in field theory) that expansion in these cou-
pling constants is allowed, so that in particular the theory
must reduce to Einstein gravity to zeroth order in the an-
tisyrnmetric field, and require that it remain consistent2
order by order (without discontinuities in the degree-of-
freedom content). [For example, the generalization of the
Schwarzschild solution in NGT is separately analytic in
these two parameters and satisfies (4.5)—(4.7) below to
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the expected order in B.] Note that in general relativ-
ity there is a rigorous proof that the expansion in r2 is
perfectly legal "ven for studying the asymptotic behav-
ior at infinity —in that it generates a series which is the
Taylor expansion of some exact solution of the theory
[15].

We will divide our analysis into two parts, accord-
ing to whether the field equations are homogeneous of
second-derivative order, or also include nonderivativ"
"cosmological" —terms. Henceforth we work in second-
order formalism only, omitting the corresponding super-
script 2 on Lagrangians.

A. No "cosmological" terms

The leading terms to consider in the action are those
quadratic in OB. It is well known that (just as in elec-
trodynamics) the only ghost-free action quadratic in a
massless B field is the square of its field strength (1.4),
whatever the gravitational background:

Z2 = —i2/ —G H„p H" ", (3.1)

which is gauge invariant under (1.3). [We recall that
all indices are moved by G„„, our signature is mostly
plus, and that the cyclic ordinary derivative ("curl" ) in
the field strength (1.4) defines a tensor. ] Hence any geo-
metric action inequivalent (modulo field redefinitions) to
(3.1) at order (BB)2 already contains ghosts, and so can-
not provide an acceptable effective action. [We shall see
shortly that this conclusion holds even in the presence
of apparent "gauge-fixing" terms, as in (2.19) for NGT. ]
The requirement (3.1), already necessary in flat space, is
however far from sufficient when working about generic
backgrounds. Consider, for example, a typical term in a
geometric action (from Appendix A),

We underline that these generic nonlinearity expansions
about a background are to be distinguished from the more
specialized combined weak-field-short-wavelength (Isaacson)
expansions [14]; contrary to the claims in [13] the latter have
no particular relevance in the present context.

gg" R (g)—= g GR(G) ——'—g GH& 'H„„&-

+-,'[-,' —~+ (D —2)P]g—GR(G)B'
—nQ —GR„(G)B" B "
—Q—G R„„p(G)B" B"~+ O(B ),

(3.2)

where bars denote covariantization with respect to the
G& background and we have dropped total derivative
terms. In addition to the correct (BB)~ terms (3.2)
also contains (dimensionally equivalent) background-
curvature-coupled terms RBB. The latter fall into two
classes: those involving only the Ricci tensor (or scalar)
are removable by field redefinition, with the appropri-
ate choice of n, P in (2.5). However, terms involving the
full curvature cannot be so removed (for D ) 3). Their

presence is fatal to the consistency of the theory because
they destroy gauge invariance, which leads to unaccept-
able local constraints. This will be elaborated for the
key cases in Sec. IV. It is clear from the formulas of Ap-
pendix A that the consistency requirements at quadratic
order in B rule out almost all the second-order actions
of the form (2.16). It is nevertheless possible to achieve
a consistent action at quadratic order (pure H2 without
RBB terms) by combining several "geometric" terms.
Using the results of Appendix A, an explicit example of
a quadratically acceptable action is

gg~-" [R„.(g) —r„r. T„.,T-."„
Tpv g~pg TppTv t (3.3)

after appropriate choice of field redefinition. Let us con-
sider now the general class of quadratically acceptable
actions,

Z~ = 82+ ) 2„=—Z2+ l:& .
n)3

(3.4)

Here Zd, is a modification of the required gauge invariant
Z2 of (3.1) by higher-order (n ) 2) terms in B„(with
two derivatives or a curvature term). Clearly, an ex-
pression of the form (3.4) is also not generally consistent
since it involves terms of the form RB" or OBDBB"
so that it loses the initial invariance (6p) of H„„~. This
loss of the local invariance entails unacceptable conserva-
tion constraints (notorious in higher spin gauge theories)
on the nonlinear sources of the identically conserved lin-
ear term in the field equations. So, these models are only
saved if the Abelian invariance itself can be deformed to

b =6p+) b„=6p+b& (3.5)

AS„=—6„, 2 S2 (3.6)

such that the action Sg is invariant under the deformed
transformation. If such a deformation exists at all, it will
also be present in particular when the background is flat,
G„= il„„. [The only exception would be a deforma
tion of the full theory which reduced to the linear invari-
ance at G&„——g„. However, the deformation 6) must
then be built with curvatures, and thus would contain
too many derivatives to produce an invariance of a two-
derivative order action. ] We now show that there is no
such deformation available even about a flat background
(for an initial attempt at finding such a deformation, see
the third reference cited in [12]).

We preface a demonstration of the nonexistence of de-
formations of (3.1) based on the technical approach of
[16],by giving a transparent (though somewhat heuristic)
argument for the case of Maxwell theory. In that case,
one may ask for a consistent deformation of ZM(BA) =
—

4 F„„by two-derivative terms 8) of higher order in

A„, invariant under the extension b = bp + 6) with
6'p A„= O„e. This was shown not to exist in [16]. Another
way to see the problem is as follows. Let Z„„np & 2, be
the first nonvanishing deformation; we then need 6„,
with
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But then

bgM

0
(3 7)

(U', V') for which there is a matrix f algebraic in B„„,
f(o)

——6„", such that

(U~)P" f& UP%

bA„= e B„f(A),
whose Noether current is

(3 8)

where ~0 means evaluated on free (S2 ) mass shell. Now if
J" is a conserved current on linearized shell, there must
(by Noether's theorem) be a corresponding continuous
symmetry (with a scalar parameter e say) of the Maxwell
action, local of order np —2 in A& and of first-derivative
order. (This ignores identically conserved "superpoten-
tial" currents K~ = 8 Z(" ] which should be removed by
field redefinitions. ) Basically the statement is that there
are non" and this may be verified by explicit enumer-
ation (if nothing else) "xcept those equivalent to the
original local gauge invariance,

(3.14)
(Vi)x fAV6 (f—1)'Y + (f—1)'YB fA

Further, one easily sees that a field redefinition only af-
fects U, and that there exists (locally) a field redefinition
which sets U"& ——b~I b&~ if and only if

(3.15)
pb pb

One obtains constraints on the existence of a deformed
gauge invariance of the form (3.13) by demanding the
closure of the gauge algebra, namely that it be possi-
ble to find a transformation parameter c" (depending on
e, e', B) such that

J"= [8 f(A)]F" (A) . (3.9)
[b b I] bi/ (3.16)

+P +be
bB„

(3.10)

where Pi» = &B~H""~, and the "linearized Bianchi iden-
tity" is

O„T,":—0 . (3.11)

For the deformed theory to preserve its degree-of-freedom
content, the field equations (3.10) must admit a corre-
sponding (nonlinear) Bianchi identity, which can be writ-
ten as

8„(U."pX P) = U."p'V„„Z P,
(3.12)

U(o)"p ——bi bpj, V(0) p
——0.

In turn, the identity (3.12) is equivalent to requiring in-
variance of the action Sg under the deformed gauge trans-
formation

6B„~= U„P(8 ep + V peg) . (3.13)

Here, consistent with the derivative constraints, U p
——

—
U& is algebraic in B„and V~& contains at most

one derivative of B». Clearly this is a redundant
parametrization, in that (U, V) is equivalent to the set

This is indeed a conserved current on linear shell, and
in fact the field equation 8 F„„=[8 f(A)]F„ is per-
fectly consistent, though not gauge invariant. However,
it cannot be derived from an action; thus one cannot
find any consistent deformations of the Maxwell action
and its gauge invariance. This argument may probably
be extended to the B field, but for technical ease we will
follow [16]. Going back to our B„„problem, (3.4), let
us begin with a quick review of the main points in the
approach of [16]. (Note that we do not derive here the
most general result possible, but simply demonstrate it
in the context of actions homogeneous in two derivatives
as is relevant to our discussion. ) Denote the equation of
motion by E",

—8[~8 E~BpE~) —(E ~~ E )] = 0 . (3.18)

Setting e„ to be a constant vector we learn that
as 8[pc&c ]

= 0 for all e', and thus as = 0. Similarly, tak-
ing 8&e„=S&„——S & constant, and 8&e = A& ———A &
constant, we find b2 = 0 and ai = a2. Thus imposing the
closure constraint (3.16) to zeroth order in B has reduced
the First-order deformation to

A
V(,)i p)

—a~a
(3.19)

Moreover, inserting (3.19) into (3.16) yields 8(&~('o) ]
——

0, from which we deduce that e(0)„——0 because it is
impossible to construct a pure gradient which is bilinear
in e& and e„' and antisymmetric under their exchange.
If we now consider the special case for which e„= B„e

The strategy is to try to determine U and V order by
order in B», by imposing (3.16). At the first order we
have candidates (the symmetric part of V at this order
will be seen to be irrelevant)

U( ~) p
——biB("bp) + b2B( "6$),

(3.17)

V(i)( p)
——aiB B~p+ a28(~Bp) + a38 Bp[~6p]

A

By using the freedom (3.14), with f(i) B„,we may
set bi = b2 To —zero. th order these are all that are
required in (3.16), for which at this order the right-hand
side is just 8(„e('o) ]. Thus we may simplify by taking B~

and totally antisymmetrizing over [Apv], to obtain

2b2 [8[pE BpB~c~] 8[pB cpB~E
)
—(t ~~ E )]

+(ai —a2)[8 8(pE Bp]t —(E ~—+ E )]

+as[ Bye„e'„) + e(„8),e'„)
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U{„~)".~
—O, n & i,

V(„)( p(
——o, n & 0.

(3.21)

Hence we have shown that it is not possible to produce
a deformation which will give a consistent generalization
of the gauge invariance in this case. As the only gauge
invariant actions that can be written down in D = 4 is

f d4xg —GH2, we conclude that (3.1) defines the only
consistent theory in the absence of cosmological terms.

We now brieHy return to close the remaining loop-
hole, that perhaps some terms beyond (3.1) appearing
at quadratic order could be interpreted as "gauge fix-
ing. " The main point here is that the very notion of
gauge fixing does not make sense unless there is an un-
derlying gauge-invariant theory, —and, as we have just
shown, there is no natural candidate in this geometric
context. Therefore all the Lagrangians (2.16) contain-
ing F„multipliers will necessarily exhibit propagating
ghosts, without the possibility of projecting onto an in-
variant ghost-free subspace. It is here that the lack of
underlying gauge invariance is lethal —this moral is well
known, and we content ourselves with illustrating it in
an example in Sec. IV.

B. With "Cosmological" terms

Suppose we now also permit "cosmological terms"
(i.e. , terms without derivatives) in the Lagrangian. The
archetypal example is g—g = Q—G(1+ 4B + ), but
we could also arrange to cancel g—G or in general give
difFerent coefficients to v —G and the B2 term (see Ap-
pendix A). Perhaps surprisingly, this alters the no-go
conclusions of the preceding subsection despite the fact
that g—g is certainly geometric in the narrowest sense.
[As emphasized by Schrodinger, who favored them [3],
such models can even be obtained from the geometrically

Note however the possibility, when D = 5, of Chern-
Simons-type kinetic terms: f d x e""" pH„„gB p.

and e'„= O„e', then (3.19) is all we require to impose
(3.16) to first order since the zeroth-order variation of
B vanishes. The right-hand side of (3.16) then reduces

Il If
at lowest order to Bt&E{]) I

where e{y) is linear in B.
As above, on taking the curl of the resulting equation
we obtain a simple constraint which can generically only
be satisfied if ai vanishes. Another way to prove that
necessarily ai = 0 is to check that there is no combination
of the two possible nontrivial terms in a cubic action,

l:s = B„„(A18"B"PBB~p+ A20"B~pg B P),
(3.20)

which can compensate the change of (3.1) under b'1 B„
H „„ep, i.e., which solves biZ2 ———6083. Having proven
the triviality of all possible first-order deformations, an
inductive argument using (3.16) exactly as in [16] shows
that 4f2B —B" = 0 . (3.23)

We may look for a solution expanded in "powers of non-

linearity, " B» ——g„&oB„" around B(0) = 0. Up to
third order, the equations are

18 H» (B(1))— m (B('))~v = O

-'a H» (B(')) —-'m'(B('))~" = 0 (3.24)
1

Og H»v (B( ) )
1 m2 (B(3))pv

+ 1 g [f (B(1))2H»v (B(1))] 4f (B(1))2 (B(1))pv

'f [H(-B-('))]'B(') i = 0

As long as m2 g 0 there is no problem with consistency
constraints from lower-order equations on the higher-
order ones. For example, now using the identity (3.11)
simply determines that 8"B„=0 = Bi'B~(„) and gives a
relation for 0"B„v in terms of the lower-order terms in
the solution.

Although m g 0 avoids the local consistency con-
straints in a perturbative expansion in B„„,more work
would be needed to check whether, from a mathemat-
ical standpoint, the field equations associated with say
(3.22) form a well-posed problem, with acceptable causal-
ity properties.

IV. PROBLEMS WITH THE BASIC MODELS

In light of our discussion in Sec. III A, it should be clear
that a generic (massless) geometric model will violate ei-
ther ghost-freedom or local consistency requirements. In
this section, we will illustrate these failings by studying in
some detail the two main examples of geometric models
which have been proposed in the literature.

Consider first the simplest second-order theory (AHG)
[12],

&A'HG(g) = V'—gg'" &p (g) (4.1)

As we saw from (3.2), this model's expansion already
has a term quadratic in B„„,proportional to the full
Riemann tensor. It can neither be field redefined away,
nor is it 60-gauge invariant. Thus the model is sick
already at quadratic order, having "ghost" kinematics,

elegant —purely affin~ Lagrangian g—detR„(I').] The
point is that once a mass term (~ —4m B2) is included,
then the obvious constraints associated with gauge invari-
ance disappear; for example, we do not need to attempt
the (fruitless) deformation route to avoid conservation in-
consistencies. [Of course, the second-derivative quadratic
term must still be H2 for ghost-freedom, just as it is only
—

4
F2 —2m2A2, but not 2A" ( —m2)A„which is an

acceptable finite-range vector Lagrangian. ] As an illus-
trative example, consider the Lagrangian

2 = —12(1+fiB )H&„—4m B —f2B2B2, (3.22)

where f, are some coupling constants. The equations of
motion are

28'[(1+ fiB2)H"f' ]
—

s fiH2B"" —2m2B~
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even though its flat space limit is the required H~ theory.
This much was noticed in [17]; earlier it had separately
been noted that these theories had no asymptotically
flat static spherically symmetric solution [18]. To elu-
cidate further the sickness of the model when expanded
on a curved background, let us consider the field equa-
tions, which decompose into symmetric and antisymmet-
ric pieces as follows:

R„„+O(B) = 0,
(4.2)

V H „„—4R„pB P+0(B ) =0.
As we are only looking for a family of solutions contin-
uously connected to those of general relativity, we can
ignore the terms of higher order in B in these equations.
By the identical conservation of VH, we then have the
consistency requirement

(4.3)

which by the Bianchi identities (using R„=0) can be
simplified to

(4.4)

This is an unacceptable local constraint on the "indepen-
dent" degrees of freedom.

Our second example is NGT, which has been regarded
as the remaining geometric model apparently not disqual-
ified by previous work. Its linearization about Hat space,
considered in Appendix B, consists of linearized Einstein
theory plus a gauge fixed version of the Hz action [7].
One might therefore have hoped that its undesirable ex-
citations could always be projected away in a consistent
fashion, and thus it would exemplify "geometric theories
with built-in gauge fixing, " as discussed at the end of Sec.
III A. We now show, however, that NGT is inconsistent
at the next level where the G' background is no longer
Hat. 4 Thus the analogy to gauge fixing will be seen to be
invalid, consistent with our previous general conclusions.
(The following discussion amplifies on the result briefly
announced in [ll], and is included for completeness. )

Using (A8), the field equations, to zeroth and linear
order in B&„,become

namely bB„„=B~„e
~

with B&OI„t.
~

= 0. If we consider
instead a generic Ricci-flat background (4.5), then the
putative residual gauge invariance

SByv 0[pEv] ) V V [pev] —0 (4 8)

is clearly lost because of the RB term in Eq. (4.6). This
is an immediate indication that the system in a generic
background is no longer the gauge-fixed version of a
ghost-free theory. (A contrary statement in [17] has since
been corrected in [19].)

A more direct way to exhibit the problems of the sys-
tem (4.5)—(4.7) consists of taking the divergence of (4.6).
This yields

V V[„F.] = (D ——1)R„.P V&B.p (4 9)

I = d xQ G[R ——
~~ H —q(B~F —LF„)B"

—R B B + O(B')]

d TQ GR+ IM. — (4.10)

In this formulation the matter stress tensor reads

which is an inhomogeneous Maxwell equation for I'„.
Consequently, one can no longer fix initial conditions
to eliminate I'& invariantly, and these dangerous extra
modes do not decouple, even in the vacuum theory we
are considering here. The situation would be worse in
any matter-coupled version of the theory as the right-
hand side of (4.9) would contain additional terms acting
as localized sources of retarded I'„waves.

We now show how the existence of a propagating I'„
implies the presence of ghost (negative energy) modes.
To be explicit, let us first summarize how energy is to be
calculated in the theory, or more relevantly, in our ex-
pansion scheme. For simplicity, we consider the problem
in D = 4 spacetime and we treat the case in which there
is no normal cosmological term v' —G; its presence would
not alter our conclusions. Then, we require asymptotic
flatness, and hence suKciently rapid decay of the I3 field
at infinity. This permits us to split the action through
order Bz into "Einstein plus matter" form:

Bp 7/ 0) (4.5)

(4 6)

(4 7)

upon inserting the solution for I' to this order into the
g& field equations. In a flat background, this system
of course reduces to the set (B5), (B6), which is shown
there to be precisely a gauge fixed system. The gauge
condition (B6) still admits a residual gauge invariance,

The inconsistency to be exhibited is quite different from
that exempli6ed by AHG. There are no analogues in NGT
of the local algebraic inconsistencies of the type (4.4), as is
implicit in the mathematical study [4] of the local analytic
Cauchy problem for NGT; its problems are of a physical and
global nature.

(
i HyaPHu i GPv H2)

+( B/lcm' f + Bv(x f/J, G/ill fAPB )

+(&R pB'] B~P —G"'R~ gpB~~B P)

V'pV' (B ["B ]P), —

(4.11)f„=B„F~—B„F„.
Only the first term on the right-hand side leads to posi-
tive energy; its 00 component is (omitting metric factors)
given by ~ 3 Hozj + Hajj, The remaining ones fail to do
so, even after using the B equations of motion (4.6) to
eliminate f„= &

(V"Hg„„—4R„~ pB P). Thus the
proof of positivity of energy for normal fields fails here.
Still assuming that all fields fall oE sufFiciently fast at
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infinity, let us consider the asymptotic energy Aux asso-
ciated with (4.11). At infinity, the third term in (4.11)
vanishes, while the fourth one is easily seen to be a sim-
ple superpotential (i.e. , of the form B~BpK~& ~~ ~~) mak-
ing no net contribution to the energy-momentum Aux.
On the other hand, the first term in (4.11) gives a pos-
itive contribution corresponding to the radiation of the
one scalar mode contained in the transverse projection of
B,~, while the second term gives a nonpositive contribu-
tion associated with the interplay between the radiation
of Bp and that of I', . When comparing our results with
those of the related analysis in [20], we found sign mis-
takes between (2.21c) of [20] and the "NGT luminosity
formula" (3.16) of [20]. In fact, the signs of the NGT
terms in (3.16) of [20] should be reversed to be made to
agree with our (4.11). With corrected signs the results
(4.39) for the "radiation fields to lowest post-Newtonian
order" in [20] imply that NGT waves radiate a negative
fii.'w of dipole radiation. However it must be pointed out
that such a calculation is even in itself undermined by
another dire physical consequence of NGT, namely the
loss of any acceptable fallofF behavior of B„„in the wave
zone.

To investigate the fall-ofF behavior, let us assume that
the curvature decays fast enough at infinity. s Then, (4.9)
yields (in the Lorentz gauge 7'i'I „=0) an inhomoge-
neous wave equation for 1 & which implies that it has the
usual 1/r falloff at future null infinity. However, insert-
ing this information in the right-hand side of (4.6), one
finds that B» (and in particular its longitudinal part)
fails to vanish at future null infinity. For example, we
have checked explicitly that in the usual matter-coupled
version of NGT [7], considered in the post-Newtonian
approximation [20], I'„ is predominantly radiated as a
dipole, i.e.,

I' B,[B D'(t ——r)/r],

I" BisD'(t —r)/r,
(4.12)

where D' is the dipole moment of the conserved particle
number density S used as a macroscopic source in NGT.
This in turn generates a nondecaying behavior for B„„,
e.g. , for r —+ oo at constant t —r,

Bo,(r, t) = A(n, n~ —b,~ )B, D~ (t —r) + O(1/r),
(4.13)

B,, (r, t) = An(, 0, Dg + O(l/r),

There have been recent preprints [13,21] which disagree
with our conclusions. The claims in these preprints, be-
yond those we have explicitly dealt with above, seem to
be of two types: that full nonperturbative solutions of
NGT would not exhibit the pathologies we have found in
our expansion; and that the bad asymptotic behavior of
B» is a consequence of the use of the Lagrange multi-
pliers I'&. The latter is easily dealt with by eliminating
the Lagrange multipliers and showing that the result-
ing equations reproduce the bad asymptotic behavior. 6

The former is in general outside the scope of this pa-
per. It would be extremely interesting to find such solu-
tions. In [21] an axisymmetric solution was proposed as
a modification of the Bondi soultion in general relativ-
ity. Unfortunately, one can quite straightforwardly see
that this proposal does not satisfy all the field equations
of NGT. In the first version of [21] their antisymmetrie
field equation (4.4f) is an ordinary differential equation
for the function of one variable a.(u) with coeKcients also
depending on the other variables r and 8. Therefore,
in the general case of an arbitrary general relativistic
"news function" c(u, 8), it admits only the trivial solu-
tion o.(u) = 0. The June 1992 revision of [21] contains
essentially the same error as the original version: their
new ansatz again fails to satisfy all the required field
equations. Specificall, the antisymmetric Ricci com-
ponents of their (4.11) do not obey their antisymmet-
ric field equation (4.1). These conclusions also follow
from considering the leading terms in the Bondi expan-
sion of our field equation (4.6) above, as we have explic-
itly checked. Beyond these specific problems, one would
surely also expect "ven on phenomenological grounds—
that the most important sector in the solution space is
precisely that smoothly connected to the solutions of gen-
eral relativity. In any case, we feel that to find a pathol-
ogy in this sector is to find a serious defect in the theory.

Let us note that the above inconsistencies are reminis-
cent of the well-known problems with higher spin matter-
gravity couplings (see, e.g. , [22]). Like the latter they
occur at the first nontrivial level beyond fIat space, and
give rise to complicated causality structure. Indeed, it is
clear from the presence of the R„„@B~B ~ term in the
action, which couples second derivatives of 6& with B
terms, that the characteristics of the theory will differ
from the usual (multiple) G„-light cone by Bz terms.
In fact, mathematical study of the e~act characteristics
of vacuum NGT [4, 6], showed the existence of three dif-

where n'—:—", and A is a constant. The problem can
only get worse at higher orders in B&„, suggesting that
the fully nonlinear theory in B does not make sense glob-
ally either.

This assumption permits us to treat the source terms in
(4.9) as quasilocalized, and hence is clearly the most favorable
choice. Any weakening of this assumption would generically
lead to worse fall-oR' behavior and could only strengthen our
negative conclusions below.

First, taking the curl of (4.6) eliminates I „,leaving an inho-
mogeneous wave equation for Hp„„. At best, then, H decays
as 1/r at null infinity. Next, we determine B„„from (4.7) and
the definition (1.4) of H: Rewriting the latter two equations
in terms of the duals (F"",J") of (J3 s, H p~) respectively,
leads to ordinary Maxwell equations for the field F" with
source J". Since the "current" J, i.e., H, falls off as 1/r,
we have thereby con6rmed —without having had recourse to
I'„—the conclusion that F, i.e. , B, generically fails to decay
at the null infinity.
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ferent characteristic cones along which coupled G —B
modes propagate.

In summary, we conclude that since only R(G) + H2
is consistent, and all natural two-derivative "geometric"
formulations typically have both unremovable naked B
dependence and/or the wrong (VB)z structure, Pauli's
words about NGT, "what God has put asunder, let no
man set together" apply quite aptly to all nonsymmetric
gravity models without cosmological terms.

V. FINITE-RANGE MODELS

We saw in the previous sections that "geometric" non-
symmetric theories generically failed to obey consistency
requirements unless the antisymmetric field is given a
finite range. 7 In this section we consider these mas-
sive models with emphasis on their possible observa-
tional consequences when coupled with matter, explor-
ing ways in which the antisymmetric tensor contributes
to the effective gravitational interactions of matter at
laboratory or celestial scales. Needless to say, we will
keep to ghost-free models whose kinematic terms are
the gauge invariant —

iz H& „.To set some bounds on
the range p,

i (or mass p), which is a free parameter,
we recall that its formal introduction was through a
cosmological-type term which suggests an upper bound
p

i A i~z Ho 10io light years. A lower bound
will be dictated by the matter couplings chosen and the
limitations due to technical possibilities.

The basic question in studying alternative gravity
models is to identify plausible macroscopic sources of
B». The first possibility that suggests itself is a di-
rect coupling of B„„to some kind of microscopic po-
larization tensor, say J& = @ai' Q. However, such a
coupling yields negligible macroscopic forces between or-
dinary (unpolarized) laboratory or celestial bodies, and
therefore does not constitute an interesting starting point
for our purposes. A diferent possibility is suggested by
the link with the geometrical g„—I'"„„models explored
above. Indeed, Eq. (A5) for instance shows that the mod-
els we want to explore contain a propagating torsion

T"„=7' B~, ——H"„„+O(B) . (5 1)

We noted that the symmetric part of the field need not itself
acquire a cosmological constant; in any case the latter is not
relevant in the search for distinctly non-Einsteinian efFects.

By analogy with the coupling of G&„ to the stress-energy
tensor TI", it is natural to look for a 3-index macroscopic
source 8& coupled to the torsion (5.1) or, by duality, a
vector current coupled to e"

& T „.Natural candidates
are Dirac currents, @p g (the resulting coupling constant
is dimensionless if B», like G&, is geometrically nor-
malized). Let us denote a general combination of such
fermion currents by J". The total antisymmetry of the
tensor density J* ~" = e ~ J implies that its coupling

to the torsion (5.1) involves only the field strength H~„„.
(Note that throughout the remainder of this section the c
symbols will be simply a totally antisymmetric collection
of numerical constants, completely metric independent.
Thus e~&"~ transforms as a contravariant tensor density,
while ep„„=e I" = +1,0 is not related by the met-
ric. When needed, appropriate factors of g—G will be
inserted explicitly. )

The basic macroscopic coupling of the B Beld that we
shall consider is then

Sg= d zing= f4 j.

6
d xHg„„J* "

d x e"" PB pB„J„, (5.2)

g» ——G»+ aB»B + bB pB PG„„+O(B4) .

(5.3)

Drawing on the example of the Einstein-Cartan-type the-
ories, with independent torsion, propagating or not (see,
e.g. , [23]), we can also consider more general theories
where matter is coupled to the above L, as well as to
some independent connection with torsion, say

I » = (+&)g + cV Bil~ + dg H~p~ + (5 4)

where the first term on the right-hand side denotes the
ChristofFel connection of g„„and where c and d are two
additional parameters. Further terms could represent
similar torsion terms built with the dual of B„,and/or
higher-order terms.

If all matter were minimally coupled to g», then the
equivalence principle would still hold [apart from the
current-current finite-range interaction entailed by the
direct coupling (5.2)]. However, use of the full connection
(5.4) (required for fermions) or allowing matter couplings
other than just to g„generically violates the equivalence
principle. A convenient parametrization of equivalence
violation is to allow diferent types of matter to couple to
difFerent "metrics" g~+ and aKnities I'+~ labeled by dif-
ferent parameters (a~, b~) in (5.3) and (c~, d~) in (5.4).

A stronger, dilaton-inspired way of violating the
equivalence principle would be to have the material
Lagrangians multiplied by factors of the form (1 +
eB~~B~p). Finally, recent studies in NGT [24—26] also

where f is dimensionless if B„ is. The Pauli coupling
(5.2), being actually gauge invariant for any J~ {con-
served or not), could also have been used to couple a
massless {gauge) B field to matter. However, it is easily
seen that in that context B&„ is really a massless scalar,
P, coupled to 8&J", which is merely another way of in-
troducing an extra scalar interaction.

Having selected a basic macroscopic source for the B
Beld, we can use the geometric motivation to add further
phenomenological couplings between matter and the B
field. In particular, using the general field redefinition
(2.5), we can define a class of metric theories of gravity
where matter also feels the influence of a two-parameter
"physical" metric
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suggest the possibility of violating the equivalence princi-
ple by adding nonmetric couplings between B„and the
electromagnetic field, say

&'aF =&(B~ F" )' (5.5)

[The other possible quadratic couplings B"~B~~F„pF„i
and B ~B pF„,Fi'" are already covered by the parame-
ters a and e introduced above, and the terms quadratic in
the dual F„"„,e.g. , (B„F'"~)2,are equivalent to these; a
linear mixing B„F""would lead to unacceptable asymp-
totic behavior. ] Note that even if there is only one metric
L„which couples universally to matter, then (5.5) vio-
lates not only equivalence but also local Lorentz invari-
ance and local isotropy of space. Indeed, by Eq. (5.2),
fermionic currents outside a local laboratory will generate
an external, macroscopic, B„ field that will introduce,
via (5.5), preferred spacetime directions in all physical
effects involving electromagnetism.

We propose, then, a general multiparameter gravity
model defined by a Lagrangian of the type

where B = N + Z is the baryon number and L = Z
the total lepton number. (When exploring cosmological
aspects of the present class of theories, one also has the
possibility of introducing a different coupling to fermionic
dark matter. )

We certainly do not claim that such a general model
recommends itself by its elegance, but we propose it as
a replacement for NOT to provide a foil for general rel-
ativity, useful for suggesting some intriguing possibilities
in experimental gravitation. In addition, our general ap-
proach, motivated as it is by string theory, nonsymmetric
geometric models and Einstein-Cartan-type theories, is
likely to encompass more possibilities.

In order to outline the main types of observational con-
sequences of our general model, let us study the B-field
equations. If K„denotes the effective source for B„„
(including nonlinearities), i.e. ,

l.J+ ) (1+e~B )f~+Z~F

2=l ~+l:~+l:J
+ ) (1 + &AB')~A [0A e„., I „"."]+ &+F

A

where

Tl(G)
—G—

(5.7)

we can formally write the B-field equations as

2 2—7' Hp„+p B„=rK„

The identity 7' 7' H~» —= 0 implies

(5.11)

(5.12)

is the Einstein Lagrangian (r = 4+GN, wt~„),

—H + —p, Bg—G
12 4

(5.8)

(5.13)

and hence we obtain the following inhomogeneous Klein-
Gordon equations for B~

is the massive ghost-free B Lagrangian (with B dimen-
sionless in these gravitational units), and ZA denotes the
Lagrangian describing some matter field @~ minimally
coupled to a metric and a connection, e.g. ,

2 2( —0.'
(AB)„,+ p B„„=i~

~
K„„+—0(„V' K,)~ ~)

(5.14)

(5.9)

q5 —= g—G dsx Jo = Bcos(8s) + I sin(8s), (5.10)

Here e is the vierbein and I', a general connection (5.4);
latin letters denote local indices. The other terms in (5.6)
denote the coupling terms already introduced, (5.2) and
(5.5). The only dimensionful "gravitational" parameters
entering the general class of Lagrangians (5.6) are the
bare gravitational coupling constant K and the mass p, of
B (with dimensions of inverse length in ordinary units).
The dimensionless parameters are the (possibly matter-
dependent) numbers (a~, . . . , e~), n, together with the
current coupling constant f and various mixing angles
defining the given current. Such angles have been dis-
cussed in the "fifth force" literature, where it was noted
that the current J~ could contain several free weight pa-
rameters (e.g. , distinguishing the lepton numbers belong-
ing to different families). In the case of coupling to ordi-
nary macroscopic matter, it is enough to introduce one
mixing angle [27], say 85, such that the total "charge" is

where 6 denotes the Hodge —de Rham Laplacian in the
metric G„,differing from the ordinary Laplacian by cur-
vature terms:

(AB)„,:——G ~ 7' 7'pB„+ (RB)„ (5.15)

If K„were a linear (B-independent) source, the in-
teraction mediated by B» would be equivalent to that
due to a massive vectorial (Proca) field. This equivalence
is most easily seen in first-order formalism. Indeed, let
us start from the first-order form of the massive B the-
ory with both potential and field-strength (Pauli-type)
coupling to external sources,

Let us note in passing the singularity of the massless limit
as made evident by the 1/p factors in the right-hand sides
of (5.13) and (5.14). However, this singular behavior con-
cerns mainly nonlinear O(K ) terms in B because, as is clear
from (5.2), the leading source term, v' —GK" = f @,j'"" +
O(e f), is conserved: 7' K""= 0+ O(e f)
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Z(B, H) =— 1 2 1 2 2——H + —p, B
12 4

+ H—" BpB„)Ap, v

+—Q—G B„„K""+ —Q—G Hp~ L""

(5.16)

Definings F„= v' —G ~~e~ pB P, A„
—~ „e„p~H ~~, one obtains

Z(A, F) = v' —G —F ——p, A ——F""8( A
)

2 2 2 I/

4 2

gP KP E~

proca 6 ~ ~P'Y ~ procay' —G

+g-G A„Jg,...+ —g-G F„.Mg;...,
2

(5.17)

which is the first-order form of a Proca field coupled to

p, vanishes. To quote some numbers, the dimensionless
quantity a.s = gs/(r miv) (where miv denotes, say, one
atomic mass unit) was found to be bounded by + 10
when p, =1m, & 10 when p =1 km, and &10
for p ) 10 km [assuming a coupling to baryon num-

ber, i.e. , 8s = 0 in (5.2); see [28] for precise numbers, the
".". pendence on the mixing angle, and further references].
The important points for our present phenomenological
purpose are that the strength f of our basic coupling is
unbounded as the range increases, and that the magni-
tude (5.21) of the B field itself is primarily proportional
to f and independent of the range p i (until the non-
linear terms oc r2p, s come into play). This therefore
opens the possibility of having a B field of "gravitational"
strength, contributing significant new macroscopic forces,
while still keeping compatibility with the existing strin-
gent bounds on possible composition-dependent effects in
Newtonian gravity.

To discuss the leading observational consequences of
our general framework, it is convenient to replace the
fundamental dimensionless coupling constant f by the
auxiliary quantity

(5.18) (2f) x10 cm
FA~

(5.23)

Equation (5.14) can formally be solved by successive
iterations in powers of K2,

which has the dimension of length and which couples
B to m~ J", i.e. , roughly speaking, to the baryon rest-
mass density. Then we introduce, as leading "short-range
gravitational potential, " the quantity

(5.19) ~'m~ Jo
p2

(5.24)

K„= f e„~pB—JP + O(r f),
one gets

B„,= r. f(& —p, ) '[e~„pB JP]+O(r. ) .

(5.20)

(5.21)

Moreover, our previous results (5.15)—(5.17) [remember-
ing the Pauli form (5.2) of the lowest-order matter cou-
pling] show that the lowest order matter-matter coupling
mediated by the B field (5.21) is equivalent (apart from
contact terms) to a vectorial "fifth-force" interaction cou-
pled to the fermion current J" [with total charge (5.10)]
with dimensionless coupling constant

gs =Kerf . (5.22}

Note the proportionality of the strength of the effective
fifth-force coupling to the inverse range of the interaction.
On the other hand, recent experimental work on possible
fifth forces has put bounds on g5 that, though becoming
more stringent as the range p, increases, stay finite as

where, for simplicity, we shall consider a fiat background
metric, G„= iL„. Inserting the O(r ) source read off(o) 0

from (5.2),

1
Bo = —e,~i,B~i, = AO, V,

2
(5.25)

the electric components Bo, ——
2 e,&I,B*k being v times

smaller.
We can reexpress the auxiliary coupling length A in

terms of experimentally constrained fifth-force quantities
as

A = /os p = +os x (range of B}. (5.26)

This shows that A can take any macroscopic value, as long
as the range of B is large enough (the corresponding value
of f is then large, e.g. , f 10is m~/miv for A 1

(which is approximately equal to the Newtonian potential
U = K~A i TM—when the range is large). In units where
only the velocity of light is set equal to one, the potential
V is, like U, dimensionless. Then the leading components
of B„(for slowly moving sources J'/Jo v (( 1) are
the "magnetic" ones,

Note again the singularity of the massless limit, which we
know turns the B Beld into a massless scalar.

Note that, in view of our above proof of equivalence of
linear I3 couplings to vectorial ones, this possibility exists
only if there are explicit B-dependent terms in the Zz-type
Lagrangians (i.e. , some parameters among a~, . . . ,e~, o: must
be nonzero).
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km, where rnI denotes the Planck mass).
At order r. , the B field has two kinds of metric-

gravitational effects. On the one hand the Z~-part of
the action contributes O(B2) source terms in the Einstein
equations for G», and on the other hand the B terms
in the definition (5.3) contribute directly to the physical
metric in which each type of matter "falls." Both types
of terms will contribute terms of the form

——ln( —goo) = U+ k(Act, V)
1 2 (5.27)

(5.28}

for some numerical constant k, to the logarithm of the
time-time component of the metric (which plays the role
of a "quasi-Newtonian" potential). (We have omitted p,-
dependent terms on the right that we do not attempt to
discuss here. ) Hence, we see that, when p,

i is greater
than the characteristic distances of the problem under
consideration, there will be a "van der Waals" higher-
power-type contribution r4A2Mz/r4 to the effective
gravitational potential (this arises separately from the ~
r~A2p2M/r composition-dependent fifth force potential).

If we consider the minimal models with a universal
metric coupling (a~ = a, b~ = b for all A' s, c~ = d~ =
e~ = n = 0) the main new effects carried by the B field
(apart from the fifth-force one) will be associated with
the (AV'V)2 potential of (5.27) (as stated above, this re-
quires nonzero explicit B terms in the physical metric;
az + b2 g 0). As A is a universal length, these effects
should be strongest in the smallest and most strongly
self-gravitating (V & U ~ 1) objects, namely neutron
stars. Such models could therefore offer interesting foils
for the strong-field regime of general relativity. A de-
tailed study is needed to see if they could be tested by
means of binary pulsar data, following the methodology
of [29]. If A is large enough these terms could be tested
in the solar system as (A/r)2 fractional deviations of the
post-Newtonian eEects. In this, and the following, dis-
cussion we assume a range larger than the characteristic
distances of the system considered. We are aware that
this might be difBcult to achieve beyond certain limits
because of the formal p, singularity apparent in (5.12),
(5.13). A closer study of what happens when p becomes
very small is needed.

If we turn now to the most general models of the type
(5.6) they will predict, beyond the effects already dis-
cussed, the following: (i) Violations of the weak equiva-
lence principle, when the a~'s and b~'s are not the same
for all material fields or interactions, or when e~ g 0.
These violations will be proportional to the (AV'V) 2 type
of terms. (ii) Violations of local Lorentz invariance and
existence of peculiar electromagnetic phenomena when
n g 0, as recently pointed out in [26,30]. (iii) "Monopole-
dipole" coupling of the (quantum) spin of elementary
particles to the macroscopic B field generated by, say,
the baryons in the Earth. The latter coupling is akin to
those proposed in [31]. In our model this type of coupling
comes from the possible additional torsion terms in (5.4).
Indeed, a Dirac particle couples to torsion via

One can see that the terms written in (5.4) give an in-
teraction of order vAB2Vo where o is the spin and v a
small velocity. Had one introduced terms c,V'~B„* +
d, g O~~B„'„~ on the right-band side of (5.4), the cou-

pling would have been of the full order Act2Vo without ve-
locity factors. As was briefiy mentioned at the beginning
of this section, one could also think of adding nonderiva-
tive couplings of B„„to some microscopic polarization
tensor, i.e. , B»(ger" @) T. he latter coupling would
contribute interactions proportional to P'Vo.

In summary, our new gravity models incorporating a
finite-range antisymmetric tensor field are consistent, and
they provide a vast reservoir of interesting phenomeno-
logical possibilities in experimental gravitation.
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APPENDIX A: THE R„„EXPANSION

From the general form of g»,
g„=G~ +B„„+nB„B + pB G„+O(B ),

(A1)

we easily determine its inverse and determinant,

g" = G" +B" +(1 n)B" B"— PB'G" +O(B')—,

(A2)

v' —g = g—G 1+ —,
' (-,' —n+ PD) B' ~ O(B') . (A3)

Here we are using the notation Bi':—G" B „= B"—
and B2 =—B&"B».Consider the defining relation for the
aKnity as a function of the metric,

(A4)

On introducing tbe expansion I'„= Q„&0(S„+
A "„),[where the superscript (n) denotes the order in

B„,while S and A denote symmetric and antisymmet-

ric parts, respectively] into (A4}, we easily find A» ——0(o)w

and S~J = (pv)(G), the Christoffel symbol with respect
to the "background" G& . Matching higher orders, we

have S &
——0 and(i)w

(A5)

where, as always, the bar denotes operations with respect
to the background G'& . The higher powers are defined

by
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~(2n)a G + ~(2n)a G A(2n —1)a Bo'v Av P~ pA 0!V

A(2n, —l)a BAv P,cl 1

( 6)
A( "+ )a G + A(2n+»a G = —S( ")a B

JM, A o'v + Av PA pA AP

(2n) o.—SA B„

APPENDIX B:FIRST- AND
SECOND-ORDER FORMS OF NGT

The first-order NGT action may be taken as

8(') = g—g g""R„„(I').

We saw in Sec. II that its equations of motion are equiv-
alent to those of the second-order action

( a+ b+ c+ d) (o)a
y, [A v]a (A7)

Thus generically we find A &v ——0 and, going on as be-(O) A

fore, obtain an iterative solution. The exceptional case
where the affinity cannot be determined is exactly that
listed in the text, a+ 6+ c+ d = —2.

With the above results we may easily write the expan-
sion of the geometric quantities defined in the text. In
particular, we find

Rpv(G) + 27 7'aBpv 2+ T(„Bvja
V'„7' B„a—+ O(B ),

T~„=A(')" + O(B'),
I'„=7' B„a+ O(B ),

(A8)
v' —g g"'R„„(g)= Q—G R(G) —

—,'2 Q—G H"""H„ i,

+-,'[-,' —o + (D —2)P]g GR(G)B2-
—nQ —GR„„(G)B"B
—Q—GR„p B" B"P

+total derivative+ O(B ),

g—g g" I' I'„=g—GG" 7' B„V'P B„p+0(B ),

Q—g g" T„~T"„=—i2/ —G H"""H~ g

—Q—GG~ 7'p B" 7' B P+0(B ) .

We also use implicitly the fact, which follows from the
"gi'v trace" of (A4), that

I'(„ )(g) = 8), ln (—g),
and so

(A9)

For simplicity we have written the equations (A6) as if
g&(") ——0, n & 2 in (2.5); the modification for nonzero
field redefinition is trivially accomplished, and does not
alter (A5). Clearly (A6) may be solved iteratively, to
obtain the expansion of I „ in powers of B& .

The more general equation (2.l5) for the affinity leads
to a similar expansion. Using it, we obtain to lowest
order

gg—" R -(g) —b-8 (v'-gg'" ). (B2)

The difficulties of this model at quadratic order and be-
yond are chronicled in detail in Sec. IV. Our aim here
is rather to clearly demonstrate the equivalence of the
above two formulations, since doubts have been raised
on this question [7]. It will suffice to do so for the lin-
earized theory about a flat background since this exhibits
the kinematics of degrees of freedom which is at issue. We
begin with the second-order action, which we expand in
powers of g„„—rl„= s„+B„.Using Appendix A we
find

~ = ~."'( )+~."'(B)+o((B, )'),
where Z~ is the linearized Einstein action and

(B3)

(B4)

This may be recognized as a gauge fixed form of the H
action akin to the Nakanishi-Lautrup [32] gauge fixing in
electrodynamics; its degrees of freedom are well under-
stood. For completeness, we summarize the analysis of
the equations of motion from (B4), which are equivalent
to

B„„+28(~b I
= 0 (B5)

(B6)

&8"B„=0, (B8)

and so the constraint (B6) can be incorporated as a set
of relations among the Cauchy data of (B5). That is,
requiring 8 B„and its first time derivative to vanish
at t = 0 ensures that it obeys (B6) for all time. In
turn, these relations determine the Cauchy data for Bo,
according to

The divergence of (B5) states that b„obeys Maxwell's
equations

8"8(„b„)= 0.
Suppose now that we are given the 2 x (D —2) Cauchy
data [corresponding to (D —2) dynamical degrees of free-
dom] required to specify (modulo its gauge invariance) b„
from (B7); then (B5) implies

P -(I'(g)) = —8~ I'-I(g) (A10)
(8oBo' = 8'B~*)]e=o,

(B9)
It is then easy to show that in second order, up to a total
derivative,

(d Ko ——8 8oB;, —28;bo + 28ob, ) ie=o,

g—g g" P„„=—2g—g g""I'„I'„. (A1.I)
(from which 8'Bo, = 0 follows). Hence the independent
Cauchy data are the 2(D —2) for b„ together with the
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(D —1)(D —2) (B,s, B,s). Thus the total number of
degrees of freedom is

& (D+1)(D —2), namely 5 in D = 4.
(This is in agreement with an early estimate by Einstein,
in the third reference of [2].) The apparent paradox—
that this cannot be the correct count for a gauge-fixed
theory known to have but one degree of freedom in D =
4—is cleared up by the following remarks. First, in the
gauge fixing, b„may be eliminated initially (and hence
consistently for all time). The other is that (B6) has
a residual gauge invariance under 6B„=O[„e„],for e„
obeying Maxwell's equations. Hence, as usual, the two
longitudinal modes simply decouple, leaving the single
scalar degree of freedom.

The above analysis agrees completely with that of [33],
which has however been criticized as deviating from NGT
by its use of second-order form. Let us therefore explic-
itly construct the canonical formulation directly from the
first-order one, so that the degrees of freedom may be
counted directly. Expanding (Bl) to quadratic order in
the fields we have (g—ggi'~—:rl"~ + h" + B""),

Since R„(I') = R„„(I')—&z i O[„I' ], where I'„:—A,"&,

we get simply 2& ——2& + 2& where 2& is linearized(1) (1) (1) (1) .

Einstein gravity in first order form (known of course to
be equivalent to its second-order one) and

(B12)

in terms of b„:——
& ~I'„+S„&.

The canonical analysis of (B12) is completely straight-
forward, and we find

=mrs OpB&+7r OpBp —Bs O 7t&+'bpO Bp
+Ap, [2Os Bp, + 27r,s] —Ap,.Ap

+A,",[ Oi, B's]——A,",A'„,

Here the conjugate momenta have been identified via

g(il (hpv + Bpv)O I A &yv I a
2 [& pv] @[A av] & (Blo)

0
vr;, = —A.. . b, —2—APp, , (B14)

where only [Av] are antisymmetrized. Decomposing I'"
into its symmetric (8) and antisymmetric (A), parts, we
obtain

we have separated out the trace pieces

A,", = A,", + b[",A,), A, = A'.. . (B15)

(B11)

Only the last three terms in (Bll) couple the symmetric
and antisymmetric components, and do so only through
traces of the amenity; hence we may diagonalize just by
shifting to 1„" = 1"„+D ~b„F~, to make A~& ——0.

and the A~& ——0 constraint has been applied. The
"pq" terms in (B13) show that (Asp, , APp, , A," ) are
all auxiliary fields, while the canonical Pairs (vr's, B,s),
(vr', Bp, ) obey the one constraint O'Bp, = 0, enforced

by the Lagrange multiplier bp This m. eans there are

z (D —1)(D —2)+ (D —1) —1 = z(D+1)(D —2) degrees
of freedom, all completely equivalent to the second-order
analysis.
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