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Scalar gravitation: A laboratory for numerical relativity

Stuart L. Shapiro and Saul A. Teukolsky
Center for Radiophysics and Space Research

and Departments ofAstronomy and Physics, Cornell University, Ithaca, New York 14853
(Received 9 October 1992)

While not a correct physical theory, relativistic scalar gravitation provides a simple test site for devel-

oping many of the tools of numerical relativity. In contrast with general relativity, scalar gravitation al-
lows gravitational waves to be generated in spherical symmetry. Hence one needs only one spatial di-
mension to try out methods of calculating wave emission and propagation. Using this theory, we have
built a mean-field particle simulation scheme to study the dynamical behavior of collisionless matter in
spherical symmetry. We find that we are able to calculate smooth and accurate wave forms, despite the
stochastic representation of the matter source terms caused by sampling with a finite number of parti-
cles. A similar scheme should provide accurate wave forms in general relativity, provided sufficient
computer resources are used.

PACS number(s): 04.30.+x, 02.70.8f, 03.50.Kk

I. INTRODUCTION

Numerical relativity is the most promising approach
for finding solutions of Einstein's equations that describe
realistic physical phenomena. While a number of impor-
tant results have been obtained by numerical means, the
field is beset by many technical difficulties. In addition to
the usual problems of solving multidimensional partial
differential equations numerically, relativity presents
some unique complications. One of these is dealing with
the appearance of singularities and black holes, which
frequently form during gravitational collapse. The devel-
opment of a singularity, for example, forces a numerical
simulation to terminate. Even if all singularities are hid-
den inside black holes, it may be impossible to follow the
evolution in the exterior regions once a singularity is
present. The general approach to dealing with this prob-
lem is to exploit the gauge freedom of the theory to
choose coordinates that hold back the formation of singu-
larities in strong field regions, allowing the exterior evolu-
tion to proceed to arbitrarily late times. However, there
is no recipe for finding a suitable set of coordinates to ac-
complish this in general. Another complication in nu-
merical relativity is extracting information about gravita-
tional waves when the wave amplitudes are typically
much smaller than the background gravitational field
variables.

Developing and testing new algorithms for tackling nu-
merical relativity is dificult because the human and com-
putational resources required to simulate even the sim-
plest dynamical problems can be considerable. For exam-
ple, to generate gravitational waves one must deal with
nonspherical systems, which requires at least two spatial
dimensions plus time. As a result, the system of equa-
tions is sufficiently complicated that experimenting with
different coordinate choices or algebraic formulations re-
quires an enormous investment. Furthermore, the re-
quired computer resources often tax the largest super-
computers.

One of the purposes of this paper is to study a simpler
theory of relativistic gravitation to learn how to deal with
some of these issues. The theory we consider describes
gravitation by a nonlinear scalar gravitational field in spe-
cial relativity and is presented in exercise 7.1 of Ref. [I].
Of course, this theory disagrees violently with experi-
ment, giving incorrect predictions for the three classical
tests of general relativity. Our purpose, however, is to
use the theory to develop numerical tools that can then
be applied to solve problems in general relativity. In ad-
dition, by studying scalar gravitation we can examine
some of the generic features of a nonlinear dynamical
theory of gravitation in a simple setting, such as gravita-
tional collapse and wave production.

One of the obvious advantages of scalar gravitation is
that fewer variables are needed to describe the field. The
theory also admits a local law of energy conservation,
while general relativity only obeys global energy conser-
vation. In numerical work, such a conservation law pro-
vides a strong check on the accuracy of an integration.
More significantly, scalar gravitational waves can be gen-
erated even in spherical symmetry. This means that a nu-
merical code need only deal with one spatial dimension
plus time to study wave generation and propagation, a
considerable simplification over general relativity.

Scalar gravitation does not address all of the issues that
arise in numerical relativity. For example, because the
metric is always Minkowski type, coordinate singularities
related to the gauge freedom of general relativity do not
arise. To follow a dynamical evolution in scalar gravita-
tion, one need only solve a single hyperbolic equation,
while in general relativity there are coupled elliptic equa-
tions as well as hyperbolic equations. No black holes
occur in scalar gravitation to complicate the dynamics.

A specific computational issue that we address in this
paper is prompted by our recent mean-field particle simu-
lations of collisionless matter in general relativity [2]. In
these simulations, which obeyed global energy conserva-
tion to high accuracy, the emitted gravitational radiation
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carried off only a small fraction of the total energy. How-
ever, the computed wave forms turned out to be much
noisier than expected. The obvious concern is whether it
is inherent in a particle simulation scheme, with its sto-
chastic representation of the smooth particle distribution,
that the computed waveforms are always noisy. Alterna-
tively, it is conceivable that while our simulations used
enough particles to track the global dynamics accurately,
they sampled too few to get smooth waveforms. There
may also exist better particle binning algorithms for the
matter source terms (T„,), which will yield smoother
waveforms with smaller numbers of particles. By con-
structing a mean-field particle simulation scheme to
evolve collisionless matter in scalar gravitation theory,
we can address this question while working only in spher-
ical symmetry.

The principal conclusion of this paper is that there is
no intrinsic reason preventing a mean-field particle simu-
lation from calculating smooth and accurate gravitational
waveforms. By using enough particles per spatial grid
zone, one can compute reasonably accurate wave forms.
Adopting a better binning algorithm gives even smoother
and more reliable results.

Scalar gravitation is a good laboratory not just for test-
ing codes that handle collisionless matter, but also for
codes that treat hydrodynamics. We give the relevant
equations in an Appendix.

Varying the Lagrangian (2.2) with respect to @ gives
the field equations of motion

N =4mGe p . (2.5)

D'z
p dz dz~

dr' g (2.6)

where D denotes covariant differentiation. Here we are
allowing for curvilinear coordinates; covariant
differentiation reduces to ordinary differentiation in
Cartesian coordinates. In the nonrelativistic limit, Eq.
(2.6) implies that the gravitational force is —7'Q. The
fully relativistic form ensures that the four-velocity
u =dz /dw remains orthogonal to the four-acceleration
a =Du /d ~.

Matter conservation is expressed by the condition

V' J=O (2.7)

where the components of the matter current density are

J =m f u 5 [x —z(r)]( —g) ' dr, (2.8)

In the Newtonian limit, where 4 «1, Eq. (2.5) becomes
linear and reduces to Poisson's equation. Varying the La-
grangian with respect to z gives the particle equations of
motion:

II. BASIC EQUATIONS

The scalar gravitational field theory that we wish to ex-
plore is presented in exercise 7. 1 of Ref. [1]. The gravita-
tional field is described by a massless scalar field C&(x ) in
special relativity. The scalar field does not modify the
background spacetime geometry, which is always Min-
kowskian. Consider a particle of mass I moving along a
world line z (A, ). Let z denote dz /dX. Then the ac-
tion for the field-particle system is

I= fX( —g)' d x, (2.1)

i.e.,

J =yp, J'=ypU', (2.9)

Conservation of energy-momentum follows from

V'.T=0, (2.11)

where T is the total stress-energy tensor of the system:

where v' is the usual three-velocity. Integrating Eq. (2.7)
over all space yields a conserved rest mass:

MD= f ypd x =const .

where the Lagrangian density X is

1
g ~N N —pe8~G

and where the comoving density is

p=m f ( —g &z z ~)' 5 [x —z(x)]( —g) ' dk .

(2.2)
( )1/2

~[&(—g )'"]
6g„

Carrying out the variation using Eq. (2.2), we find

T Tfield + TParticle
PV PV PV

w~ere

(2.12)

(2.13)

=mfi [x—z(t)]( —g) ' /y,
where y =z is the usual Lorentz factor.

(2.4)

Here the metric tensor g & is the usual Minkowski metric
since spacetime is fiat in this theory [i.e.,

rI &=diag( —1, 1, 1, 1) in Cartesian coordinates]. We use
arrows to denote four-vectors and boldface to denote
three-vectors. We will generally set the speed of light
c =1, but will display the gravitational coupling constant
(Newton's constant) G explicitly. If we choose k equal to
the proper time ~ along the particle world line, then

p=m f 5 [x —z(r)]( —g) '~ dr

TParticle e 4»
PV P V

(2.14)

One can check that Eq. (2.14) satisfies Eq. (2.11), using
Eqs. (2.5) and (2.6). Note that Eq. (2.5) can be written

N = —4wGT, (2.15)

where T=g" T„'"'"' is the trace of the particle stress-
energy tensor. Equation (2.15) applies also for other
matter sources, where T is the trace of the appropriate
matter stress-energy tensor.

The above equations are easily extended to describe a
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collection of particles. Simply let

m ~gm„, u "~u"„, etc. (2.16)

f r dr fdQ (N o+(V@) )+pe y
0 8mG

r—f dtfdQ 404&„p—e y v„
0 4+6

Treated in this way, the matter consists of a swarm of
collisionless particles. In the limit of a large number of
particles of infinitesimal rest mass, the matter can be
characterized by a smooth phase space distribution func-
tion satisfying the Vlasov equation. Tracking the world
lines of these particles by integrating Eq. (2.6) in the
mean background potential is equivalent to solving the
Vlasov equation for the matter in a scalar gravitational
field.

Alternatively, the above equations can be adapted to
describe Auid matter. The equations of hydrodynamics
for an ideal Quid in this theory are given in the Appendix.

A general dynamical system is characterized by a
time-varying matter density and velocity profile, interact-
ing with a time-varying scalar field containing radiation.
Equation (2.11) gives rise to a particularly simple con-
served integral for the total energy at any time t inside a
sphere of radius r centered at the origin:

1
(N 0+(VC&) )+pe~y

8m.G

(2.17)

The first term in Eq. (2.17) is the volume integral of the
total energy density T . The second term is the outgo-
ing Aux T " of matter and field energy through the sur-
face of the sphere, integrated over time. The right-hand
side is the volume integral of the initial total energy den-
sity. For computational purposes, it is convenient to
combine Eq. (2.17) with the continuity equation (2.7),
which can be integrated over the sphere to give

r dr dQyp+r dt dQypu,

=f r drfdQ[yp], o. (218)

Subtracting Eq. (2.18) from Eq. (2.17) gives

f r dr f dA (&0o+(V4) )+py(e y —1) r f dt f—dA 4&o+ „—ypv„(e y —1)

= f "r dr f dII (@o+(V4) )+py(e y —1)
0 8~6 i=0

(2.19)

f 1 dT'~d x =— T x'xdx.
2 dt2

(2.20)

Equation (2.19) is more useful than Eq. (2.17) because the
leading-order conserved rest mass given by Eq. (2.10) has
been subtracted oK

Another check on our numerical integrations is provid-
ed by the special relativistic virial theorem:

given explicitly by the first integral in Eq. (2.17):

M=fT dx

Q~ + Pg) 2 +pe+y21

8~6
(2.22)

For systems that settle into an equilibrium state, the
right-hand side of Eq. (2.20) vanishes. Taking the three-
dimensional trace of T'~ on the left-hand side, and substi-
tuting Eq. (2.14), we find, in equilibrium,

Provided we evaluate this at large enough radius, outside
any radiation or matter, it is also conserved according to
Eq. (2.17). For a static situation, the VC& term can be in-
tegrated by parts to give

fpe yudx= f( V@)dxC 2 2

8~6

1 pee~d'x .
2

(2.21)

To obtain the last equality we have integrated by parts
and substituted Eq. (2.5), omitting the time derivative
term. In the Newtonian limit, Eq. (2.21) reduces to the
familiar result 2K = —8, where K is the kinetic energy
and 8'is the gravitational potential energy of the system.

We can identify three "masses" in scalar gravitation
theory. The first is rest mass defined in Eq. (2.10) and
strictly conserved. The second is the total mass energy,

e y —
—,'+ d x stati

—& fpo(1+ —,'@+—,'u )d x (Newtonian) . (2.23)

As we see, in the Newtonian limit M is the sum of the
rest mass plus the Newtonian energy.

Finally, we can define a "Coulomb mass":

1Mc= ——lim r@ .
Gr

(2.24)

This mass determines the motion of distant particles, giv-
ing rise for example to Kepler's laws. In a static situa-
tion, we have, from Eq. (2.5),
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III. MONOPOLE RADIATION

In the weak-field, slow-motion limit, the radiation field
can be obtained by a multipole expansion. Since the
theory involves a scalar field, the lowest-order contribu-
tion to the radiation comes from the monopole term
This is in contrast with electromagnetism (vector field:
dipole radiation) or general relativity (tensor field: quad-
rupole radiation).

Using the usual Green's function for the wave equa-
tion, we can transform Eq. (2.5) into the integral form

N(t, x)= —G f d x', , I~ p]„t
lx —x'l

(3.1)

where "ret" means evaluate at retarded time
t'=t —lx —x'l. In the wave zone we can replace the
denominator in Eq. (3.1) by the distance r = lxl. To iso-
late the conserved rest mass Mo, define the rest density to
be

Po ~P .

Then

(3.2)

Mc= —f Td x

= fpe d x (static)

~fpo(1+4& —
—,'u )d x (Newtonian) . (2.25)

Note that in general MAMc, even in the Newtonian lim-
it. This feature is in contrast with general relativity,
where the total mass energy also determines the motion
of distant particles.

Eq. (3.7).
For a spherically symmetric density distribution, the

term proportional to cos8' in Eq. (3.7) integrates to zero,
giving

4(t, r)= ——f dr'4vrr' [po(4 ,'—u —)
6

+ ,'r' —po«], „(spherical) .

(3.8)

This equation is the analogue of the "quadrupole formu-
la" in general relativity. However, we see that, in con-
trast with general relativity, a scalar relativistic theory of
gravitation can generate gravitational waves even in
spherical symmetry. While a general angular-dependent
solution of the vacuum scalar wave equation has terms
that fall off like 1/r, 1/r, . . . , the spherically symmetric
solution only has the 1/r term. This means that in nu-
merical simulations the wave amplitude generated by
moving matter in spherical symmetry can be read off
directly just outside the matter surface. Nonspherical
waves in this scalar theory could also be read off just out-
side the matter: one simply "extracts" the 1/r term from
the higher-order terms. The behavior of these terms is
exactly calculable from the field equation, which is linear
in vacuum. In general relativity, where there are no
spherically symmetric waves and where even the vacuum
equations are nonlinear, wave extraction is more compli-
cated [3].

From Eq. (3.8) we can easily estimate the typical size of
N for a weak-field, slow-motion source of characteristic
mass M, radius R and velocity v:

6, , e~
N(t, x)= —— d x' por y ret

(3.3)

2
GM v

rc
GM GM
rc2 Rc2 (3.9)

In the integrand, expand

po(t', x') =pa(t r, x')+(r ——lx —x'l )po,

+ ,'(r —lx——x'l) po «+ .

and

(3.4) Tfiel @ @ @21 1

4~6 ' ' 4m 6
Therefore the total rate of energy emission is

(3.10)

Here we have assumed the virial relation v —GM/R.
The radiative energy fIux in the wave zone is

=[1+4—
—,'u ], , „+

For large r,

r —
l
x—x'l = =r'cos8' .

r

(3.5)

(3.6)

dE 2Tfiel
( q )2

1

dt or G, t

In order of magnitude, this gives
10 5

dE c v c GM
dt 6 c 6

(3.11)

(3.12)

+ ,'r' cos 8'po «], — (3.7)

To this order, it is irrelevant whether one use P or Po in

The leading-order contribution to the expansion of Eq.
(3.3) comes from the product of po in Eq. (3.4) with the 1

in Eq. (3.5). The resulting integral gives Mo, so that this
term represents the nonradiative Coulomb field. Thus
the leading-order radiation field is

N(t, x) = —— d x'[po(4& —
—,'u )+r'cos8'po,G

Despite their very different origins, the wave amplitude
and energy emission rate in Eqs. (3.10) and (3.12) are of
the same magnitude as those given by the quadrupole for-
mula in general relativity. However, for sources without
equatorial symmetry, the second term in Eq. (3.7) dom-
inates. This gives an amplitude larger than Eq. (3.10) by
a factor c/u and an emission rate larger than Eq. (3.12)
by a factor of c /v . Because there is no angular depen-
dence in the wave amplitude, this scalar radiation is still
monopole in both cases.
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IV. SPHERICAL SYMMETRY

Because scalar gravitation can generate gravitational
waves in spherical symmetry, we can test out computa-
tional algorithms for calculating gravitational radiation
on one-dimensionaI systems. This is much simpler than
in general relativity theory. While not every aspect of the
general relativistic problem is reAected in this setting,
many features of wave generation in a rapidly varying
nonlinear dynamical system are exhibited here.

In spherical symmetry, field equation (2.15) becomes

(4.1)

The equation of motion (2.6) for each particle takes the
form

u

u o

motion (4.2)—(4.4). We focus on the spherical case be-
cause it is the simplest, yet it exhibits all the essential
dynamical features including gravitational waves. The
method that we adopt is a mean-field particle simulation
scheme. A finite number of particles from the matter dis-
tribution are evolved in the mean background field N for
a small time step ht. From the new particle positions and
velocities, we obtain the matter source term T appearing
in the field equation. We then update N by evolving the
field equation for a time step At. The whole process is
then repeated.

To solve Eq. (4.1) we employ a standard explicit leap-
frog method, but we allow for a variable time step. We
split the equation into two first-order equations by intro-
ducing the variable

(5.1)

Equation (4.1) now becomes

dur

dt
u~ —e

uOr3 uO
(4.2)

7[4]=A, ,

V'[A, ] =%[4]+4~GT,
(5.2)

u& =const,

where

u =(e +u +u /r )'r (4.3)

where

V'[ Yj—= Y, ,

R[ Y]=6[r Y 2 j
(5.3)

and where

u—:e~u (4.4)

Here we describe the scheme we use to solve the scalar
field equation (4.1) coupled to the particle equations of

In this case, each particle moves in a plane, for which we
choose 0=m /2, conserving its orbital angular momentum
u&. For a static gravitational field, the particle energy uo
is also a constant.

V. NUMERICAL METHOD

Here Y denotes either N or A, . The Laplacian in the field
equation has been written in the form shown in Eq. (5.3)
to ensure regularity in the finite-difference operator near
the origin (cf. Appendix of Ref. [4]). To finite difference
the equations, introduce a radial grid {r,. ],
i =1,2, . . . ,i,„, extending from r=0 up to the outer
boundary r =r,„. The exact prescription for laying
down the gridpoints will be discussed below. We take the
fields 4 and A, to be defined at the midpoint of radial
zones. The finite difference form of the operators in Eq.
(5.3) is then

b tn 1 Y;"+1/2
—Y,n+1/2 ht„

+in[ Y] = +
At„+At„, b t„ At„+ b, t„

~n ~n —1
~ i + 1/2 ~ i + 1/2

At„
(5.4)

+ized[ Y]=
~n

6 3
~ i +3/2 ~i +1/2

l+1
~'+ 1

~' ~'+ 3/2 r'+ 1/2

~n ~n
3

~ i + 1/2 ~ i —1/2
"l 2 2

~i + 1/2 ri —1/2

where ht„=tn+, —tn. These operators are second-order accurate in both space and time.
At r =r,„we impose an outgoing wave boundary condition

(rY), +(rY) „=0,
where Y is either N or A, . A second-order accurate finite difference form of this equation is

(5.5)

max 1 —
g

Yi + 1/2 Yi —1/2 +
max p . max 1+(,

max

Pi —1/2max~n ~n +1
~ i +1/2 i —1/2max p. . max

max

(5.6)

where

(5.7)

I

We do not need to explicitly impose a boundary condi-
tion at the origin: when evaluated for i = 1, the term con-
taining Yi&2 in Eq. (5.4) is multiplied by (r i ) =0.

For a Cartesian grid uniform in space and time, the
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At (—,'Ar, (5.8)

where Ar =r, + i
—r, . Heuristically adapting this criterion

to a variably spaced spherical polar grid with uneven
time steps, we use the stability condition

a
b, t =—minI b, r,I. (5.9)

where typically we choose a=0. 5 for accuracy. We find
empirically that this criterion yields a stable scheme even
when the grid is adjusted on each time step to follow the
matter.

The matter term involving the trace T appearing in Eq.
(5.2) is computed from the particle distribution according
to

Courant stability condition for the above leapfrog scheme
would be

determining the overall shape of the wave form. Howev-
er, the Hockney and Eastwood scheme gives a much
smoother wave form, and is the one we generally use.

The particle equations of motion (4.2) are integrated in
time by a fourth-order Runge-Kutta scheme with adap-
tive step size. The gradient of the potential is evaluated
to second order by finite differencing N and interpolating
to the particle position. While the time step for the field-
evolution equations is limited by the Courant condition
(5.9), there is no stability limitation for the time step
governing the particle equations. For accuracy, however,
the particle coordinates must not change by a large frac-
tional amount in a given step. For maximum efIiciency,
the code updates the field and particles separately, each
with their own time step. Usually the field time step can
be much shorter than the particle time step:

1T= —gm~nqe = —gm„(nay~ ) e~
0

(5.10)

where the comoving number density n ~ =p ~ /I is
given by

g t particle

field

tdyn

~ Courant

1/2
Rc
GM vermin

»1.

(Z 'gGM )'"
hr;„/c

(5.13)

1
n A

1

4my„r Ar
(5.11)

Here V„ is the comoving volume for particle 3, and we
treat the particle as smeared out over a zone size hr. For
evaluating the conservation equation (2.19), we also need
two other matter source terms:

00 2 —0
Tparticle g m„n„y„e = g m„(n„y„)u

(5.12)
Or 2 —A,„„„,= g m~n„y„u„e = g m„(n„y„)u „

In order to obtain a smooth density profile from a
discrete particle sample, we have experimented with
several algorithms that share a given particle between
several neighboring zones. In all cases we center the den-
sity on the midpoint of a zone, r;+, &2. In our simplest
scheme we assign a fraction of a particle's rest mass m ~
to the two zones whose centers surround the particle.
The fraction given to each zone is proportional to the
volume between the particle radius and each zone center.
For particles near the origin, inside the first half zone, or
near the surface, inside the last half zone, we assign their
total weight to the nearest zone center.

In an alternative scheme we assign a fraction of a
particle's rest mass to the nearest three zones according
to the prescription of Hockney and Eastwood (Eqs. 5 —88
of Ref. [5]). Their algorithm is derived for a one-
dimensional grid with uniform spacing and infinite ex-
tent. Since adjacent zones are almost equal in our scheme
(see below), we can use their algorithm. We replace their
linear distance coordinate with a spherical volume coor-
dinate as in our simpler two-zone algorithm described
above. Particles in the first and last zones would contrib-
ute to nonexistent adjacent zones. This contribution is
assigned instead to the particle's own zone. An underly-
ing principle in all these schemes is to conserve particle
rest mass. We find that our simple scheme is adequate
for tracking the gross motion of the particles, and for

f d xf(r) 5 [r—z(t)]=d 3 d„f
dt dt r=z(t)

(5.14)

to write

In practice, At"""' must be a small fraction of the
dynamical time td „ for accuracy. To obtain very smooth
wave forms, Att'" '"' must in fact be quite comparable to

field

A uniform grid spacing in r is reasonably accurate.
However, most configurations we are interested in are ei-
ther roughly homogeneous or have a homogeneous cen-
tral region. A mesh that is uniform in the volume coordi-
nate r in the region where p&0 is then somewhat more
accurate as it slices the configuration into roughly equal
mass zones. In practice we set the first zone to follow a
fixed fraction of the mass and then construct successive
zones by geometric series to have volumes that vary by a
fixed ratio, near unity. Outside the surface of the matter,
we use a fixed number of zones to integrate out to
r = r „.For smoothness at the surface, we make the first
outer zone have the same width as the last inner zone.
We then make the remaining outer zones form a
geometric progression out to r =r,„. For nonspherical
fields it is necessary to set r „much larger than the
matter surface in order to implement the asymptotic
boundary conditions accurately: Eq. (5.5) holds only for
the leading-order 1/r part of the field. For the special
case of spherical symmetry, however, Eq. (5.5) holds even
just outside the matter surface. Thus the outer radius
can be very close to the matter surface.

In the weak-field, slow-motion limit, we can use the
multipole expansion formula (3.8) as a check on our wave
integration. We cast the equation into a sum over the
particle positions and velocities. For a point particle, we
can use the identity
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r

d2(r~2)= fdr 4~r' — p,6

(5.15)

Using the equations of motion (4.2) in the weak-field lim-
it, the right-hand side of Eq. (5.15) becomes

t2 —2 dur

3
dr'4mr' po u, + r

dt r =rox(t), (6.1)

that at t =0 all of the velocities are instantaneously re-
duced by a factor g. The resulting evolution consists of a
periodic oscillation in which the cluster remains at all
times homogeneous. The individual particles move in el-
liptic orbits with the same period and eccentricity, but
with different semimajor axes. We first presented this
model in Appendix C of Ref. [6], where we used it as a
weak-field test of a general relativistic code. The radius r
of each particle satisfies

u y
2

dr'4~r' po u „+ —rN „r
(5.16}

where ro is the initial radius and where x (t) is given by
the usual parametric equations for an elliptic orbit:

Thus Eq. (3.8) becomes

1
r4&(t, r) =Ggm~ r, 4& „—

x = a (1—e cosu ),
P . P

t = (u —e sinu ) ——.
2~ 2

(6.2)

—4+ —(u „") +

(5.17)

In Eq. (6.2), the semimajor axis, eccentricity and period
are given by

1

2 —
g

A, =O,
V' +=4mGe p,

subject to the boundary conditions

(5.18)

Differentiating Eq. (5.17) with respect to time gives A, ,
and one can make substitutions using the equations of
motion to simplify the resulting formula. We found in-
stead that it was adequate to take numerical derivatives
of Eq. (5.17) to get A, for this check.

All the problems we have chosen to analyze start from
a moment of time symmetry, so that

e=l —
g

Ro
P =2m

GM(2 —
g )

(6.3)

X
v, =—r,

X
1/2

r GM
x R 0

(6.4}

The cluster radius obeys

The radial and tangential particle velocities are given by

% r=0, r=O,
(5.19} R=Rox . (6.5)

(r4) „=0, r~oo .

Equation (5.18) is solved by iteration starting with an ini-
tial guess for N on the right-hand side. Finite
differencing on our radial grid using the operator A in
Eq. (5.4) then gives a simple tridiagonal system of linear
equations that are iterated to convergence.

For the matter, we choose a random sample of parti-
cles to represent the initial density and velocity profiles.
For sufhcient resources, this scheme yields initial data of
arbitrary accuracy even for strong fields and high particle
velocities.

VI. ANALYTIC TEST

In general, satisfying the conservation equation (2.19)
provides a self-consistent check on a numerical integra-
tion. However, there is also a complete analytic solution
that furnishes a good test for weak fields and slow veloci-
ties. The solution describes an oscillating homogeneous
spherical cluster in Newtonian gravitation. Consider first
a homogeneous equilibrium cluster of mass M and radius
Ro consisting of particles moving in randomly oriented
circular orbits about the cluster center. Now imagine

Inserting this analytic solution into Eq. (3.8) and
differentiating with respect to time gives the wave ampli-
tude

8 (GM) xrk= ——
5 R

(wave zone) . (6 6)

From Eq. (3.11) we get, for the rate of energy emission,

dE 64 (GM) x
dt 2S R' X4

(6.7}

5 —2g +g
4

(6.8)

Integrating Eq. (6.7) over an oscillation period, we get,
for the energy radiated per period,

( ~E ~per period 647r GM ( 1 —g )

c2 2S Roc2 g7



1536 STUART L. SHAPIRO AND SAUL A. TEUKOLSKY 47

VII. NUMERICAL RESULTS

When analyzing our numerical results, we will adopt
gravitational units where G =c = 1.

500 ~~

400 —.

z 300 —.

&+

t=o t= 19000

A. Comparison with analytic model 200 —.

5 1
R rms:

3 Xp
(7.1)

The factor of 5/3 has been chosen so that the R, , will be
exactly equal to the radius of a uniform density sphere
represented by a homogeneous particle distribution. The
agreement with the analytic result is excellent for this
choice of resources.

We have made extensive tests of our code employing
the Newtonian analytic model of Sec. VI. Here we de-
scribe the case where the initial radius of the cluster is

Ro/Me =500 and the velocity cutdown factor is /=0. 7.
This choice of radius is sufficiently large that the system
remains essentially Newtonian throughout its evolution,
and sufficiently small that the required number of time
steps is not too large [cf. Eq. (5.13)]. We set the outer
grid at r~,„/Me=2500. A typical run used Np =16000
particles, 60 interior radial zones, and 180 exterior zones.
Such a run requires 84000 time steps per oscillation
period and takes about a second per time step on an IBM
RS/6000 Model 550 workstation if the particles are ad-
vanced on each field time step [Eq. (5.9)]. The time essen-
tially scales linearly with Nz.

As discussed in Sec. V, we do not really require an ex-
terior grid extending far outside the matter surface.
However, to test how well our code propagates waves in
vacuum, we chose an unnecessarily large value for r
Sin

max '

ince most of the computer time is spent moving the par-
ticles, the additional zone coverage in the exterior has lit-
tle overhead.

Figure 1 shows the evolution of the mean radius
1/2

100 =
&. ) i-'1 ( (. I. l I I I .. I i I

I'1 I 1.1 I ) . I ( F I I I I I I I I I I I I I I I I I

500 ~l I I 1I I I 111 I I I11 I I 11I I I I+
t=35000400— t=59000

Z 300

200

100—

0
0

) I'& i(& i'1 r).. (III &(i1& & «1
100 200 300 400 500 300 400 500

FIG. 2. Snapshots of the particle positions projected onto a
plane through the origin for the evolution shown in Fig. 1. Par-
ticle coordinates and time are in units of Mp.

In Ftg. 2 we show snapshots of the particle positions at
selected times. Note how well the simulation maintains
the homologous nature of the collapse, including the
sharp boundary at the surface. We used Eq. (2.19) to
monitor energy conservation at selected radii. At a ra-
dius 120lo, which is always less than the minimum value
of the radius R (t), agreement is good to within a few per-
cent when expressed as a fraction of the integrated Aux.
This agreement holds even at maximum compression
where the conserved quantity involves the small

500

10

400

5x10

300

200

—Sx10

100—
—10

10000 20000 30000 40000 50000 60000 70000

t
0

0 10000 20000 30000 40000 50000 60000 70000

FIG. 1. Evolution of the mean radius as a function of time
for a homogeneous Newtonian cluster with initial radius
Ro/Mp=500 and /=0. 7. The solid line shows the nntnerica1
result obtained from Eq. (7.1). The dotted line is the analytic re-
sult, Eq. (6.5). The two lines are virtually coincident in the plot.
Both R and t are in units of Mp.

FIG. 3. Wave amplitude X (multiplied by r) as a function of
time as measured at r =250Mp for the evolution shown in Fig.
1. Th e solid line shows the numerical result obtained from Eq.
(5.2) thee dashed line is the result from the multipole formula
(5.17) numerically differentiated with respect to time, and the
dotted line is the analytic result, Eq. (6.6). The small bump near
t =0 is an artifact of slightly imprecise numerical initial data.
rA, is dimensionless, while t is in units of Mp.
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difference of large numbers. The total Newtonian kinetic
plus potential energy is conserved very well. By the end
of the calculation it has changed by only —,'%%uo, while at
maximum compression there is a momentary deviation of
1%.

The emission of gravitational waves is a post-
Newtonian effect in the system. Figure 3 shows the wave
amplitude A, measured at a fixed exterior radius r =250.
The amplitude agrees well with the monopole prediction
obtained by numerically differentiating Eq. (5.17) with
respect to time. Both of the amplitudes agree well with
the analytic amplitude computed in Eq. (6.6) and also
shown on the plot. We have verified that the agreement
is even better when the system collapses from a larger ra-
dius and is therefore more Newtonian. Because the nu-
merical simulation uses a finite number of particles, it
cannot maintain the homogeneity of the system
indefinitely. The first signs of the development of in-
coherent motion can be seen in the wave amplitude at
late times in Fig. 3.

B. Nonlinear homogeneous collapse

To explore scalar gravitation in the nonlinear regime,
we follow the same collapse described in Sec. VIA, ex-
cept that we now choose the initial radius to be R =3MO.
Specifically, the initial density is

3MO
Po 4 R3 (7.2)

the initial radial velocity is zero, and the tangential veloc-
ity is given by

g 2 —g2'3e26&@ (7.3)

If the cutdown factor g is set equal to one, then the clus-
ter is in equilibrium with each particle moving in a circu-
lar orbit [cf. Eq. (4.2)]. In general relativity, such an
equilibrium system is called an Einstein cluster [7]. Here
in scalar gravity we allow the system to collapse by set-
ting /=0 7. For this choice of parameters, M=0. 88MO

and Mg =0.72MO ~ We have previously considered analo-

gous strong field collapses in general relativity [6].
In Fig. 4 we plot the mean radius of the system as a

function of time. From the figure we see that the oscilla-
tions are slowly damped because the nonlinear field
causes departures from strict homogeneity and homolo-
gous behavior. This effect signals the onset of phase mix-
ing and "violent relaxation, " which ultimately drives the
system to virial equilibrium. Note the large difference be-
tween the nonlinear evolution and the behavior predicted
from the analytic Newtonian model.

In Fig. 5 we show snapshots of the particle positions at
selected times during the evolution. The departures from
homogeneity grow slowly in this example, but are
discernible in the figure.

Since there is no analytic solution for this case, the
only check we have is provided by the energy-
conservation equation (2.19). We show how well the code
conserves energy in Fig. 6. We evaluate the conservation
equation as a function of time at three fixed radii. The
first radius is inside the matter at all times; the second is
alternately inside and outside the matter as the surface
oscillates back and forth; the third radius is always in the
vacuum exterior. In the first two cases the integrated Aux
term (second integral in Eq. 2. 19) is large, and energy
conservation involves the small difference of large terms.
Consequently, the high degree to which we are able to
maintain energy conservation is a nontrivial measure of
the accuracy of the code. In the exterior, the Aux is small
and energy conservation is not a stringent test. However,
the wave propagates according to the linear scalar wave
equation in the exterior, and the analytic test at small
wave amplitude already validated this aspect of the code.

The wave amplitude at fixed radius for this case is plot-
ted as a function of time in Fig. 7. By contrast with the
Newtonian example, the wave amplitude in this strong-

I

[

I I I I

f

I I I T
/

I I I I

/

I I I I

f

I I I I

/

I I I I

/

I I I I

2.5

I I3— I

I

I I I I

I

I I I I L

0 I I I I I I I I I I I I I I I I I I I I I j I I I t I I I I I I I

0 10 PO 30 40 50 60 70 80 90

O b I-"'I

O

; I I I I

I'I"i
I I I 1

1 2 3

': i' ""i'::."'i". -'I.':I' ':-i: 'I '.:).

0 1 2 3

FIG. 4. Evolution of the mean radius as a function of time
for a homogeneous cluster with initial radius Rp/Mp=3 and
g=o. 7. Labeling is the saxne as in Fig. l.

FIG. 5. Snapshots of the particle positions projected onto a
plane through the origin for the evolution shown in Fig. 4. Par-
ticle coordinates and time are in units of Mp.
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field case is not adequately described by the weak-field
multipole expansion formula (5.17). Moreover, the am-
plitude is slowly damped as the matter oscillations decay.
Figure 8 shows a snapshot of the amplitude as a function
of radius at fixed time. The damping is clearly evident in
the exterior wave form. Note the sharp transition be-
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FIG. 7. Wave amplitude A, (multiplied by r) as a function of
time as measured at «= IO. SMp for the evolution shown in Fig.
4. Labeling is the same as in Fig. 3.
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tween the near zone and far zone fields at the matter sur-
face.

C. Inhomogeneous collapse
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We have seen that initially homogeneous systems oscil-
late rather homologously; even when they are nonlinear,
the oscillations persist for many cycles. We do not expect
this behavior for inhomogeneous configurations. In this
case the incoherent motions tend to damp the oscillations
rapidly through violent relaxation. The system is driven
towards virial equilibrium after only a few cycles. If an
inhomogeneous system is centrally condensed, then
another distinction may be relevant computationally: the
absence of a density discontinuity at the surface.

To explore these difFerences, we followed the collapse
of a centrally condensed system with an initial density
profile given by

.05 ~0 &Os4'
'2

p2

R
(7.4)
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FIG. 6. Energy conservation at three selected radii as a func-
tion of time for the evolution described in Fig. 4. The solid line
shows the left-hand side of Eq. (2.19) (volume integral plus in-
tegrated flux), the dotted line shows the second term alone (in-
tegrated flux), and the dashed line shows the right-hand side
(volume integral at t=0). The radii are (a) r=1.4Mp, (b)
r =2.4Mp, (c) r =25Mp. Energy and time are in units of Mp.
The degree to which the solid and dashed lines coincide com-
pared with the magnitude of the dotted line is a measure of the
code's ability to conserve energy.
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FIG. 8. Snapshot of the wave amplitude A, (multiplied by r) as
a function of r, as measured at t =54Mp.
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FIG. 9. Evolution of the mean radius as a function of time
for an inhomogeneous cluster (Eq. (7.4) with initial radius
R /Mo = 3 and /=0. 7. Labeling is the same as in Fig. l.

FIG. 11. Wave amplitude A. (multiplied by r) as a function of
time as measured at r =5Mo for the evolution shown in Fig. 9.
Labeling is the same as in Fig. 3.

t=o
I L

and an initial tangential velocity profile given b E .
( . ), with /=0. 7. We consider collapse from a radius

=3MO as in the homogeneous case discussed above.
For this case, M=0. 83MO and M& =0.67M0 ~

Figure 9 shows the evolution of the mean radius, which
clearly shows the damped oscillations. Because of the in-
itial inhomogeneity, the damping is much more pro-
nounced than in the corresponding homogeneous case,
Fig. 4. Snapshots of the particle positions are shown in
Fig. 10. Following an initial implosion, the bulk of the
mass settles down in a new equilibrium state. The result-
ing configuration displays the typical core-halo structure
characteristic of inhomogeneous gravitational collapse
and virialization. The wave amplitude, plotted in Fig. 11,
shows an initial burst foHowed by damped oscillations of
smaller magnitude. As shown in the plot, at late times

the wave amplitude exhibits small scale fiuctuations
a out its mean value. We are able to damp these high-
requency components reliably by adding a small Kreiss-

iger [8] dift'usive term to the leapfrog scheme (5.4).

VIII. CONCLUSIONS

Scalar gravitation is by no means a correct physical
theory, but it provides a perfectly fine and simple fram-rame-

ork for learning how to do numerical relativity. Be-
cause the theory allows gravitational waves to be generat-
ed in spherical symmetry, one can try out methods of cal-
culating wave emission and propagation in only one spa-
tial dimension. We have used the theory to test out a
mean-field particle simulation scheme for the dynamica1
evolution of collisionless matter in a self-consistent gravi-

culate smooth and accurate gravitational wave forms.
The stochastic representation of the particle distribution
is not an inherent obstacle. With sufhcient computer
resources, a similar scheme should be able to calculate re-
liable gravitational wave amplitudes in general relativity.
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For a perfect Quid, the appropriate stress-energy tensor
for the matter is

T„""' =e [(e+P)u„u, +Pg„], (Al)

where e is the total mass-energy density of the fluid and P
is the pressure. Equation (2.15) now takes the form

0@=4'Ge ( e 3P ) . — (A2)

FIG. 10. SSnapshots of the particle positions projected onto a

p ane through the origin for the evolution shown in Fig. 9.
To get the Quid equation of motion, introduce the projec-
tion tensor



1540 STUART L. SHAPIRO AND SAUL A. TEUKOLSKY 47

P~p =u ~up +g~p

Then in Cartesian coordinates

(A3) Using the continuity equation

V. (nu ) =0, (A8)

(e+P)u u = P—[P +4 (e 2P—)], (A5)

(A4)

where T = T„"" + T""' . Using Eq. (A2) in (A4) yields

de= dn —3P d@ .e+P
(A9)

where n is the comoving baryon density, we can rewrite
Eq. (A7) as

which is the relativistic Euler equation in this theory.
The Quid energy equation follows from

u„T" =0,
which gives

(A6)

In this theory, Eq. (A9) is the first law of thermodynam-
ics for a perfect Quid in an external scalar potential N.

In stationary Aow, the Quid equations yield a Bernoulli
integral. Dotting the four-vector g=B/Bt into Eq. (A5)
and substituting Eq. (A9), we find

(e+P—)V u —3P
d~

' "
d~

(A7) up
n

e+P
e =constant along streamline . (A lo)
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