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Dilaton contributions to the cosmic gravitational wave background
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We consider the cosmological amplification of a metric perturbation propagating in a higher-
dimensional Brans-Dicke background, including a nontrivial dilaton evolution. We discuss the proper-
ties of the spectral energy density of the produced gravitons (as well as of the associated squeezing pa-
rameter), and we show that the present observational bounds on the graviton spectrum provide
significant information on the dynamical evolution of the early Universe.
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I. INTRODUCTION

It is well known that the transition from a primordial
inAationary phase to a decelerated one, typical of our
present cosmological evolution, is associated with the
production of a cosmic background of relic gravity waves
[1—6]. The spectral distribution of their energy density
may provide direct information on the very early history
of our Universe, and can be used, in particular, to recon-
struct the time dependence of the Hubble parameter [7].

Delation, however, is not the only violent process typi-
cal of primordial evolution able to amplify a metric Auc-
tuation. Although less known (or less studied, up to now
at least), it is a fact that gravitons can be produced from
the vacuum also as a consequence of a phase of dynami-
cal dimensional reduction [8,9], in which a given number
of "internal" dimensions shrink down to a final
compactification scale. Another possible process which
may lead to a cosmological graviton production, and
which (to our knowledge) has not yet been discussed in
literature, is the time variation of the effective gravita-
tional coupling constant G.

The main purpose of this paper is to compute the ex-
pected spectrum of the cosmic gravitons background, by
including both the contributions of dimensional reduc-
tion and of G among the possible sources (other than
infiation), and by using a Brans-Dicke-like graviton-
dilaton coupling as a dynamical model of variable G. We
are led to this choice, in particular, by the models of early
Universe evolution based on the low-energy string-
effective action [10—12], which suggest that the standard
radiation-dominated cosmology is preceded by a dual,
"string-driven" phase, in which the effective gravitational
coupling changes just because of the time dependence of
the dilaton background. The possibility of looking for
tracks of such a string phase in the properties of the
cosmic graviton spectrum provides indeed one of the
main motivations of the present work.

The paper is organized as follows. In Sec. II we deduce
the linearized equation for a gravitational wave perturba-
tion in a Brans-Dicke background, and, in Sec. III, this
equation is used to compute the spectral distribution of
the gravitons, produced by the cosmological background

transitions. We shall take into account the dilaton-driven
variation of G in a higher-dimensional framework in
which also the scale of the internal spatial dimensions is
allowed to vary, and in which the matter-dominated and
radiation-dominated evolution of the external space fol-
lows a phase of accelerated (i.e., inflationary) expansion.
The squeezing parameter [13] corresponding to this
scenario will be given in Sec. IV.

In Sec. V the present bounds on the energy density dis-
tribution of the relic gravitons are used to obtain infor-
mation and constraints on the value of the curvature
scale at the transition between the inAationary and the
radiation-dominated era, versus the parameters charac-
terizing the background kinematics. The predictions of
some string-inspired cosmological models (and of related
Kaluza-Klein scenarios) will be compared with these
bounds in Sec. VI. The main conclusions of this paper
will be finally summarized in Sec. VII.

II. GRAVITATIONAL PERTURBATIONS
OF A BRANS-DICKE BACKGROUND

The starting point to discuss the production of gravi-
tons, induced by a cosmological background transition, is
the linearized wave equation for a gravitational perturba-
tion propagating freely in the given background. In or-
der to include the effect of a changing gravitational cou-
pling, such an equation will be obtained by perturbing (at
fixed sources) the Brans-Dicke field equations around a
background configuration which includes a time-
dependent dilaton field.

It should be perhaps recalled that, in a general relativi-
ty context and in a spatially Oat Friedmann-Robertson-
Walker manifold, a gravity-wave perturbation obeys the
same equation as a minimally coupled massless scalar
field [1,14,15]. In a Brans-Dicke context, however, the
graviton wave equation is difFerent from the covariant
Klein-Gordon equation, because the gravitational pertur-
bations are coupled not only to the background metric
tensor, but also to the scalar dilaton background P(t)
representing the G variation.

Our background field dynamics is assumed to be de-
scribed, in D dimensions, by the scalar-tensor action
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(2.1)

Here

6r„,=-,'g i'(v„h.,+v,h„—v,h„.) (2.6)

R+co(v(3) —2' /=0, (2.2)

where V denotes the Riemann covariant derivative, and
=g"'V„V . The variation with respect to g„, com-

bined with (2.2), provides the equation

where co is the usual Brans-Dicke parameter, and S
represent the possible contribution of matter sources,
with &~g~T„=25S l5g"'. The variation of this action
with respect to P provide the dilaton equation

and 5R„ is the linearized expression for R„(5g) (note
that all covariant derivatives, as well as all operations of
raising index on h„, are now to be understood as per-
formed with the help of the background metric g„).

We choose, in particular, a time-dependent back-
ground with P=P(t), and a homogeneous diagonal
metric describing a general situation of dimensional
decoupling, in which d dimensions expand with scale fac-
tor a(t), and n dimensions contract with scale factor b(t)
In a synchronous frame,

R +V„V P+(co+1)[5„'((VP) — Q) V„PV—Q)

= 8mGD e ~T„. (2.3)

g =1, g,"=—a (&)y,"(x), g, i,
= —b (t)y,b(y),

gap=0=. g P =P( t)
(2.7)

Note that we are using an exponential parametrization
for the dilaton field to make contact with the string
cosmology models. For co= ~, /=const we recover gen-
eral relativity, while for co= —1 Eq. (2.1) reduces indeed
to the truncated low-energy string-effective action with
phenomenological matter sources [10—12].

The free-linearized wave equation for a metric Auctua-
tion 5g„„=h„ is now obtained by perturbing Eqs. (2.2)
and (2.3), keeping all sources (dilaton included) fixed,
6T„"=0=6/. It should be stressed that we have not ex-
plicitly included in the action a possible dilaton potential
term V(P) as its contribution to the perturbation is van-
ishing for 5/=0. It is true that, in a class of duality-
symmetric string cosmological models [10—12, 16], the
dilaton self-interactions may also occur through a cou-
pling to the metric, and lead to a two-loop potential
of the form V= Vo [exp(2$ —2 in& g ~ )], for which
6V~ V6g. This potential, however, is expected to affect
in a significant way only the transition region between the
inflationary and the radiation-dominated regime [12]. Its
contribution to the perturbation equations may then be
neglected for the purpose of this paper where, as dis-
cussed in the following section, we shall evaluate the
graviton spectrum in the "sudden" approximation, name-
ly in the approximation in which the kinematic details of
the transition regime are ignored, and the rapid exponen-
tial decay of the high-frequency tail of the spectrum is re-
placed by a suitable high-frequency cutoff.

We perform then the transformation g„~g„+6g„,
with

g" h„,=0=V,h„' .

In this case we have, for the background (2.7),

6R =0, 6I „=—
—,'h„

(2.8)

(2.9)

(an overdot denotes a derivative with respect to r). The
perturbation of Eq. (2.2) is thus trivially satisfied, while
the perturbation of Eq. (2.3) provides for h„ the linear-
ized wave equation

6R„+—,'Ph„g —h' V„V /=0, (2.10)

which, being cu independent, is remarkably the same for
all Brans-Dicke models.

The nonvanishing components of the background Ric-
ci tensor, for the metric (2.7), are given by

(conventions: p, v= 1, . . . , D=d+n+ I; i,j =1, . . . , d;
a, b = 1, . . . , n; t is the cosmic time coordinate, and y, ,

y, & are the metric tensors of two maximally symmetric
Euclidean manifolds, parametrized respectively by "inter-
nal" and "external" coordinates Ix'] and [y']). We are
interested, moreover, in a pure tensor gravitational per-
turbation, decoupled from sources, representing a gravi-
tational wave propagating in the d-dimensional external
space, such that

h„=h„(x,t ), h0„=0=h,

and which satisfies the transverse, traceless gauge condi-
tion

6g„=h„, 6$=0=5T " . (2.4) Ro = d(H+H ) n(F—+F ), —

By neglecting corrections of order higher than first in h„
(so that, for instance, 6g""=—h"'), we are led to the
variational expressions

R, = — R, [y(x)] 6;(dH +H+nH—F), (2.11)
a

R, = — R, "[y'(y)] —5, (nF +F+dHF),
5(vy)'= —h i'a.yap,
5( y)= h~ v„v,y g~ a.—y5r„, ,

—

6R = —h~ R„.+g~ 6R„. ,

5(v „v y) = h-v„v.y g-a@—5ri'. ,
—

5(v„yv'y) = h-a„ya.y . —

(2.5)

g;. =2Hg,", g '~= —2''~, (2.12)

where H =a /a, F=b Ib, and R ( y ) denotes the Ricci ten-
sor for the n-dimensional Euclidean spaces computed
from the metrics y,i(x) and ),b(y). By using the rela-
tions
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one obtains [14,17], to the first order in 5g; =h;,
5(g )—:5(g'"g;k ) =&—:(g '"h;k ) . (2.13)

we get, finally, from Eq. (2.22), that each polarization
mode P(k) must satisfy the equation

It is thus simple to show (in the gauge g'~h, =0) that
Q" + (k —V)/=0 (2.24)

5H'=

5(H5;~) =
—,'h; J,

5H = 5(g' g,„)=0=5H,= 1

2d
1

4d
5(g'"g;k )'=o,

(2.14)

where

d —1 a" n b"
2 a 2 b

1 b'+ —n(n —2)
4 b

2

1+—(d —1)(d —3)
a'

2 4 a

+—P' + n(d——1)1,2 1 a'b'
4 2 ab

5(H5 ') =—'h 1

5(H 5 J)=—'Hh ~

1 a' , n b'
2 a 2 b

(2.25)

5R,~= —5
a

——Hh J——h-J ——Fh ~ .
2 ' 2 ' 2

We shall consider, in particular, a Oat Euclidean metric
y;k=5;k, so that l,~(x)=O=R J(y). The gauge condi-
tion V(y )h; =0 reduces to B~h,.~=O, and implies [14,17]

5R J= ——'V h~
l P 1

with V =5' 8;8 . We thus recover the usual result,

(2.16)

5R J= ——h;J+(dH+nF)h;J Vh, ~—
1 2 l

a

1 h~,
2

(2.17)

valid whenever the background is isotropic in the polar-
ization plane, orthogonal to the direction of propagation
of the wave [18].

On the other hand, we have, for the background (2.7),

V;V P= —,'Pg;

Moreover, by using Eq. (2.12)

gj h,.„—h~ g,„=h;J .

The linearized wave equation (2.10) thus reduces to

h;J —Ph;J=O,

(2.18)

(2.19)

(2.20)

and, in terms of the eigenstates of the Laplace operator,

V h;~(k)= —k h;J(k),

it takes the form
2

(2.21)

h ~+(dH+nF P)h ~+ — h;J=—O .l a
(2.22)

For later applications, it is convenient to rewrite this
equation in terms of the conformal time coordinate g,
defined by dt /d q =a. Denoting with a prime the
differentiation with respect to g, and defining

(the corresponding perturbations of the F terms are all
vanishing, since 5g, b =0). Therefore

5R0 =0=5R
(2.15)

b I

+n(n —1)
b

+2n(d —1)
a'b'
ab

(2.26)

In this way one can reintroduce the co dependence which
is otherwise hidden in the particular choice of the dilaton
background. For the purpose of this paper, however, it
will be more convenient to work directly with the form
(2.25) of the potential, in which P appears explicitly.

III. PARAMETRIZATION OF THE GRAVITON
SPECTRUM FOR A GENERAL MODEL

OF BACKGROUND EVOLUTION

As discussed in the previous section, the present day
background of cosmic gravitational waves may include,
among its sources, not only a metric transition (deflation,
dynamical dimensional reduction), but also a dilaton
transition between two or more regimes with different
gravitational coupling.

In order to take all these contributions into account,
we shall consider the background metric of Eq. (2.7)
(with fiat maximally symmetric subspaces y,"=5;,
y, b =5,b), starting with an initial configuration in which,
for rj (—rli, d dimensions inflate with scale factor a(g),
n dimensions shrink with scale factor b(g), and the dila-
ton coupling is growing according to

This effective potential generalizes to a higher number
of dimensions the four-dimensional equation, used by
Grishchuk and collaborators [1,3,7], to study the cosmo-
logical amplification of the quantum Auctuations of the
metric tensor. In addition, it takes into account the cou-
pling of the metric perturbations to a possible time varia-
tion of the gravitational coupling constant (P'%0), and to
a possible variation of the scale of n "internal"
compactified dimensions (b'%0). It may be interesting to
note that this potential can also be expressed in terms of
the scale factors only, by eliminating the explicit dilaton
dependence through the background equation (2.2),
which implies

+ —P' ——(d —1)
ch" 1 , 1 a' , n b'
2 4 2 a 2 b

2II I

2d +2n +d(d —3)4' a b a
2

, j —h ja(d —1)/2b /2e —$/2 (2.23) a -g, b -i)~, P-y lna, g( —g, (3.1)
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—Pa -g2, g —g ', P-y2lna, 0(g2(g .
(3.2)

According to this model of background evolution, the
effective potential (2.25) becomes

V(g)= [[a(d —1 —y) —nP+ I ] —1 j,
1

4g
1V(g)= [(n,P, +y, —1) —1], —r), (g &g2, (3.3)

4g

V(q) = [(n,P, +2y~ —3) —1],
1

4r]'

(note that it goes to zero as q —++ ~). A particular solu-
tion of Eq. (2.24) for P(k) can thus be written in terms of
the first and the second kind Hankel functions H"' and
H'2' (we follow the notation of Ref. [19]),
g(k, r))-r)' H'„'"(krl), which correspond to free oscil-
lating modes in the

~ g ~
~ ~ limit, as

H' '''(kq)~e '""/v'k (the minus and plus sign
corresponds, respectively, to H' ' and H"').

The effective potential barrier (3.3) leads to an
amplification of the gravitational perturbations or,
equivalently, to a graviton production from the vacuum
[2,3, 5 —8). Indeed, starting with incoming modes which
are of positive frequency with respect to the vacuum at
the left of the barrier (g —+ —oo ), one has in general, for
g~+ ~, a linear combination of modes which are of
positive and negative frequencies, with respect to the vac-
uum at the right of the barrier. The superposition
coefficients c+(k) define the Bogoliubov transformation
[20] connecting the "left" and "right" vacuum, and
determine the spectral distribution of the produced gravi-
tons.

By assuming, in our case, the "in" states of gravitation-
al field correspond to the Bunch-Davies "conforrnal" vac-
uum [5,6,20], we can write the general solution of Eq.
(2.24), for each mode g(k), in the three temporal regions
as

q, (k)=Cq'"H', ", q& —q, ,

g»(k)=r)'~ [A+H„'~(kg)+3 H„"'(kg)],
(3.4)

g», (k) =g'~2[B+H' '(krl)+B H"'(kq)],

(note that in this equation g ranges over negative values,
so that a, P, and y are all positive). We shall assume that
this phase is followed, at g = —g, and g =q2 respectively,
by the standard radiation-dominated and matter-
dominated expansion of three spatial dimensions. During
these last two epochs, however, the gravitational cou-
pling and the compactification scale of the possible addi-
tional n& internal dimensions are not assumed to be
frozen, but they are allowed to vary as

—P
a -g, b -g ', P-y, lna,

v= —,
' [a(d —1 —y )

—nP+ 1],
p= ,'(—n,P, +y, —1),
g = ' (n $Il2+2y2 —3),

(3.5)

1c+=—y2

kgi
2

Ilk
+y (3.6)

[here @=I(p)/I (v), where I is the Euler function, and
we have supposed p )0, v) 0 when performing the k ~0
limit].

These coefficients satisfy correctly the Bogoliubov nor-
malization condition, ~c+~ —

~c ~
=1, and have been

obtained in a more particular case [15], and also with a
different procedure [6,22], in previous papers. For
kg& & 1, we shall keep the dominant term only, ignoring
corrections to the sudden approximation near the max-
imum frequency k& =g& ', and neglecting also numerical
factors of order unity, which depend on the model of
background evolution (continuity of the scale factors and
of the dilaton at the transition time), and which do not
affect the qualitative behavior of the spectrum. In the
rest of the paper, therefore, we shall use the expression

and C is a normalization constant. The Bogoliubov
coefficients are given by c+(k)=B+/C, and can be fixed

by the four conditions obtained matching g and P' at
'g = 7j i and 'g =7jp.

The coefficients determined in this "sudden" approxi-
mation lead, however, to an ultraviolet divergence of the
energy density of the produced particles. The reason is
that, for modes of comoving frequency k higher than the
height of the potential barrier, the sudden approximation
is no longer adequate, and the mixing coefficients should
be computed by replacing the potential step with a
smooth transition of V(g). In this way one finds, indeed,
that the mixing of the modes with k )

~ V~
' is exponen-

tially suppressed with respect to the other modes
[8,20,21], and the ultraviolet divergence is avoided. In
this paper, however, we are mainly interested in the gen-
eral behavior of the spectral distribution, and not in the
details of the transition regime. We shall completely
neglect, therefore, the frequency mixing of modes which
never "hit" the potential barrier, by putting, for such
modes, c+ (k) = 1, c (k) =0. This replaces the exponen-
tial decay of the high frequency side of the spectrum with
a cutoff, at an appropriate frequency k =

~

V~'

Our potential barrier (3.3) has two steps, which satisfy

V(q, ) =g, ))g~ = V(q~)

(for realistic values of the parameters). The propagation
of modes with gz

' & k & g, ' will thus be affected, in our
approximation, only by the first background transition at

In this frequency band, the Bogoliubov
coefficients are then defined by c+ = 3+ /C; by matching

P„g» and their first derivatives at g=g, , and by using
the small argument limit of the Hankel functions, we ob-
tain (for kg, &1)

where ~. (k)~=(k~ )-~~-
~ k &k&k (3.7)
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where k2=1/i)2 is the frequency corresponding to the
height of the barrier V(g2).

Lower frequency modes k & k2 are affected also by the
second background transition, at g =q2, from the
radiation- to the matter-dominated regime [3,5,6]. In this
frequency sector the Bogoliubov coefficients are given by
c+ =B+ /C, and the matching condition provide, for
kq, &1,

1c+(k) =—y,
kg,

2

' V P )M C7

kg~
V2 2

k
+@1

2
kg2

Xz

0 P

(3.8)

where ye=I (cT)/1(p) for p, ) 0 and cr) 0. It may be
useful to note that the expression can be easily general-
ized by performing the product of n Bogoliubov transfor-
mations, to the case of n background transitions, at
g=g;, between the mode solutions 0 and 0, with

t i+1
i = 1,2, . . . , n. One finds, in general [22],

n

2

kg, -

2

V ~ V ~ + 1 k

2

(3.9)

dp, =2 ic i'4
(2~)

(3.1 1)

The spectral energy density p(co) =codpg /dco, which is
the variable usually adopted [3,5 —7] to characterize the
graviton energy distribution, turns out then to be
parametrized as

where y, are numerical factors of order unity, and
N* =X ' is an overall constant phase factor.

In order to keep only the dominant term of Eq. (3.8),
for k & k2 «k„we have to note first of all that the phe-
nomenological constraints on the time variation of the
fundamental constant (including G), during the matter-
and radiation-dominated eras, imply o. —p, &0 (see Sec.
V). If p —v &0 (as seems to be indeed the case for all the
appropriate models of background evolution, see Sec.
VI), the second term on the right-hand side (RHS) of Eq.
(3.8) is the dominant one. If, on the contrary, p —v) 0,
then the first term is dominant (for realistic values of i)&

and i)2). We shall thus use, for the graviton production at
low frequencies,

ic (k)i =(kil ) " "(ki) ) ' " k &k k (3. 0)

where the —(+ ) sign refers to p —v & 0( )0), and ko is
the minimal amplified frequency [3,5] emerging today
from the barrier (otherwise stated, crossing today the
Hubble radius Ho '), namely ko =aoHO.

The final number of produced gravitons, for each mode
k, is given by ~c (k)

~
. The corresponding energy densi-

ty p, in the proper frequency interval de, is obtained by
summing over the two polarization states, and is related
to c by [5,7]

p(co)=co (ki), ) '" ', kz&k &ki,
(3.12)

p(co)=co (kryo ) " (kit ) i ~' k &k &k

For later comparison with present observational data,
it is convenient to replace all comoving frequencies k by
the associated proper frequency co=k/a(t), and to ex-
press the spectral distribution in terms of the final curva-
ture scale H

&
=H(—g& ), reached at the end of the

infiationary phase, H
&

-—(a
& i) &

)
' = co&. Since in our mod-

el q, is also the beginning of the radiation-dominated
evolution for a(t), it follows that H can be expressed in
terms of the radiation energy density pz, as

k,
4

=Gpss(i), ), Gp~(t)=
a1

a(t)a1

Q(co, t)=GH, fl (t)
1

4 —&lP —vl

C02 ( CO (C01

(3.14)

Q(co, t)=GH, A (t)
CO 1

+2lo —pf

X
C02

COO (CO (CO~,

where A~(t)=pr(t)/p, is the fraction of critical energy
density present in the form of radiation, at the given ob-
servation time t.

This spectrum is parametrized by the scale 01, and by
the kinematical indices p, v, cr, which determine its fre-
quency behavior. It may be interesting to note that the
high frequency part of the spectrum is decreasing, Hat, or
increasing depending on whether ~p

—
v~ is larger than,

equal to, or smaller than 2. For a primordial phase corre-
sponding to isotropic inAation of d=3 spatial dimen-
sions, with frozen dilaton and internal radius
(P=P, =y =y, =0), Eq. (3.4) gives, in particular,

~ p —
v~ = 1+a, so that the behavior of the spectrum is the

same as that of the curvature scale. For a de Sitter phase
(a = 1) one recovers indeed the well known fiat spectrum
[2,23] (0=const), while for superinfiation (0 & a & 1) one
obtains the growing spectrum recently discussed in Ref.
[22].

In the general case in which d&3, and the additional
contributions of a dilaton variation (as well as those of di-
mensional reduction) are included, however, the spectral
behavior may be Rat or decreasing even if the curvature is
growing. What is important to stress is that, in any case,
all observational data and constraints on the present

(3.13)

Note that we have used the Newton constant G =M~ as
the effective gravitational coupling during the post-
inAationary cosmological evolution; the allowed devia-
tions from this value turn out to be indeed negligible for
our determination of the spectral behavior (see Sec. V).

By using Eq. (3.13), and by measuring p(co) in units of
critical energy density p„ the spectral distribution (3.12)
can be recast finally in the convenient form
[II(co)—:p(co)/p, ]

4—2IP- vl
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602 k2

kp

tp

Hpap t2

ap
(3.15)

a2COQ

On the other hand, the radiation temperature evolves adi-
abatically (aT= const), so that the ratio (3.15) can be ex-
pressed in terms of the temperature T2 at the transition
time:

background of cosmic gravitational waves can be
translated, thanks to Eq. (3.13), into direct information
on the curvature scale H, (marking the transition from
the primordial inflationary phase to the standard de-
celerated scenario), and on the kinematics of the back-
ground evolution. This possibility will be discussed in
Sec. V.

We conclude this section with an estimate of the transi-
tion frequencies co, and co2. At the present time tp, the
minimal proper frequency cup is determined by today' s
value of the Hubble radius, i.e., cop=HQ —10 ' Hz. The
frequency co2, corresponding to the matter-radiation tran-
sition, can be easily related to cop by noting that
a(t) -t during the matter-dominated regime, so that

1/3 1/2

g( k, il ) =b P;„+b tP;*„,

q(k, n) =a you, + a'q.*„,
(4.1)

C+ foui
(4.2)

where c+ are defined, according to Eq. (3.4), as
c+=B+/C. The equivalent relation among the corre-
sponding annihilation and creation operators of the
second-quantization formalism is then

a

C+

c

C b

b f
+

(4.3)

If the Bogoliubov transformation is parametrized by
two real numbers r and 0 in such a way that

c+ =coshr, c* =+e ' sinhr (4.4)

for each mode k. The two sets of solutions are connected
by a Bogoliubov transformation which, when expressed
in terms of the "in" and "out" mode solutions, takes the
form

r

C+ C Pout

COQ

1/2
2

TQ

—10 (3.16)
the transformation (4.3) can be rewritten as

a=SbS, a =SbS, (4.5)

where TQ —1 K is the present temperature of the radia-
tion background.

In a similar way, we can relate cop to the maximal
cutoff frequency co1, which depends on the final curvature
scale H1. We can put, in fact,

C01 k1

COp kp

H1a1

Hpap

H1a1 H2a2

H2a2 Hpap
(3.17)

and we note that, during the radiation dominated evolu-
tion, a —t' —H " '. We have, moreover, H2 —10 Hp
and (in units of Planck mass) Ho —10 'Mz', therefore,

1/2 ' 1/2 1/2
c01 H1 p p

H2
1/2

1029
Mp

(3.18)

IV. THE SQUEEZING PARAMETER

Another phenomenological signature of the primordial
cosmological transitions, encoded into the cosmic
gravity-wave background, is the squeezing parameter
which characterizes the quantum state of the gravitons
produced from the vacuum [13]. This parameter is
directly related to the Bogoliubov coefficients, and is thus
sensible to all the various components of the production
process, including a possible variation of the dilaton
background, just like the spectral energy distribution.

The graviton production discussed in the previous sec-
tion is based on the expansion of the gravitational pertur-
bation in terms of ~in) and

~

out ) states, namely

where S is a unitary operator defined by

S=exp[ —,'z(b ) —
—,'z "b ], z=re ' (4.6)

r=ln(~c ~+Q c
~

+1) . (4.7)

According to the model of background evolution con-
sidered in the previous section, and for cu) co2, the relic
graviton background may be characterized, in general, by
the squeezing parameter

r(co) =ln~c
~

= —
~p,

—v~ln

H1= ~p
—

v~ 25 —ln +—ln
co 1

Hz 2 Mp
(4.8)

[we have used Eq. (3.7) for c, and the estimate (3.18) for
CO i].

The first term in Eq. (4.8) is expected to be the dom-
inant one, at least in the range of frequencies accessible,
in a (hopefully) not too distant future, to a direct observa-
tion [3,4]. The second term takes into account the varia-
tion of r with frequency, and the third term provides a
correction if the transition curvature scale is different
from the Planck scale. A direct measurement of this pa-

This is a so-called "squeezing" operator: when applied to
the vacuum (or, more generally, to a coherent state) it
generates a state for which the quantum fluctuations of
the operator X—b+b (or its canonical conjugate) can
be arbitrarily squeezed for a suitable choice of r (see for
instance Ref. [24]). In particular, AX~0 for r ~ oo.

The cosmic gravitons arising from the background
transitions are thus produced in a squeezed state, with a
parameter r which, according to Eq. (4.4), is given by
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rameter, at some definite value of frequency, would pro-
vide then significant information both on the curvature
scale H „and on the background (dilaton included)
dynamical evolution, through the lp

—vl dependence.

V. PHENOMKNOLOGICAL CONSTRAINTS
ON THE GRAVITON SPECTRUM

background evolution, can thus be written

1
z & 2+ —log&OQ, ,2

z & —(80+log, oQ~ ) —38,1

z & —(120+4y+log, oQ; ) —58 .1

(5.4)

The present energy distribution of a cosmic gravity-
wave background is mainly constrained by three kinds of
direct observations [3,4]: the absence of Iluctuations in
the millisecond pulsar-timing data, the critical density
value, and the isotropy of the cosmic microwave back-
ground radiation (CMBR). The first one applies on a nar-
row frequency interval around co —10 Hz, while the
other two apply at all frequencies (the third one provides
a bound which is frequency dependent}. Their relative
importance, and the frequency at which they provide the
most significant constraint, depend on the slope of the
graviton energy spectrum Q(co).

For a stochastic graviton background, the bound on
the spectrum following from the CMBR isotropy con-
strains the wave amplitude h(co), and scales like co . It
provides then the most significative bound at the
minimum frequency coo (where it implies [3] II 10 ),
unless we have a spectrum which in its low frequency
band (co&co2) grows faster than co . If the spectrum is

growing at all frequencies, however, the most significant
constraint for the present values of experimental data is
provided in any case by the critical density bound 0 1,
applied to the highest frequency co&.

According to our three-component model of back-
ground evolution, the spectrum may be increasing at low
frequencies, and simultaneously flat or decreasing in the
high frequency sector, only if [see Eq. (3.14)]

which parametrizes the time evolution of the dilaton and
of the compactification radius during the matter and ra-
diation dominated eras [recall Eq. (3.2)], is severely con-
strained by the present bounds on the variation of the
fundamental constants.

Indeed, in a Brans-Dicke frame, and in a higher dimen-
sional context with n =D —4 dimensions lying in a com-
pact internal space, with scale factor b(t), the effective
four-dimensional Newton constant G& evolves in time
like Gz -e~/b". We have then

G

G

~ b
n

b
(5.6)

During the rnatter-dominated era the variation of the ex-
tra spatial dimensions is constrained by [25]

They follow, respectively, from the critical density, pul-
sars and isotropy bounds, and they define an allowed re-
gion in the (x,y, z ) space which provides information on
the past evolution of our Universe.

In order to discuss the extension of this region it
should be noted, first of all, that the range of variation of
the variable y,

(5.5)

(5.1) lb /b I

& lo-'H, , (5.7)

Even in such a particular case, however, the growth of
the low frequency sector cannot be significantly faster
than co, since, as we shall see later,

l
cr —p is not allowed

to be notably larger than 1 by the present limit on the
variation of the fundamentals constants. Therefore, the
energy distribution of the graviton background can be
significantly constrained by imposing on Eq. (3.14) the
three bounds

and the variation of G& by [26]

lG~/G~ & 10 'Ho, (5.8)

where we have taken for Ho the largest value allowed to-
day, Ho = 10 ' yr '. These two bounds imply

l P l
& 10 'Ho. But, according to our parametrization

(3.2), P =y 2H and b /b = P2H /2. It foll—ows that

Q(co, ) & I)t,„A(co ) & II, Q(coo) & 0;, (5.2)
(5.9)

where co —10 Hz, and 0„ fL, 0; are the present
value of the bounds on the energy density imposed, re-
spectively, by critical density, pulsar timing data, and
CMBR isotropy.

For our discussion of the constraints, it may be con-
venient to simplify the notation by defining the variables

Consider now the radiation-dominated era. During
this phase, the best limits on P and b are obtained from
the primordial nucleosynthesis. Denoting by b„„,~, G„„,~,

and by bo, Go, the values of the radius of the internal
space and of the Newton constant, at the epoch of nu-
cleosynthesis and at the present epoch, respectively, one
obtains that the change of b must be bounded by [25,27]

Hi~=le —vl, y=l~ —vl z=»gio
Mp

(5.3) b„„,)""' =I+a, lel & lo ',
0

(5.10}

By using A~(to)-10 for the present critical fraction of
radiation energy density, and by inserting in Eq. (5.2) the
values of coo, co„cuz determined in Sec. III, the three con-
straint equations in the parameter space, for our model of

while the change of G is constrained by [28]

"""= I+a, lel &3x lo
Go

(5.11)
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Translated into limits on the time variation of b and P,
according to the parametrization (3.2), they imply

(5.12)

I I

[
I I

critical density
//// //// //// ///

The dilaton contribution is thus the dominant source
of uncertainty in the value of the parameter y. Even tak-
ing into account the maximum allowed uncertainty, how-
ever, it follows from Eqs. (5.9) and (5.12) that

0

ALLOWED

REGION

0.9~y ~ 1.1 . (5.13)

A first rough evaluation of the allowed region in the pa-
rameter space is thus obtained by fixing y = 1 in Eqs. (5.4)
(the allowed deviation of y from 1 is too small to be
significant in view of our previous approximations).

We have to insert, moreover, in Eq. (5.4) the values of
the bounds implied by the present experimental data. We
shall put 0, =1 (in order to avoid that the produced
gravitons overclose our present Universe), 0 =10 as
implied (at the 99% confidence level) by recent results
from pulsar timing [29], and 0;=10, following from
the constraint [30] h (10 ' on the gravity-wave ampli-
tude. With these data, the constraint equations (5.4) be-
come

z&2,

I

1.6 1.8
x=fp, —v/

limiting slope for a scale H& is fixed by

108x& 58+ log, o(H, /Mp )
(5.15)

FIG. 1. The maximum allowed value of the transition scale
Hl (in units of Planck mass), versus the parameters determining
the kinematics of the background evolution. The allowed re-
gion with Hl ~ 10 Mz extends from x = 1.8 down to x =0.

z& —38,74

z (—(112+-4)—58 .
1

(5 14) if p(v, and

74x&
38+logio(Hi /Mp)

(5.16)

We recall that the negative (positive) sign in the last
equation corresponds to p (v (p )v). It should be men-
tioned, moreover, that in the context of a more stringent
analysis, the first bound z &2 could be replaced by z &0,
following from the fact that early nucleosynthesis seems
to imply [31],at high frequency, A(10 for the energy
density distribution of massless particles. This would
correspond to a maximum scale H

&
& Mp instead of

10 Mp. This conclusion is, however, model dependent,
and in this paper we prefer to rely on constraints follow-
ing directly from observations.

The allowed region of the (x,z) plane delimited by
Eqs. (5.14) is illustrated in Fig. 1. Because of the uncer-
tainty of the experimental data, which has not been com-
pletely taken into account in our discussion, and because
of the approximations made, this figure is expected to
give only a qualitative picture of the phenomenological
scenario. Nevertheless, we can draw from our analysis
the following general conclusions.

(1) There is a maximum allowed value for the curva-
ture scale H& at the epoch of the transition from the
phase of accelerated expansion, dilaton growth and di-
mensional reduction, to the decelerated radiation-driven
evolution, i.e., H& + 10 Mp.

(2) Models characterized by a sufficiently high scale,
Hj ~ 10 Mp, are constrained by pulsar timing if p ~ v,
and by CMBR isotropy if p ~ v.

(3) For any given scale Hi lower than the maximum
one there is a limiting slope of the spectrum, below which
that scale is forbidden. Within our approximations, the

if p) v. In the first case (which corresponds to all the
physical models considered in the next section), the max-
imum scale 10 Mp is allowed for x ~ 1.8, while the
Planck scale can be reached for x ~54/29=1. 86. A
four-dimensional inflationary background, with frozen di-
laton and radius of the internal dimensions
( y =P=0,d =3), corresponds in particular to
p —v= —a —1 &0, and the Planck scale is thus reached
for o. ~ 25/29, in agreement with the results of a previous
analysis [22].

(4) Finally, models corresponding to a spectrum which
is fiat or decreasing at high frequencies (i.e., with x 2),
are characterized by a maximum allowed scale
H, & 10 Mp. We thus recover the well known bound
on the scale of a four-dimensional de Sitter inflation
[2,22], since in that case x = ~a+1~ =2 and one obtains
the usual flat spectrum.

VI. STRING COSMOLOGY PRE-BIG-BANG
AND OTHER HIGHER-DIMENSIONAL MODELS

In the standard cosmological model, the curvature is
monotonically increasing as we go back in time, and
blows up at the initial singularity. A possible classical al-
ternative to the singularity would seem to be provided by
an initial inflationary de Sitter phase, at constant curva-
ture, which extends in time indefinitely toward the past.
However, as discussed in a recent paper [32], eternal ex-
ponential expansion, with no beginning, is impossible in
the context of the conventional inflationary scenario, so
that a primordial phase of constant curvature does not
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help to solve the problem of the initial singularity. More-
over, according to the constraints reported in the previ-
ous section, the constant value of the curvature during
the initial de Sitter phase should lie at least four orders of
magnitude below the Planck scale; this may seem un-
natural, if one believes that the growth of the curvature is
stopped and that the primordial curvature becomes stable
just because of quantum effects.

A different alternative has recently been suggested, on
the grounds of string theory motivations [10,12,33], in
which the singularity is avoided because the curvature
grows up to a maximum (Planckian) value and then de-
creases back to zero. The standard radiation-dominated
phase is then preceded in time by a phase with "dual"
dynamical behavior (the curvature and the dilaton are
growing, H )0, P )0, the evolution is accelerated, ii )0),
called [12] "pre-big-bang. " Particular examples of such a
scenario are thus provided also by earlier models of
superinAation and dynamical dimensiona1 reduction, dis-
cussed in the context of Kaluza-Klein cosmology
[34-36].

In this section we want to stress that if the initial
configuration of our model of background evolution [i.e.,
for g & —gi, see Eq. (3.11)]corresponds to a pre-big-bang
scenario of this type, the consequent graviton spectrum is
always growing fast enough to avoid the de Sitter bound
H &10 Mp (i.e., x &2), and to allow the Universe to
inAate up to the maximal curvature scale, consistently
with the bounds of the previous section.

Consider indeed the perfect-Auid-dominated model of
Refs. [34] and [35], which describes superinflation and di-
mensional decoupling, and belongs to the class
parametrized by Eq. (3.1) with @=0. One finds, for this
model, p —v= —

—,', and x =~@—v~=0. 5. The model of
Ref. [36] (based on the toroidal compactification of
D = 11 supergravity), corresponds to y =0, a=0.26, and
P=0.22, and gives p —v= —0.49 & 0. The model of
string-driven inflation of Ref. [33] has @=0, n ) 10, and
for d = 3 it gives p v=(4 —n)/3n —& 0. Finally, a typical
pre-big-bang model [12], dual to the standard radiation
phase, satisfies the Brans-Dicke equations (2.2) and (2.3)
(with co= —1) for

f =2', cx = 2
3+d+n

and implies

—2
3+0 +7l

(6.1)

(6.2)

For all these models we have p, —v&0, and ~p
—

v~ & 1.8
(for any allowed number of internal dimensions), so that
their final curvature scale is only constrained by the clo-
sure density bound.

We want to comment, finally, on the possibility that
the CMBR anisotropy recently measured [37] by the
Cosmic Background Explorer (COBE) be partially deter-
mined, at the quadrupole level, by a cosmic graviton
background. It has been already pointed out [38], indeed,
that a stochastic background of gravitational waves with
Oat spectrum, generated by a primordial de Sitter
inflationary phase, could produce the entire observed sig-

nal, provided de Sitter inflation occurred at a vacuum en-
ergy scale M~v '~ = l. 5 X 10' GeV (at the 95%
confidence level). This translates into a value of the Hub-
ble constant

H=(8vrMp/3)v'~ —10 Mp,

which is not in conAict with the previously reported
bound (H, & 10 for x =2; see Fig. 1).

It should be noted, however, that a four-dimensional
de Sitter inAation is not the only primordial phase which
can be associated with a Bat graviton spectrum. Indeed,
in a more general higher-dimensional Brans-Dicke
scenario, all the models with ~p

—
v~ =2 provide a flat

high-frequency spectrum. Included in this class, in par-
ticular, are all the (d+1)-dimensional models providing
a phase with variable dilaton and isotropic
sup erinAationary expansion, characterized in confor-
mal time [according to Eq. (3.1)] by the power
a=2/(d —1 —y).

It still remains open, moreover, the interesting possibi1-
ity that the COBE anisotropy may be fitted by a nonAat
graviton spectrum [39] with, in particular, x &2, as pre-
dicted by the string pre-big-bang models. In this case we
may expect, according to Fig. 1, that the COBE data wi11
select a higher transition scale 0&, and in such a case
they could be interpreted, instead of a first direct evi-
dence, via gravitational waves, for the grand unified
theory (GUT) scenario [38], as evidence for the dilaton-
driven string cosmology scenario. In order to discrirn-
inate between these two (exciting) possible interpreta-
tions, however, one should try to probe directly the ener-
gy density of the cosmic graviton background at some
given frequency, for example through a gravity wave
detector [such as the Laser Interferometric Gravitational
Observatory (LIGO) [4]], or by means of astrophysical
methods (such as timing measurements of millisecond
pulsars [29]).

VII. CONCLUSIONS

In this paper we have considered a three-component
model of cosmological evolution in which the standard
radiation- and matter-dominated expansion of the three-
dimensional space is preceded in time by a general d-
dimensional phase of accelerated (i.e., inflationary) expan-
sion. We have included, moreover, a possible variation
of the effective gravitational coupling and of the
compactification scale, pararnetrized, respectively, by a
logarithmic time, dependence of the dilaton field, and by a
power-law evolu)ion of the internal scale factor.

We have shown that the linearized equation for a
metric Auctuation, obtained by perturbing the Brans-
Dicke equations around this background, contains a cou-
pling of the perturbation to the background metric and to
the dilaton field P. As a consequence, both the dimen-
sional reduction process and the variation of G (via P)
contribute (in addition to inflation) to the process of the
amplification of the gravitational perturbations (i.e., to
the graviton production).

We have computed the spectral distribution A(co) of
the energy density stored today in a cosmic graviton
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background [and the associated squeezing parameter
r(co)], taking into account all possible contributions. The
frequency behavior of the spectrum turns out to be clear-
ly related to the temporal behavior of the background
fields (g„and P); the observational constraints on Q(co)
provide then significative information both on the kine-
matics of the background evolution, and on the curvature
scale H, characterizing the transition from the primordi-
al inflationary phase (with variable dilaton), and the stan-
dard radiation-dominated phase.

We have shown, in particular, that for Oat or decreas-
ing spectra the transition scale cannot overcome a max-
imum value which lies, typically, four orders of magni-
tude below the Planck side. For growing spectra, on the
contrary, the allowed transition scale can be as high as
the Planck one (and somewhat higher).

We have stressed, finally, that the contribution of the
dilaton background to the cosmic production of gravitons
may simulate the usual Rat four-dimensional de Sitter
spectrum, even if the inflationary evolution of the scale
factor is not of the exponential type, and the curvature
scale is growing, instead of constant, during the inflation.
As a consequence, one could try to interpret the recently
measured COBE anisotropy not only as evidence for de
Sitter inflation at the GUT scale [38], but also (alterna-
tively) as a possible evidence for a dilaton-driven string
cosmology scenario [10,12].
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