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Gravitational radiation from a particle in circular orbit around a black hole.
I. Analytical results for the nonrotating case
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Among the most promising and interesting sources of gravitational waves for interferomet-
ric detectors, such as the ground-based Laser Interferometer Gravitational-wave Observatory
(LIGO)/VIRGO system and the proposed space-based Laser Gravitational-Wave Observatory in
Space (LAGOS), is the last several minutes of inspiral of a compact binary (one made of neutron
stars and/or black holes). This paper is the first in a series that will carry out detailed calculations
relevant to such binaries, in the case where one body is a small-mass black hole or neutron star
and the other is a much more massive black hole, and the orbit is circular (aside from its gradual
inspiral). These papers will focus primarily on the emitted waveforms and especially their phas-
ing —which is crucial for extraction of information from the detectors measurements. This first
paper is restricted to the case where the massive black hole is nonrotating. The paper begins by
bringing the already well-developed formalisms for computing the waveforms (the "Regge-Wheeler"
and "Teukolsky" formalisms) into a combined form that is particularly well suited both for high
accuracy numerical calculations (to be carried out in paper II), and for analytic calculations (this
paper). Then analytic solutions to the formalism's equations are found in the limiting case of orbits
with large radii ro, and correspondingly small values of v = (M/ro) ~ = (MA)'~ . Here M is the
mass of the large black hole; v and 0 are, respectively, the orbital linear and angular velocities as
measured far from the hole. In particular, (i) the leading-order (in v) contribution of each spherical
harmonic to the waveforms and to the energy loss is computed analytically, and (ii) the full wave-
forms and full energy loss are computed analytically up through fractional corrections of order v

beyond Newtonian, i.e. up through post -Newtonian order. It is shown that propagation of the
waves through the intermediate zone (which connects the near zone to the wave zone) distorts the
waveforms and changes their power (and hence phasing), at post ~ -Newtonian order, in ways that
have not previously been computed —except abstractly and nonconcretely as formal "tail terms"
in the waves. It is demonstrated that these post -Newtonian corrections will be of considerable
importance for the extraction of information from the waveforms that LIGO/VIRGO expects to
measure.
PACS number(s): 04.30.+x; 04.80.+z; 97.60.Jd; 97.60.Lf

I. INTRODUCTION AND OVERVIEW

A. LIGO/VIRGO and coalescing compact
binaries: some background

With the construction of the American LIGO (Laser
Interferometer Gravitational-wave Observatory) [I] and
the French-Italian VIRGO [2] projects now approved and
almost underway, it is quite plausible that direct detec-
tion of gravitational waves will be achieved in the near
future. Still subject to approval is the British-German
GEO project, and other contributions to the worldwide
network may be provided by the Japanese and/or the
Australians. Further ahead lies the possibility of space-
based detectors, such as the proposed LAGOS (Laser
Gravitational-wave Observatory in Space) [3] project.
While ground-based interferometers have good sensitiv-
ity in the frequency band between 10 Hz and 1000 Hz,
detectors such as LAGOS would have good sensitivity
between 10 4 Hz and 0.1 Hz.

In the mean time, many theorists will be busy gath-
ering a better understanding of the potential sources of
gravitational waves (for a review, see Ref. [3]). Among

them, the Caltech Relativity Group, together with I.
S. Finn of Northwestern University, is currently hard at
work in an effort to calculate (in greater detail than previ-
ously) the gravitational emissions of coalescing compact
binaries, and their relevance to future observations by
interferometric detectors. A detailed overview of their
results may be found in Ref. [4]; this series of papers is
part of that group eKort.

Among the possible sources identified thus far, coa-
lescing compact binaries have attracted a great deal of
attention in recent years (see, e.g. , Krolak and Schutz
[5]). One of the main reasons is that the gravitational
signal emitted from a compact binary will sweep a broad
range of frequencies as the companions spiral in together;
since LIGO/VIRGO has maximum sensitivity in the fre-

quency band corresponding to the late evolution of the
system —its last several minutes, when the signal is
strongest and most interesting —this signal is ideally
suited for detection. Another reason comes from the fact
that the number of coalescences expected to be detected
by LIGO/VIRGO should be large enough to be of prac-
tical interest [6, 7].

In addition, compact binaries are relatively clean sys-
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tems, well suited to detailed and accurate theoretical
modeling. As for the entire life of the binary system,
so also for its last several minutes, the orbital time scale
is much shorter than the inspiral time scale; the binary
spends many revolutions at a given orbital separation
and frequency. Furthermore, the orbit can be assumed
to be circular, for any initial amount of eccentricity would
have been dissipated by the emission of gravitational ra-
diation [8]. It is therefore quite justified to suppose that,
during the last several minutes, the orbit is at all times
circular, with a radius adiabatically decaying due to ra-
diation reaction. Another source of simplification arises
from the fact that tidal interactions are not expected to
be important, except at the very last stage of the bi-
nary's evolution [9]; the two companions may therefore
be adequately modeled as compact bodies with vanishing
multipole moments, except for their masses and spins.

An accurate prediction is not just an unnecessary lux-
ury since it allows, through matched filtering [3, 10], a
precise estimation of the source parameters, such as the
companions masses and spins, the orbital inclination,
and the distance to the source. The predicted wave-
forms are functions of these parameters; matched filter-
ing therefore cross correlates the detector output with the
prediction, and varies the values of the parameters un-
til a good cross correlation is obtained, thus identifying
the values of the source parameters. Of particular im-
portance is phase accuracy [4]; any phase shift between
the detected and predicted waveforms, due to inaccurate
theoretical calculations, would give rise to a poor cross
correlation, and hence to a poor extraction of the source
parameters.

Apart from determining the waveforms themselves, the
key issue is therefore to calculate how the wave frequency
changes with time. Since the wave frequency is intimately
related to the orbital frequency, which is itself directly
related to the orbital energy, the issue is to determine
how much energy is radiated away by the gravitational
waves.

At the crudest level, the gravitational luminosity (the
amount of energy carried away per unit time) may be es-
timated using Einstein's quadrupole formula, which sup-
poses small relative velocities. This yields [8]

(dE/dt)~ = —(p/M) (Mn)' ~

where p and M are, respectively, the reduced and to-
tal masses of the system, and 0 is the orbital angular
velocity. The subscript N stands for "Newtonian, " and
Eq. (1.1) is indeed a reliable estimate for the early stages
of the inspiral, when both potential and kinetic energies
are Newtonian.

As the companions get closer together, and as the rel-
ative velocities increase, Eq. (1.1) is no longer accurate.
Wagoner and Will [11],using the tools of post-Newtonian
theory, have calculated the first-order correction to the
Newtonian luminosity. They find

(1.2)

where v = roA = (M/ro)i~2 = (MA)i~s is the orbital
linear velocity (ro is the orbital separation; I have trans-

lated their result for circular orbits into the notation
of this paper). As a short calculation shows, the cor-
rection term becomes significant (of order 1/10) when
the gravitational-wave frequency v 25 Hz (consider-
ing a 1.4 Ms neutron star orbiting a 10 Ms black hole;
2vrv = 2A), which lies well within the LIGO/VIRGO fre-

quency band.

B. This paper

This series of papers addresses the following question:
When the wave frequency is such that the correction term
in Eq. (1.2) is important, how important are those higher-
order terms which are not included in that equation?

In this paper, I show that for the limiting case where

p (( M, Eq. (1.2) generalizes to

dE/dt = (dE/dt) ~ (1 —
sss v + 4vrv + O(v )j (1.3)

if the black hole is nonrotating. The new term 4+v orig-
inates from the propagation of the gravitational waves

through the intermediate zone (which connects the near
zone to the wave zone), in the gravitational field of the
black hole; it is a consequence of the presence of "tail
terms, " or "hereditary terms, " in the waves [12]. I also
calculate the gravitational waveforms, to the same degree
of accuracy; their expressions are given in Sec. VI.

The formalism presented in this paper is also well

suited for numerical calculations, which are carried out in
the second paper in this series, paper II [13]. In particu-
lar, paper II provides high-precision values for dE/Ct for
a wide range of orbital frequencies; from those numerical
results, the expansion of (dE/dt)/(dE/dt)~ in powers of
v is extended to higher orders.

The message of Eq. (1.3) is clear. When v = 25 Hz
and the magnitude of the v2 term is 0.0914, the magni-
tude of the n term is already as large as 0.0486, that is,
approximately 47% the size of the first correction term.
As the frequency increases, so also does the percentage
difference; the two terms become equal to 0.3237 when
v 167 Hz, which lies well within the LIGO/VIRGO
frequency band.

Conventional wisdom has it that the post-Newtonian
calculation of the gravitational waveforms and luminos-
ity is sufficiently accurate for LIGO/VIRGO's purposes.
Equation (1.3) shows that this is not true. Higher-order
corrections, presumably a fairly large number of supple-
mentary terms, are clearly necessary. How the higher-
order terms affect matched-filtering and information-
extraction strategies will be discussed elsewhere [14].

In this paper, Eq. (1.3) and the waveforms of Sec. VI
are derived using the framework of gravitational pertur-
bations of the Schwarzschild geometry (see, e.g. , Chan-
drasekhar [15]). This is the reason for which the reduced
mass p is assumed to be much smaller than the total mass
M: linearized gravitational perturbation theory cannot
handle finite mass ratios. The situation considered here is
therefore tha~ of a point particle of mass p && M orbiting
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a nonrotating black hole of mass M. The methods used
here are similar to that of Gait'sov et aL [16] who con-
sidered the more general case of elliptical orbits; though
restricted to circular orbits, the calculations of this paper
are pushed to a higher degree of accuracy than previously.

I begin in Sec. II by recalling the fundamental equa-
tions from the literature. I adopt the formalism of New-
man and Penrose [17], in which the gravitational pertur-
bations are described by the (complex) Weyl scalar @4,
which is governed by an inhomogeneous Teukolsky equa-
tion [18]. The source term for this equation is obtained
from the stress-energy tensor of a point particle following
a circular orbit in the unperturbed Schwarschild geom-
etry T.he Teukolsky equation is solved by means of a
Green's function, and the gravitational waveforms and
luminosity are extracted from the solution. The basic
formalism is presented in the subsections A, B, and C.

In this formalism, an important role is played by the
function R~& (r), called here the Teukolsky function (r
is the usual Schwarzschild radial coordinate), which is the
solution to the homogeneous Teukolsky equation corre-
sponding to purely ingoing waves at the black-hole hori-
zon, and a superposition of i~going and outgoing waves
at infinity. A measure of the precise amount of ingoing
waves at infinity, B'"&, also plays an important role.
Subsection II D explains how to obtain R~& (r) and
O'"I by solving the Regge-Wheeler equation [19],which
is handled more easily, rather than solving the Teukolsky
equation directly.

The waveforms, and also the luminosity, are decom-
posed into spherical-harmonic modes, characterized by
the values of the indices 8 and m; the full waveforms,
and the full luminosity, are recovered by summing over
these indices. I present, in Sec. III, for a given mode
(l, m), the leading-order calculation for these quantities.
In particular, subsection C shows that the power radiated
by the mode (E, m), when divided by the Newtonian an-
swer (1.1), is of order v2&~ z~ if t'+m is even, while it is of
order v ~ & if 8+m is odd. Section III is a good warmup
exercise for what comes next, but also serves to clarify
a few subtle issues, such as identifying an appropriate
approximation scheme (subsection A), and appropriate
approximate boundary conditions for the Regge-Wheeler
and Teukolsky functions (subsection B).

Section IU provides a detailed study of the Regge-
Wheeler equation, which is there expanded in powers of
Mcu, up to Brst order (u is the wave angular frequency).
A general integral solution is given for all I. (subsection
A), and its behavior at small and large r is extracted
(subsection B).The general formalism is then applied, in
subsection C, to the rather important case 8 = 2.

In Sec. V are presented the detailed calculation of the
gravitational waveforms and luminosity, to order v . The
result for the luminosity was given in Eq. (1.3); the re-
sults for the waveforms are summarized in Sec. VI, which
concludes this paper.

Throughout this paper I use geometrized units in
which c = G = 1. The sign conventions of Newman and
Penrose [17] (as summarized by Chandrasekhar [15]) are
adopted; in particular, I employ the (+, —,—,—) metric
signature.

II. THE GENERAL FORMALISM

This section is a detailed summary, necessary for
the clarity of exposition, of the relevant material gath-
ered from the literature. The combined Regge-Wheeler-
Teukolsky formalism of subsection D was suggested to me

by L.S. Finn, who used similar methods for his numerical
calculations.

A. The inhomogeneous Teukolsky equation
and its solution

In this paper I consider gravitational radiation within

the framework of gravitational perturbations of the
Schwarschild geometry

ds2 = fdt2 —f 'dr2 —r2(d82+ sin 8d$2),

f = 1 —2M/r,
(2.1)

r @4=4 eke ) R„g (r) 2' (8, P)e (2.2)

where 2'~(8, $) denotes the spherical harmonics of
spin-weight s = —2 (cf. Goldberg et aL [20]). The sums

over I. and rn are restricted to E& m & I a—nd E & 2.
The inhomogeneous Teukolsky equation reads

(r fd /dr —2(r —M)d/dr + U(r)) R~t (r)

with

= T t (r), (2.3)

The source term T~t~(r) can be derived from the
stress-energy tensor T p which perturbs the gravitational
field. The first step is to construct the tetrad projections
T pn n~, T /3n m~, and T pm rn~; then one converts
them into Fourier-harmonic components according to

1
0&~em(r) = 2' dtdAT~pn nPOYt~(8, $)e' ', (2.5)

where dA = dcos8dg. Similar equations relate &T~t~
and T~pn rn~, 2T~g~ and T~pm m~. The source can
then be calculated from Teukolsky's equation (2.15) [18],
or can be simply copied from Eq. (12) of Sasaki and Naka-

mura [21] (which, however, contains a sign error). The
result is

and shall describe these perturbations using the
Newman-Penrose formalism [17]. The fundamen-
tal perturbation function is the Weyl scalar @4

Cp~sn—mpn~m, which is well suited to describe out-
going gravitational radiation; C~p~s designates the per-
turbed Weyl tensor, and the vectors n~ = &~(l, f, 0, 0)—,
m = (0, 0, 1, i/sin8)—/~2r, are part of an orthonormal
null tetrad.

The differential equation governing @4 is obtained by
first decomposing it into Fourier-harmonic components
R t (r):
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drR
& (r)T t (r)/r f . (2 7)

B. Source for circular orbits

Before working on Eq. (2.7) to extract physically in-
teresting information, turn to the exact specification of
the source T t~(r).

The Schwarzschild geometry is taken to be perturbed
by a point particle of rest mass p, && M in circular orbit
at radius r = ro. Its stress-energy tensor is

T t /2vr = 2[(l —1)l(l+ l)(l+ 2)] / r pT g~

+2[2(l —l)(l+2)] / r fear f 1T~t~
+ r fear f Zr 2T~t~, (2 6)

where 2 = fd/dr + ice = d/dr' + iu; the variable r* is
the usual tortoise radius: r' = r + 2M ln(r/2M —1).

The standard way to integrate Eq. (2.3) is by means
of a Green's function (I parallel here the discussion given
in Detweiler [22]). To construct the Green's function,
two linearly independent solutions of the homogeneous
Teukolsky equation must be selected. The physically
motivated choice is R+& (r) and R~& (r), which re-
spectively describe purely ingoing waves falling into the
black hole, and purely outgoing waves escaping to infin-
ity. These functions have the following asymptotic be-
haviors [18]: R~& (r) r4f2e '~" for r ~ 2M, while
RH (r) Bm~ r e a~r—" +.—Bouc rses~r' for r ~ m;
and R~& (r) r e' " for r ~ oo. The Wronskian

2iuB~&~ (the prime denotes differentiation with respect
to r).

-™
From the general theory of Green's functions (cf. Ar-

fken [23], Sec. 16.5), if follows that the solution of
Eq. (2.3), at large radii, with boundary conditions corre-
sponding to no outgoing waves escaping from the black
hole and no incident waves from infinity, is

2iwB~&~R t~(r —+ oo)

where fp = 1 —2M/rp.
It is straightforward to construct the tetrad projections

of T~p, they are all proportional to b(cos8)b(P —At).
It is equally straightforward to construct the Fourier-
harmonic components by substituting the tetrad pro-
jections into Eq. (2.5) and its analogues. Integration
over the solid angle yields something proportional to
,Yg~(2, At) =,Vt~(2, 0)e ' ', and integration over
time then yields something proportional to b(w —mA).
One therefore finds that the Fourier-harmonic compo-
nents of the particle's stress-energy tensor are character-
ized by a frequency spectrum peaked at the harmonics of
the orbital frequency,

~ =mO; (2.10)

from Eq. (2.7), it is clear that the gravitational waves
will share that spectrum.

C. Waveforms and luminosity

drR t (r)T t (r)/r f (2.11).
Then, from Eq. (2.7), one finds that R~t~(r ~ oo)
pZt~6(w mA)r es'—~" . It follows from this and Eq. (2.2)
that the Fourier-harmonic components of Q4 are given by
pZt~b(cu —mA)r 1e' " . Knowing that for a monocro-
matic wave @4 = zw2(h~ —ih„) [18], and then perform-
ing the summations over u, E, and m, the full gravita-
tional waveforms (evaluated at infinity) may be obtained:

h+ —iS„=) (ht+ —tltx )

To calculate the gravitational waveforms and luminos-
ity, it is useful to define a number Zt~ (in fact a function
of the orbital radius rp) by

2icu B'"& p, Zg 6(cu —mA)

T /(x) = p, d u u~6( l[2: —z( )], (2.8)
em

= (2IJ/r) ).(Z& /~ ) —2+

E = fp(1 —3M/rp)
= (Mrp)1/2(l 3M/rp)

—1/2

A = (M/rps)'/2,
(2 9)

where 2: is the spacetime point, and where z(r) repre-
sents the particle's trajectory (u = dz /dr is the parti-
cle's four-velocity). For the trajectory under considera-
tion, Eq. (2.8) reduces to T~~ = (p/rp )(u u~/u )6(r-
rp)b(cos8)6(P —At), with u = (E/fp, O, O, L/rp ). The
particle's specific energy E, specific angular momentum
L, and angular velocity 0 are

em

(2.12)

where u is given by Eq. (2.10); h+ and h„, which are real
quantities, denote the two fundamental polarizations of
the gravitational waves. The energy radiated per unit
time may then be calculated from Eq. (2.12), and the
result is dE/dt = p P& ~Zt~i /4vrw2.

The number Ze still remains to be evaluated from
Eq. (2.11). The calculation is straightforward, for the
source T~t~(r) has support only at r = rp, the result is

= m( pbg~ + 2i 1btm(1 + 2iurp/fp) —i 2bt~urp fp (1 —M/rp + 1t~rp)] R~& (ro)

—
[&—14~ ——24m(1+ &~ro/fo)] roR~t'~(ro) —

2 2bt~ro R ~" (rp) j/intro B'", (2.13)



47 GRAVITATIONAL RADIATION FROM A. . . . I. 1501

The b coefBcients are all dimensionless and given by

aber =
z [(& —1)&(&+1)(&+2)]' 'OYe~(2 0)&/fo

gabe~ = [(E —1)(E+2)] g Ye~( z, 0)L/ro,
zbe~ = z Ye~(2, 0)LA.

An explicit expression for, Ye~(z, 0) can be derived from Eq. (3.1) of Goldberg et at. [20]; it reads

(2.14)

,Ye~($, 0) = (z) + [(&+ s)!(E—s)!(/+ m)!(E —rn)!(2E+ 1)/vr]
P1

x ) (—1)'+'+ +" [p!(E—s —p)!(p+ s —m)!(E+ m —p)!] (2.15)

oo

dE/dt = p ) ) ~Ze~~ /2vrw,
8=2 m=1

where ~ = mA.

(2.16)

where po = max(0, rn —s) and py = min(E —s, g+ m).
Finally, it follows from Eq. (2.15) that, Ye (—,0) =

(—1)'+,Ye ($, 0); using this together with Eqs. (2.10)
and (2.13) imPlies that Ze ~ = (—1)eZe~. This prop-
erty reveals that a mode with a given value of g and (say)
negative value of m will contribute exactly as much to the
luminosity as the mode with same value of E and oppo-
site value of m. Therefore the final expression for the
luminosity shall be (2.21)

the Chandrasekhar transformation to obtain the Teukol-
sky function.

The relevant solution XHe (r) corresponds to purely
ingoing waves at the black-hole horizon,

X e (r-+2M) e (2.20)

and, at infinity, to a superposition of ingoing and outgo-
ing waves with comparable amplitudes

The Chandrasekhar transformation then implies

4a B~~~ ———(l —1)E(E+ l)(E+ 2) —12iMcu A~e

(2.22)

D. The Teukolsky function via the
Regge-Wheeler equation

As expressed by Eqs. (2.13) and (2.16), the problem of
calculating the gravitational waveforms and luminosity
for a given E and m reduces to that of evaluating essen-
tially two things: the Teukolsky function RHe (r) and
its derivatives at the point r = ro, as well as the Wron-
skian coeKcient B'"& . In this subsection, I shall describe
how these quantities can be obtained by integrating the
Regge-Wheeler equation [19],which is handled more eas-
ily than the Teukolsky equation.

The Regge-Wheeler equation

III. LUMINOSITY TO LEADING ORDER

In this and the following sections, I shall formulate
appropriate approximations to the formalism of the pre-
vious section, which will lead to approximate expressions
for the gravitational waveforms and luminosity. I begin
in this section by calculating, to leading order, the power
radiated by a given mode (E, m, ); this leading-order cal-
culation will be generalized in the following sections.

A. The nature of the approximation

(
d2., +~' —v(r))x g (r) =0,

with the potential

V(r) = f l(8+1)/r' —6M/rs, (2.18)
was originally shown to govern the axial metric pertur-
bations (cf. Chandrasekhar [15])of the Schwarzschild ge-
ometry. Chandrasekhar [24] later showed that if X~e ()")
is a solution of the Regge-Wheeler equation, then

R e (r) = r fZf 'ZrX e (r), (2.19)
(where 2 = d/dr* + iw) is a solution of the homoge-
neous Teukolsky equation (I use the notation of Sasaki
and Nakamura [21]). So rather than working with the
Teukolsky equation directly, it will be convenient to solve
instead the Regge-Wheeler equation, and then to apply

Two dimensionless quantities appear naturally within
the general formalism of Sec. II; the first is M/rr), the
other M~. These quantities are not independent, for
the wave frequency is restricted to be a harmonic of the
orbital frequency, as expressed by Eq. (2.10):

M(d/m = MA = (M/rr)) ~ = v, (3 1)

where Eq. (2.9) has been used. Throughout the remain-
der of this paper, I shall assume that M/ro is always
much smaller than unity; Eq. (3.1) then ensures that Mcu
is an even smaller number.

Einstein's quadrupole formula implies that the gravita-
tional waves emitted by a binary system have a frequency
equal to twice the orbital frequency A. Moreover, it pre-
dicts that their luminosity is given by [8]
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(dE/dt) ~ 32 (p/M) 2 (MQ) 1P/3 (3 2)

/ 'IZt~['
2vr~ (dE/dt) ~

in terms of this, the total luminosity is

(3.3)

where the subscript N stands for "Newtonian".
Since Eq. (3.2) defines a natural (dimensionless) unit

for the luminosity of binary system, I shall find it conve-
nient to express my results in terms of that natural unit.
I shall therefore define gym to be the power radiated by
the mode (I., m), divided by the Newtonian expression
(3.2):

circular orbit at a sufficiently large radius could be ar-
bitrarily large. This situation can obviously be judged
unacceptable on physical grounds, and I shall therefore
require X

& (z) to be regular at the origin. Choosing its
normalization arbitrarily, I shall write

X'
~ (z) = zjg(z) + O(M~). (3.7)

As pointed out in the previous paragraph, zp is a small
number of order v; it will, therefore, be sufficient to know
the behavior of X~& (z) near the origin. Recalling the
small-argument behavior of spherical Bessel functions,

(2l + 1)!!X ~ (z ~ 0)

dE/dt = (dE/dt)~ ) ) r)g~.
/=2 m=1

(3.4)
1 2z+' 1 ——z /(2/+3)+O(z ) +O(Mu)); (3.8)

Compatibility of my results with linearized theory will
be expressed by the fact that t)22 = 1 + O(v ), while
every other qg will be at most O(v ).

B. The Regge-Wheeler and Teukolsky functions

the second term within the square brackets, when evalu-
ated at z = zp, is O(v2) and will be ignored.

The parameter A'"& can be extracted from the be-
havior of the Regge-Wheeler function near z = oo. Us-

ing the large-argument behavior of spherical Bessel func-
tions, X~& (z ~ oo) sin(z —&r/2)+O(Mu), it follows
that

Ain 1ei(8+1)~/2 + O(M~)~am —2e (3 9)To determine what the appropriate leading-order
Regge-Wheeler function should be, it is useful to rewrite
Eq. (2.17) in terms of the dimensionless variable z = ar;
it becomes

2
d2 2M' d

~+ 2 f +1 —V(—z))X g (z)=0, (3 5) (28+ 1)!!u)R g (z ~ 0)

The Teukolsky function can now be obtained by
applying the Chandrasekhar transformation (2.19) to
Eq. (3.8). Setting f = 1+ O(Mw), one obtains

with V(z) = f E(I+ 1)/z —6M'/z and f = 1—
2M'/z.

Having agreed that Mw is a small number, I shall sim-

ply set Mw = 0 in Eq. (3.5) to obtain the leading-order
Regge-Wheeler equation (which describes wave propaga-
tion in flat spacetime):

(I+ 1)(/+ 2)z + [1+O(z)] + O(Mu)); (3.10)

as indicated, the higher powers of z may be ignored.
The Wronskian coefficient B'"& can be obtained from
Eqs. (2.22) (in which, as usual, Mu is set to zero) and
(3.9). The result is

+ 1 — X g (z) = O(M~).
d2 E(E+ 1)

dz2 z
(3.6)

~in 1
(g 1)g(g + 1)(g + 2)&i(8+1)x/2/~2

+O(Mcu). (3.11)

This equation (the free Schrodinger equation) can be
solved exactly in terms of spherical Bessel functions
(cf. Arfken [23], Sec. 11.7); the general solution is
kizjg(z) + k2zng(z), where ki and k2 are two arbitrary
constants.

According to Sec. II, the relevant particular solution
(z) must be selected by imposing certain bound-

ary conditions at the black-hole horizon, z = 2M'. But
since Mu was put to zero previously, boundary condi-
tions must instead be imposed at the origin, z = 0. The
appropriate requirement, in the context of this leading-
order calculation, is regularity of X

& (z) at the origin.
This can be justified as follows: Suppose that X~H&~(z)
were allowed to be singular at z = 0. This would mean
that X'Hz (zp) could be made arbitrary large by choos-
ing a zp sufficiently small. But zp = harp = m(M/rp) /,
and it follows that X~& (rp) could be made arbitrarily
large by choosing an ro sufficiently Large. This would
imply that the power radiated by a point particle in a

C. Ca1culation of g~

Inspection of Eqs. (2.9), (2.14) reveals that phd~ 1,
while ibg~ = O(v) and 2bt~ = O(v ). It follows that
Zt~, Eq. (2.13), will be dominated by the term involving

pbbs~, unless pbbs~ happens to vanish identically. This will
be the case whenever p Yg~ ( 2, 0) vanishes, which happens
when 8 + m is an odd number. When E + m is odd,
the dominant contribution to Zg~ comes from the terms
involving ibt~ For a given /,. therefore, the luminosity
will be dominated by the modes for which E+ m is even;
the power radiated by the modes for which 8+ m is odd
will be suppressed by a factor v2.

Considering only the modes for which E+ m is an even
number, the leading-order (LO) expression for Zt~ is

(3.12)

which eventually becomes
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Zg
( )t! (E )E

0 AA

Substituting this into Eq. (3.3), using exercise 12.6.3 of Arfken [23], finally yields

Gm & + ) (E + 1)(E + 2) (2E + 1)(E —m)!(E + m)!
16(E —1)E [(2E+ 1)!!(E —m)!!(E+ m)!!]

(3.14)

for 8+ m even. For 8+ m odd, g& w v &~

From Eq. (3.14) one may verify that r12~&
——1, as

claimed previously. Equation (3.14) also reveals that the
power radiated by a mode of given S is suppressed from
the Newtonian result (3.2) by at least a factor v2 to the
(E—2)th power; as expected, higher multipoles contribute
to the luminosity with increasing powers of v .

Gg(z, z') = z&3e(z&)z&nr(z&), (4 4)

X~ (z) = zjg(z) o,g—(1) dz' z'nr(z') Wg(z')

for z& ——min(z, z') and z& ——max(z, z'), is an appropri-
ate choice of Green's function. From the general theory
of Green's functions, it follows that the most general—
however regular at the origin —solution to Eq. (4.2) is

IW. A STUDY' OF THE O(Mcu)
REGGE-WHEELER EQUATION —znr(z) dz' z'jg(z') Wg(z'). (4.5)

The leading-order calculation of the preceding section
was a useful warmup exercise for what comes next —the
calculation, to order v, of the gravitational waveforms
and luminosity. This calculation is slightly involved, and
will be the subject of this and the following section.

The first step is to solve the Regge-Wheeler equation
with better accuracy than what was afforded in the pre-
vious section. It is clear from Eq. (3.6) that corrections
of order Mw should be sought for the Regge-Wheeler
function; this section is devoted to this topic.

The arbitrary constant o.g has no physical consequence.
It could be set equal to zero by renormalizing the
Regge-Wheeler function according to XH& —+ (1—u)6n
2Murng)X z . It can also be kept, which is what I shall
do; it will be interesting to see how o,p eventually drops
out of the calculation.

B. Asymptotic behaviors and comparison
with the exact Regge-Wheeler function

A. The equation and its solution

I start by recalling the result of the preceding section,
that to leading order, XH& (z) zjg(z), where z = wr.
To first order in M~, I shall postulate the form

X r (z) = zjg(z) + 2M~X~!')(z) + O[(M(u) ]. (4.1)
The idea is then to substitute Eq. (4.1) into Eq. (3.5),
and expand in powers of Mar, up to first order. The
result is an inhomogeneous spherical Bessel equation for

X,'"(z):

+ 1 —
2 X~ (z) = —Wi(z),(

d2 E(E + 1) (i)
dZ z

with

(4.2)

1 d 2 E(E+1) —3
Wg(z) = zjg(z). (4.3)

Z dZ Z' Z3

Equation (4.2) can be integrated by adding the general
solution of the homogeneous Bessel equation, ngzjg(z) +
PIzng(z), to any particular solution of the inhomoge-
neous equation. This particular solution can be obtained
by integrating the source term Wg(z) over any choice
of Green's function. The regularity considerations of
Sec. III B apply to this situation as well. As a result, any
contribution from znr(z) to the Regge-Wheeler function
must be forbidden; the coefficient Pg must therefore be
set to zero. Regularity considerations also indicate that

(E —2) (E+ 2),~-~
(2E+ 1)!! (4.6)

Using these results, the integration over z'jg(z')Wg(z'),
for small z, can easily be performed. The integration
over z'ng(z') W&(z') is not quite as easy to evaluate, for
the range of integration covers almost the whole half-line.
However it can be verified that the integrand is divergent
as z' approaches zero. Therefore the integral, for small
z, will be dominated by contributions from the vicinity
of its lower bound, and

—+O

dz' z'ng(z') Wg(z') (E —2)(E + 2)
+ Z

Gathering the results, it follows that

(2E+ 1)!!X,~ (z ~ 0) - (2E) '(E —2) (E+ 2)z'

+(~, —r,)z'+'+ O(z'+'), (4.8)

where

From Eqs. (4.3) and (4.5), the behavior of X& (z) near
z = 0 can be determined. Recalling that zjg(z ~ 0)
z~+i/(2E+1)!! and znr(z —+ 0) ~ —(2E—1)!!/z~, it follows
that



1504 ERIC POISSON 47

I'q —lim dz' z'ng (z') Wg (z')z~0

(z ~ oo) (1+2M~a ) sin(z —Ar/2)

+ 2M~(lnz —ln 2M'+ a+)
x cos(z —&r/2) + O[(M~) ], (4.17)

(4.9)

z~+' (1+2M~(og —I'g) + O[(M~)~] J
x (1 —[(E —2) (E + 2) /E] M~/z + O(z) } . (4.1o)

The extraction of the large z behavior of X& (z) goes
along similar lines. First recalling that zjg(z —+ oo)
sin(z —Ar/2) and zng(z ~ oo) —cos(z —Ar/2), it
follows from Eq. (4.3) that

Wg(z —+ oo) 2z sin(z —Ar/2). (4.11)

Using this to evaluate the integration over z'ng(z') Wg(z')
yields something proportional to 1/z, and hence negli-
gible. The integration over z' jg(z') W~(z') may be per-
formed by taking advantage of the fact that it is dorn-
inated by contributions from the vicinity of the higher
bound. A quick calculation yields

dz' z'jg(z') W (z') ln z.
0

Gathering the results, one obtains

X~ (z ~ oo) ng sin(z —Ar/2)(1)

+ (ln z + I'g) cos(z —Ar/2),

where
z

rz = lim dz'z'jz(z')Wz(z') —lnz)z~oo 0

(4.12)

(4.13)

(4.14)

is a finite quantity. The large-argument behavior of the
O(Mw) Regge-Wheeler function can now be obtained by
substituting Eq. (4.13) into Eq. (4.1), which yields

X q (z ~ oo) (1+2Mao. g) sin(z —A/2)
+ 2M~(ln z + I'g) cos(z —Ar/2)

+O[(M~) ]. (4.15)

is a finite quantity. Finally, the small-argument behavior
of the O(Mar) Regge-Wheeler function can be obtained
by substituting Eq. (4.8) into Eq. (4.1), which yields

(2l. + 1)!!X„~ (z ~ 0)

gin 1 ei(X+11m/2 ( 1 + 2M(z) op —j(1'g + ln. 2M(z))]

+0[(M~)2]j. (4.18)

C. The special case E = 2

This last subsection will provide an example of how
the formalism of this section may be used. It deals with
the rather important special case of quadrupole ~aves.

For E = 2, Eq. (4.5) may be expressed in closed form.
Using zj2(z) = (3/z —1) sin z —(3/z) cosz, zn2(z) =
—(3/z —1)cosz —(3/z) sinz, W2(z) = —(15/z —12/z +
2/z) sin z+ (15/z4 —7/z~) cos z, the integrations J(z)—:
f; dz'z'j2(z')W2(z') and I(z) = f dz'z'n2(z')W2(z')
may be performed explicitly. The integrals can be written
in terms of simple trigonometric functions, as well as sine
and cosine integrals: si(2z) = —f2, dz'sinz'/z', ci(2z) =
—

f2 dz'cosz'/z'; they are

J(z) = '4 (1 —cos2z)/z —'2 sin2z/z
—4(1 —llcos2z)/z + z sin2z/z
—

4 (3 + 13cos 2z)/z + ln z —ci(2z)

+ ln2+ p —-'„ (4.19)

which has exactly the same form as Eq. (4.15), includ-
ing the suspect lnz contribution. This term is therefore
seen to originate from within the phase of the Regge-
Wheeler function. Climbing the gravitational well from
the near zone to infinity induces a phase shift in the
Regge-Wheeler function, with respect to the flat space-
tirne expression; this phase difference is expressed by the
use of r*, rather than r, in Eq. (2.21). After expanding in
powers of M~, this gravitational effect is manifested no
longer in the phase of the Regge-Wheeler function, but
in its amplitude, which becomes divergent. Therefore the
appearance of the ln z term in Eq. (4.15) is quite legit-
imate, and is a manifestation of an interesting physical
effect.

The comparison between Eq. (4.15) and Eq. (4.17)
reveals that the following identifications can be made:
ng = a, I'g + ln 2M' = a+. It then follows that

The presence of the lnz term in Eq. (4.15) might ap-
pear quite mysterious, for it suggests that XH& (z) would
grow arbitrarily large at large distances. A detailed com-
parison with the exact, large z, expression for the Regge-
Wheeler function will clarify this point. A short manip-
ulation brings Eq. (2.21) to the form

where p 0.5772 is the Euler number, and

I(z) = '4 sin2z/z —'~ cos2z/z
—

4 sin 2z/z + '2 cos 2z/z

+ '4 sin2z/z —2/z+ si(2z). (4.2o)

X q (z ~ oo) (1+2M&ra ) sin(z* —Ar/2)

+ 2Mwa+ cos(z* —Ar/2),

The Regge-Wheeler function can then be expressed as

(4.16) X 2 (z) = (1+2M' [o.g —I(z)])zjg(z)

where z* = mr*, and 1 + 2Mwa = i(A &t e'~ ~2—
gin ~

—$8%/2 3 2MMQ = gout e28vr/2 +gin ~
—2E&/2

~Em ~ ~h ~a+ uEm uZm
panding Eq. (4.16) in powers of Mu then yields

—2M~ J(z)zn2(z) + O[(Mu)) ].
Its behavior at small z is given by

(4.21)
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15X", (z 0)

- '(1+2M (,+-, )+O[(M )']j
x (1 —ziMcuz —i4z + O(zs) j, (4.22)

V. CALCULATION OF THE WAVEFORMS
AND LUMINOSITY~ TO ORDER es

With the foundations now laid, the calculations of this
section are perfectly straightforward; however, some of
the steps are quite tedious. The calculations are divided
into four subsections, corresponding to each value of E

which reveals that I'z = fo dzznz(z)W2(z) = ——,as
would the direct evaluation of the definite integral.

At infinity, Eq. (4.21) reduces to

X~~~(z ~ oo) —(1 + 2M(un2) sin z
—2M'(ln z + ln 2 + p —

s ) cos z,
(4.23)

which implies that I'2 = ln 2+ p —s. Substitution of this
result into Eq. (4.18) finally yields

A.'"2 = —zi( 1+ 2M~ nz —i(ln4M~+ p —s)
+ O[(M(u) ]j. (4.24)

which needs be considered (although the luminosity can
be calculated, to order vs, by only including multipoles
up to 8 = 3, the waveforms make use of all the multipoles
up to E = 5). Necessarily, the content of this section
will be found to be quite dry; this section, however, may
be skipped altogether, and the reader will find the final
answers summarized in Sec. VI.

The results of this section are most conveniently ex-
pressed in terms of ilg, as defined in Eq. (3.3), and in
terms of the rescaled partial waveforms (&+'" defined by

hg
'" + &g

'" = (S /r—)(M~)' '&g+'"

it is also convenient to introduce the phase

@ = A(t —r') —P.

(5.1)

(5.2)

The calculations of the (&+'" are simplified by the use
of the property Zg ~ = (—1) Zg~ derived in Sec. II
C, and require the evaluation of the spherical harmonics

2Ye, + (8 4').
Each subsection begins by calculating the Teukolsky

function for the given E. Then the Zg~, gg~, and (&+'" are
calculated for each rn (in the case of / = 5, only the odd
values of ni need be considered; the even ones would only
contribute to order higher than vs). I shall now present
those calculations without much further comment.

A. Calculations for L = 2

The O(Mu) Regge-Wheeler function was obtained for / = 2 in the preceding section. It is then a simple matter to
obtain the Teukolsky function at the required level of accuracy. It is given by

R 2 (r) = see r (1+2M'(o2+ 2
—4a) + 0[(Mu) ]j ( 4M/r+1+—siwr —42(wr) —i4i(ur) +. j. (5 3)

It should be noted that the coefficients of wr, (wr), and (ar)s in Eq. (5.3) are only valid up to leading order; their
O(Ma) corrections are, however, irrelevant for this subsection's purposes. An expression for B'"2 can be obtained
by substituting Eq. (4.24) into Eq. (2.22); one obtains

B'"z ——3i (1+2M' nz —i(ln4Mcu+p —i2) +0[(Mw) ]j/w . (5.4)

It may be noted that the arbitrary constant n2 finally disappears from sight at this stage. This happens because
both R$2 (ro) and B'"z contain a term 2Mcunz, this term therefore undergoes cancellation when the division is
performed to order Mu.

Specialize now to the case ni = 2, and calculate the b coefficients, as defined in Eq. (2.14). First of all the
spin-weighted spherical harmonics may be evaluated using Eq. (2.15). One obtains OY22(~, 0) = 4(15/2ir)i

iY22(&, 0) = 4(5/vr), and 2Y2z(2, 0) = s(5/vr) . It follows from Eqs. (2.14) and (3.1) that

ebs z ——s(5/m. )'~2 (1+ zv2+ O(v )j,
b = ~(5/m)'~'v (1+ -'v'+ O(v') j,

,b, , = ~(5/ )'~' '(1+O( ')j.
Substituting Eqs. (5.3) —(5.5) into Eq. (2.13) yields, after some algebra,

Z = —16(~/5) ~ 0 r (1 — v + 2vr+4i(31n2v+p —
—, ) v +O(v )j.

By substituting Eq. (5.6) into Eq. (3.3), one then finds

gg g = 1 —'~, v + 47l.v + O(v ).

(5.5)

(5.6)

It should be noted that the v term in Eq. (5.7) originates from post-Newtonian corrections to the source part of
Zz 2, the v term is a consequence of wave-propagation effects. Now by using 2' ~2(e, P) = s(5/m) (1 + 2cos8+
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cosg8)e+2'&, and by substituting this and Eq. (5.6) into Eq. (2.12), one finally obtains

(2+& ——2(1+cos 8) ((1 —
4z

vg + 2xvs) cos 2$+ 4(31n2v+ p —H)vs sin2@+ O(v4) j,
(g"g

= 4 cos 8 ((1 —
42 v + 27rvs) sin 2$ —4(3 ln 2v + p —

~~ )v cos 2$ + O(v )}. (5 8)

The case m = 1 is treated similarly. With pY2 y(2, 0) = 0, ] Yz y(&, 0) = —2', ](&,0) = 4(5/m'), one obtains

and

Z, , = 4i(~/5)'~'n'r, ' (v ——',;v'+ O(v') j, (5.9)

rig g ——s'sv +O(v ).

The waveforms are then calculated using 2Yg ~q(8, $) = 4(5/vr) ~ sin8(1 6 cos8)e+'4'; one obtains

(g+, = —
s sin8 ((v —gsv )sing+ O(v )},

(2 ~
= s sin 8 cos 8 ((v —

gs vs) cos @ + O(v4) j .

(5.10)

(5.11)

B. Calculations for E = 3

The Regge-Wheeler function is obtained from Eqs. (3.8) and (4.10), which imply

X~~~(z) —,gsz (1 —s™/z——,~z + j,
while Eq. (3.9) yields A'"s~ 2 + O(Mcu). By using the Chandrasekhar transformation, one finds

RH, (r) = —,', u'r' (1+ —,'i~r ——s'(sr)' —SM/r+ j,

(5.12)

(5.13)

and I3„'"s = —15/~2 + O(M~).
Specialize now to the case rn = 3. With OYs3(2, 0) = —s(35/vr) ~, qYss(2, 0) = —&&(105/vr) ~, and

g Ys s ( 2, 0) = —
s (21/2m) ~, one obtains

and

Zs s = —81i(vr/42) ~ nsro (1 —4v + O(v )j,

gs s sgs v + O(v )
1215 2 4

(5.14)

(s.is)

The waveforms are then calculated using 2Ys +3(8, P) = ps(21/2n) ~ sin 8(l 6 2cos 8+ cos 8)e+ '4'; one obtains

I,'s+s = —
4 sin 8(l + cosg8) ((v —4vs) sin 3@+ O(v4) j,

(s s = I slQ 8 cos 8 ( ('v —4v ) cos 3Q + O(v )j . (5.16)

Consider next the case rn = 2. With gag(&, 0) = 0, qYsg(2, 0) = —s(35/2vr) ~, and gY3$(2 0) = 4(7/7l)
one obtains

Z, , = ——", (~/7)'~'n'r, s (v + O(v') j, (5.17)

rls g = O(v ). (s.is)

The waveforms are then calculated using 2Ys ~2(8, P) = ~s(7/vr) ~ (2 + cos 8 —4cosg8 p 3 cos 8)e+ '4'; one obtains

(+ = ——(1 —2 cos28) (vg cos 2@+ O(v4) },
= ——cos 8(1 —3 cos 8) (v2 sin 2Q + 0 (v )j .

Finally consider the case m = 1. With gYs q(2, 0) = s(21/vr) ~, qYs q(&, 0) = ~z(7/~) ~, and zYs q(2, 0) =
z~ (70/vr) ~~2—

, one obtains

Zs g = sz(vr/70) ~ n ro fl —ssv + O(v )j,
and

qs, g
——sos4v + O(v ).1 2 (5.2i)
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The waveforms are then calculated using sYs yi(8, $) = ~is(70/a) ~ sinH(l ~ 2cosH —Scos 8)e+'~; one obtains

(s+& ———
2 sin 8(1 —3 cos28) ((v —svs) sin @ + 0(v4) ),

(s i = s sin 8 cosH ((v —svs) cos@+0(v4)) . (5.22)

C. Calculations for E = 4

For the calculations of this subsection, it will be sufficient to know the Regge-Wheeler function to leading order.
Equation (3.8) implies X 4 (z) = z /945, which yields R 4~(r) = ssw r (1+ sieur + ). Then Eq. (3.11) gives
B„'"4 = —45i/~2 + 0(M~).

Consider first the case m = 4. With pY44($, 0) = sz(70/vr) ~ and iY44(2, 0) = is(14/vr) ~, one obtains

(5.23)

which implies that rl44 = 0(v4). The waveforms are then calculated using 2Y4y4(8, $) = is(7/vr)i~s{l + 2cosH ~
2coss8 —cos 8)e+ '&; one obtains

(4 4 = —
s sin 8{1+ cos 8) (v cos4@ + 0{v )),

= ——'s sin 8cosH (v sin4$+ 0(v4)) .

Consider next the ease m = 3. With pY4s(~, 0) = 0 and iY4s(2, 0) = is(7/vr) ~, one obtains

(5.24)

Z4s = —s'i(vr/14)' 0 rp (v+ 0(v )), (5.25)

which implies that g43 = 0(vs). The waveforms are then calculated using sY4ys(8, $) = I(7/2vr)i~2sinH(1—
3 cos 8 + 2 cossH) e+s'&; one obtains

(4+s ———
p sin 8(1 —3 cos28) (vs sin 3g + 0(v4) ),

(4 s ——ip sin 8 cossH (vs cos 3@+ 0(v4) ) .
(5.26)

Consider now the case m = 2. With pY4q(2, 0) = —is(10/vr)i~ and i Y4s(2, 0) = —is(2/vr) ~, one obtains

Z42 siss~ i AsrP (1+0(v2)), (5.27)

which implies that i74q = 0(v ). The waveforms are then calculated using qY4~q(8, $) = I(1/vr)i~2(1 ~ 5cosH—
6 cos 8 + 7 cossH + 7 cos 8)e+ '4'; one obtains

(4+&
——z&(1 —6cos 8+ 7cos48) (v cos2@+0(v4)),

(4 s = —
2i eos 8(5 —7 cos~8) (v2 sin 2@+ 0(v4) ) .

Consider finally the case m = 1. With pY4, i(2, 0) = 0 and iY4 i(&, 0) = —is(1/vr) ~, one obtains

Z4, i =,psi(~/2)'~ A rp (v+0(v )),

(5.28)

(5.29)

which implies that q4 i = 0(v ). The waveforms are then ealeulated using qY4~i(8, $) = —is(2/x) ~ sin8(l +
8 cos 8 —7 cos~H p 14 cossH) e+'4'; one obtains

(4 i ——i4p sin8(l —7eos28) (vs sin@+ 0(v4)),
(4"i ———

7p sin 8 cos 8(4 —7 cos 8) (vs cos g + 0(v4) ) .
(5.30)

D. Calculations for E = 5

As mentioned previously, only the odd values of m will be considered in this subsection; a leading-order calculation
will be sufficient, hence Eq. (3.13) may be used directly.

Consider first the case rn = 5. With p Ys s(2, 0) = —
sz (77/x)i~s, it follows that

Zss ——
24 i(5vr/66)' 0 rp (1+0(v)). (5.31)

Using zYs ~s(8, $) = ~is(165/2m) ~ sinH{l +2cosH ~2cos 8 —cos 8)e+ '~, the waveforms are then obtained:

sin 8(1 + cos28) (vs sin 5@+ 0(v4) ),
(s"5 = —sss sin 8 cos 8 (vs cos 5@+ 0(v4) ) .

Consider next the case m = 3. With pYs 3(2, 0) = s2(385/vr) ~, it follows that

(5.32)
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Zs s = —~~i(3vr/22)' 0 ro (1+O(v)) . (5.33)

Using z Ys ~s (8, P) = + && (33/2x) ) sin 8(1 ~ 10cos 8 —8 cos28 + 18coss8 + 15 cos48) e+s'~, the waveforms are then
obtained:

(s+s ———
szo sin 8(1 —8 cosz8+ 15 cos48) (vs sin 3$ + O(v4) j,

(s"s ———
~zz sin 8 cos 8(5 —9 cos 8) (vs cos 3@+O(v4)) .

Consider finally the case m = 1. With o Ys q($, 0) = —
zz (165/2m) ~)'2, it follows that

Zs, g = ssoi(vr/77)'~ 0 ro (1+0(v)).

(5.34)

(5.35)

Using zYs ~q(8, $) = +zz(77/vr)~) zsin8(1 ~ 2cos8 —12cosz8 + 6coss8+ 15cos 8)e+'~, the waveforms are then
obtained:

(s+~ = —
~440 sin8(1 —12cosz8+ 15cos48) (vs sing+ O(v4)),

(s"z ———
r&0 sin8cos8(l —3cos 8) (v cosg+0(v4)) . (5.36)

VI. SUMMARY AND CONCLUSION

The only remaining task of this paper is to gather the results of the preceding section for ri&~, (&+, and (&", and to
perform the summation over E and m. The result will be expressions for the gravitational waveforms and luminosity,
valid to order v .

The expression for the luminosity was given in Eq. (1.3); the waveforms may be written as

h~ „= (p/r)(MB—) ~ ((t. „+vj+ „+v j+~„+v (+ „+o(v )), (6.1)

where

and

= 2(1 + cos28) cos 2Q,
= —

4 sin 8 (5+ cos 8) sing + 9(1+cos 8) sin 3$
(19+9 cos28 —2 cos 8) cos 2@+ 8 sin 8(l + cos 8) cos 4$

(+ ——4m (1 + cosz8) cos 2Q + 8(3 ln 2v + p —
zz )(1 + cos 8) sin 2Q + ss sin 8(57 + 20 cos28 —cos 8) sin Q

+ ss4 sin8(73+ 40cosz8 —9cos48) sin3$+ &sszz sin 8(1+ cosz8) sin 5@,

=4cos8sin2$,(o}

=
z sin 8 cos 8(cos g + 3 cos 3@),

= —
s cos 8 (17 —4 cos 8) sin 2@ + 8 sin 8 sin 4Q

= cos8[8vr sin 2@ —16(31n2v+ p —
~~) cos2$ —

4s sin8(63 —5cos 8) cosQ
—

s2 sin 8(67 —15 cos 8) cos 3$ —
ss sin 8cos 5g].

(6 2)

(6.3)

I recall that Q = A(t —r") —P, and v = (M/ro) ~

(MQ) ~ . The waveforms (6.1) —(6.3) are illustrated in
Fig. 1, and the caption discusses some of their properties.
It is worth noting that the angle 8 (defined with respect
to the z axis of the coordinate system, which is chosen in
such a way that the orbital motion lies in the x-y plane
and is right handed) is the orbital inclination with respect
to the observer's line of sight.

It is immediate that the zeroth-order term in Eq. (6.1)
agrees with the standard quadrupole-formula result [3].
Moreover, it may be verified that the expansion of the
waveforms to order v agrees with the p (& M limit
of Wagoner and Will [11] (as expressed in Krolak [25]).
In particular, (+ „originates from mass-difference ef-

fects; the post-Newtonian calculation reveals that this
term would disappear should the companions have equal

masses. The fourth term in the expansion, (+ „, has
~ (3}

never been calculated before. Together with Eq. (1.3),
Eqs. (6.1) —(6.3) are the fundamental results of this pa-
per.

The techniques developed in this paper are not sufB-
cient to calculate the v4 terms in the expansions for the
gravitational waveforms and luminosity. The reason is
simple. Since v = (M/ro)2, which is quadratic in the
black-hole mass M, the calculation of these terms would
require higher-order corrections to the Teukolsky func-
tion, namely, corrections of order (Mw)z. Since I have
limited the analysis to first order, this calculation can-
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