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We describe three numerical approaches to the construction of three-dimensional initial data
for the collision of two black holes. The first of our approaches involves finite differencing the 3+ 1
Hamiltonian constraint equation on a Cadez coordinate grid. The difference equations are then solved
via the multigrid algorithm. The second approach also uses finite-difference techniques, but this time
on a regular Cartesian coordinate grid. A Cartesian grid has the advantage of having no coordinate
singularities. However, constant coordinate lines are not coincident with the throats of the black
holes and, therefore, special treatment of the difFerence equations at these boundaries is required.
The resulting equations are solved using a variant of line-successive overrelaxation. The third and
final approach we use is a global, spectral-like method known as the multiquadric approximation
scheme. In this case functions are approximated by a finite sum of weighted quadric basis functions
which are continuously differentiable. We discuss particular advantages and disadvantages of each
method and compare their performances on a set of test problems.

PACS number(s): 04.20.Jb, 02.60.Cb, 02.70.Bf, 97.60.Lf

I. INTRODUCTION

A first step in the numerical simulation of binary black-
hole systems is the construction of suitable initial data.
Generically, this problem is three-dimensional (3D) since
the two black holes may have arbitrary positions, radii,
spins, and linear momenta. To date, the numerical study
of the collision of black holes has been limited to evolu-
tions which start from time-symmetric initial data where
the holes start out at rest from a finite separation [1].
Initial data representing two black holes with linear mo-
menta and spin have been constructed [2, 3] for axisym-
metric configurations. In this paper, we will explore sev-
eral techniques for constructing initial-data sets which
represent two black holes with arbitrary positions, radii,
linear momenta, and spins.

A framework has been erected which is designed to
allow for the construction of initial-data sets contain-
ing multiple black holes, each with individually specifi-
able linear and angular momenta [4—6]. This conformal
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imaging approach is based on the Arnowitt-Deser-Misner
(ADM) [7], or 3 + 1, decomposition of Einstein's equa-
tions, York's conformal and transverse-traceless decom-
position of the constraint equations, and a method of
imaging applicable to tensors. Application of this ap-
proach to the construction of axisymmetric initial-data
sets has been extensively explored [3, 8] and we re-
fer the reader to these papers for a detailed discus-
sion. In short, construction of initial data following
the conformal-imaging approach consists of two distinct
parts. First, the momentum (or vector) constraints are
solved analytically in a procedure which fixes the mo-
menta on each hole. A formal, infinite-series solution
of the momentum constraints has been worked out by
Kulkarni et al. [6] and an efficient algorithm for evalu-
ating this solution numerically has been constructed by
Cook [3] for the case of two black holes. Second, the
Hamiltonian constraint equation (which incorporates the
solution of the momentum constraint) must be solved
numerically. Such numerical solutions for axisymmetric
configurations of two black holes have been explored by
Cook [3] and, using a method similar to the conformal-
imaging approach, by Thornburg [2].

In this paper, we will explore the construction of 3D
initial-data sets for the collision of two black holes using
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II. THE CONFORMAL-IMAGING APPROACH

The confor mal-imaging approach provides a well-
proven foundation for specifying initial-data sets con-
taining black holes. For a detailed description of this
approach, see Ref. [3] and references therein. In short,
the vacuum Hamiltonian and momentum constraints are
expressed, respectively, as

and

8V' g —QR —-QsK +Q A;~A'~ =0
3

the conformal-imaging approach. As mentioned above,
the solution of the momentum constraints for general,
3D configurations of two black holes has already been
addressed. Solutions for the momentum constraints were
computed using two independently constructed codes
(following the semianalytic algorithm outlined in [3]).
The two codes produced pointwise agreement to better
than parts in 10, far better than the accuracy required
for the source of the Hamiltonian constraint. In addition
we numerically differenced the semianalytic momentum
solution and verified that it does solve the momentum
constraints. This constitutes a validation of the coding
for this part of the problem. What remains now is to
find effective numerical methods of solving the Hamil-
tonian constraint. We will describe three different ap-
proaches to solving this particular problem. Of the three
approaches, two employ finite-difference techniques, one
on a regular Cartesian coordinate grid and the other on a
Cadez coordinate grid (cf. Cook [3]). The third method
is a type of global spectral technique known as the mul-
tiquadric (MQ) approximation scheme [9]. This method
is essentially "gridless"; however, here it is used to solve
the Hamiltonian constraint equation written in Cartesian
coordinates.

It is important to emphasize that the codes described
in this paper are the product of two different research
groups acting independently, and compared on a spec-
ified, controlled set of test problems. The results pre-
sented here represent an unusual effort of validation of
numerical relativity coding, which has been carried out
only infrequently in the past [10]. Such rigorous com-
parisons on specific testbed calculations are essential for
accurate, reliable development of relativity codes [11].

We begin in Sec. II with a brief review of the basic
quantities and equations associated with the conformal-
imaging approach. In Sec. III we describe in detail
the three difFerent approaches taken in finding numer-
ical solutions of the Hamiltonian constraint. We first
describe the Cadez coordinate approach in Sec. III A, in-
cluding a description of the full approximation storage
(FAS)/block-multigrid algorithm used to solve the finite-
difference equations. The second approach, called the
Cartesian coordinate approach, is described in Sec. III B.
The third and final approach discussed in this paper is
called the multiquadric approach and is described in Sec.
III C. In Sec. IV, we compare the accuracy and efFiciency
of the three approaches on a set of test problems. Con-
clusions and discussion are presented in Sec. V.

The physical metric p,~ of the spacelike initial-data hy-
persurface has been conformally decomposed as p,~

g p;~, where Q is a strictly positive conformal factor and
p,~ is the conformal background metric. The extrinsic
curvature K,z, describing the embedding of the initial-
data hypersurface in the full space-time, has also been
decomposed as K,~

= Q A,~ + sp, ~K, where K is the
trace of the extrinsic curvature and A,~ is the trace-free
conformal background extrinsic curvature. Finally, B is
the Ricci scalar, D, is the covariant derivative, and V'~

is the scalar Laplacian, all compatible with the confor-
mal background metric. Note that all quantities with
an overbar exist in the conformal background space and
are related to similar quantities (without overbars) which
exist in the physical space.

To simplify the task of solving these equations, the fol-
lowing choices are made. First, the initial-data hypersur-
face is taken to be maximally embedded in the space-time
so that K = 0. Second, the initial-data hypersurface is
taken to be conformally flat so that p,~

= f,~, a flat met-
ric. This choice fixes the dynamical degrees of freedom
in the metric on the initial hypersurface and simplifies
both the Hamiltonian and momentum constraints. With
these assumptions, the initial-value equations reduce to
the simple form

A A"1

8 (3)

D, A'~ = 0. (4)

Note that D, and V' are now the familiar flat-space co-
variant derivative and scalar Laplacian, respectively.

The topology of the initial-data hypersurface is fixed
to be two asymptotically flat, "identical" sheets or uni-
verses connected by a throat or Einstein-Rosen bridge
[12] for each black hole. The identification of the two
sheets is accomplished by imposing an isometry condi-
tion on the manifold which must be obeyed by all physi-
cal fields. The solution of the momentum constraint (4)
under these conditions was found by Kulkarni et al. [6] in
the form of a formal infinite-series solution generated by
a method of images applicable to tensors. For the case
of two black holes, an accurate and efBcient numerical
scheme for evaluating the formal infinite series solution
has been found [3). In constructing a solution of the
momentum constraints, values for the radius a and co-
ordinate center C~ of the o,th hole are fixed along with
its linear momentum P and spin S~.

Given a solution of the momentum constraints (4),
the Hamiltonian constraint (3) can be solved as a quasi-
linear elliptic boundary-value problem given appropriate
boundary conditions. The throats of the black holesB:—(x: ~x —C

~

= a ) are fixed-point sets of the
isometry condition and are natural boundaries on which
to impose boundary conditions. The isometry condition
applied to the physical metric at B yields the following
boundary condition for the conformal factor:
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These two parameters uniquely define the background
space configuration of the two holes.

The fIat background metric takes the form

Gldsz = ' (dg2+d(2)+G, p dye,p, z

where p and z are dimensionless cylindrical coordinates
scaled relative to al. The Laplacian can be written as

il2p+iiz, 0 f 0@1 0 f' 0@ t

0n 4 0n) ~( & 0()
1 0g

~2p2 0y2 ' (12)

which is an appropriate form for conservative differenc-
ing. The boundary conditions on the two throats (5) take
the forms

0
rl', +il2, + — =0

0'g 2

and

0 cx
g2 +g2 +0' 2

= 0. (14)

Finally, asymptotic flatness is imposed at a boundary
at finite radius (q = gf) via the approximate boundary
condition (7), which takes the form

lr(& —1)j
gf

dius. The size of the second hole is parametrized by the
dimensionless ratio of the radii of the two holes:

6]
A = —.

Gg

The spatial separation of the two holes is parametrized
by

scheme should be used to finite-difference the Hamilto-
nian constraint. The computational domain will be dis-
cretized so that grid points are centered in the following
way. The "radial" coordinate q is discretized as

rl, = (i ——,')h„+ il„
—(2+ —1), . . . , o
-(z- —1), . . . , o
1 $ ~ ~ ~

if 4 98
2 Z

: region 1,
: region 2,
: region 3,

g8
g+

The integers 8+ and 8 give the number of discrete
points above and below (, and must be chosen so that (
is a monotonically increasing function of s for 0 & ( & n.
Finally, the P direction is trivially discretized as

Pg = (k —i~)hp,

2~
h4, =

& =1, . . . , 'P,

The same discretization length h„ is possible in both re-
gions j. and 2 even when the holes are of unequal size
because there is freedom in the definition of the Cadez
coordinates to place the singular point anywhere along
the axis between the holes. The ( coordinate is not dis-

cretized directly but is chosen to be a quadratic function
of a new coordinate s in a way which guarantees that
grid points are zone centered with the Cadez singularity
positioned on an angular zone face even when the holes
are of unequal size. The discretization of the ( coordinate
is, thus, given by

g =((s ) = fs +gs,
, = (j —-')ti„= 1, . . . , 8+, . . . ,

8+ +8
1

(8++8-)~ (8++8 )'(.
8— 8+8

(8+ + 8-)z(, 8+~
8+8— 8

The presence of the Cadez coordinate singularity and
considerations associated with implementing a multigrid
solver in conjunction with the three-regioned Cadez coor-
dinate domain suggest that a zone-centered diiferencing

with the understanding that Pt,+~ = Pg.
In terms of this discretization, a second-order, con-

servative finite-difference form of the Hamiltonian con-
straint (3) can be written as
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where J~ = 0(/Oslo, . and the background extrinsic cur-
vature Ar~ is computed by the techniques discussed in
Refs. [3, 14]. Second-order, centered-difference versions
of the boundary conditions on the throats are given by

4i j,k '|bi—l,j,k
i,j,k

4 g2 +g~ x —hq

for the throat at g = g+, and

for i = —(2'+ —1), (20)

20!
i,j,k '

(4 rI2 + g~, l; i —nhq)

for i = —(2' —1), (21)
for the throat at g = g . Finally, a second-order,
centered-difference version of the outer boundary con-
dition is given by

where r, ~
=—gp2 + z2l, ,~.

The set of difference equations outlined above yields a
large set of coupled, nonlinear algebraic equations which
must be solved for the conformal factor Q. Linearizing
this set of equations yields a symmetric, positive-definite,
banded system of equations. This linearized system could
be solved in a variety of ways, with Newton iterations
used to obtain the full, nonlinear solution. Perhaps the
most efI1cient approach for solving such a set of equa-
tions, however, is to make use of a FAS-multigrid scheme
[15]. Such a scheme can solve a nonlinear boundary-value
problem in O(N) operations (where N is the number of
equations being solved) and can solve a nonlinear set of
equations to a level of aceuraey exceeding truncation er-
ror, while requiring only the same amount of work needed
to solve the linearized system once to the same accuracy.

Unfortunately, a standard FAS-multigrid algorithm
cannot efBeiently accommodate the grid topology of
Cadez coordinates. The radial range associated with re-
gions 1 or 2 and region 3 is vastly different. Typically,
(qy —il, )/(rl, —rl+) 10—100. Multigrid methods achieve
their speed and efBciency by solving a given problem us-
ing successively coarser grids. Usually, the discretization
length (e.g. , h„) for each spatial dimension is doubled
in moving to a coarser grid. Eventually, the computa-
tional grid is coarsened to the point where there are only
a small number of grid points and the equations can be
solved very efBciently at this level of discretization. In
the case of Cadez coordinates, the radial discretization
hz will quickly reach a point where it cannot be doubled
without exceeding g, —g . At this point, there may still
be a large number of zones in region 3 and a direct solu-
tion of the equation at this level auld be quite costly.

A solution to this problem is achieved in the following

way. Define GL, to be a grid at level I in the multigrid
hierarchy, where I is an integer. Let Gy denote the grid
with the finest resolution and let G, denote the coarsest
grid on which h„& g, —g+ and h„& g, —rl, with
f ) s ) l. On G„ the three Cadez regions are "split"
and solved in a block-iterative fashion. Regions 1 and 2
on G, will always contain a relatively small number of
grid points and can be solved directly using a standard
banded, positive-definite, symmetric matrix solver. Re-
gion 3, however, will usually contain too many points to
be solved directly and so the FAS-multigrid algorithm
is applied to this region independently. The pseudocode
below describes the general algorithm used for solving
the Cadez-coordinate finite-difference equations and will
be referred to as a FAS/block-multigrid procedure.

mg iter =0
do until (llRy llew + ~llry —& ll2 and mg iter & 2)

mg iter = mg iter + 1
doL= f s+1

Perform 2 smoothing sweeps in regions 1, 2, and
3 of GL, .

Compute ~1. 1 in regions 1, 2, and 3.
Transfer solution in regions 1, 2, and 3 to GL,

end do
block iter = 0
do until ([lR, ll2 ( bllr, l[2 and block ~ter & 3)

block iter = block iter + 1
Find block solution for regions 1 and 2 of G, via

direct solution.
doL=s 2

Perform 2 smoothing sweeps in region 3 of Gl. .
Compute ~I. 1 in region 3.
Transfer solution in region 3 to GL,

eIld do
Find block solution for region 3 of G1 via direct

solution.
doL=2 s

Compute coarse grid correction in region 3.
Update solution in region 3 of GL, .
Perform 2 smoothing sweeps in region 3 of GL, .

end do
end do
doL =s+1 f

Compute coarse grid correction in regions 1,
2, and 3.

Update solution in regions 1, 2, and 3 of Gl. .
Perform 2 smoothing sweeps in regions 1, 2, and 3

of Gl. .
end do

end do

q is the relative local truncation error computed
between grids Gl. and GL, i (cf. Ref. [15]). RL, is the
solution residual on Gl. which vanishes when the finite-
difference equations are solved exactly.

l l
Rl.

l l
2 and

l l
rl. ll z

are, respectively, the Eq norms of the residual and rela-
tive local truncation error on Gl, . And finally, e and 6 are
appropriate small numbers 0 ( e, b & 1 chosen to achieve
satisfactory convergence. Note that for s & L & 1, an
inner boundary condition must be supplied for region 3
of Gl. since regions 1 and 2 are not approximated on
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these grids. This condition is effectively taken to be
that Bg/Bi) is given by the value on the boundary be-
tween region 3 and regions 1 and 2 on G, . Also, on
Gq, region 3 is solved directly using a standard banded,
positive-definite, symmetric matrix solver.

B. The Cartesian coordinate approach

The second of our three approaches to the numeri-
cal solution of the Hamiltonian constraint for a pair of
black holes employs a finite-difference method based on
the usual Cartesian coordinates (x, y, z). The algebraic
equations which result from finite-differencing in these
coordinates are solved by a variant of line-SOR (suc-
cessive overrelaxation) E161. Within the context of nu-
merical relativity, we can provide additional motivation
for the work described in this subsection. We view the
current task of determining black-hole initial data not
only as an interesting problem in its own right, but also
as a test-bed for approaches and techniques which may
prove useful in the evolution of the initial data. Prom this
viewpoint, the use of Cartesian coordinates for numerical
black-hole work is of substantial interest. First, in con-
trast to most curvilinear systems which have been used
in black-hole studies, these coordinates are manifestly
singularity-free, and thus our calculations are free of the
coordinate singularities which, historically, have plagued
the development of stable algorithms for integrating dif-
ferenced forms of Einstein's equations. Second, Cartesian
coordinates incorporate no problem-specific information,
as do, for example, Cadez coordinates. At first glance
this might seem to be a distinct disadvantage. How-
ever, it is likely that a successful treatment of the evo-
lution problem for interacting black holes will be based
on incomplete knowledge concerning the location of "in-
ner boundaries" such as the surfaces of isometry used in
our formulation of the initial-value problem. Thus, it is
of some interest to investigate and develop techniques in
numerical relativity for the general treatment of bound-
aries which are not coincident with constant-coordinate
surfaces. Finally, Cartesian coordinates tend to mini-
mize the amount of computational work (per grid point)
needed to solve the sets of algebraic equations resulting
from the application of finite-difference approximations
to any given order of truncation error.

For the current problem, there are two clear, major
disadvantages with the Cartesian approach we outline in
this section. The first is that the coordinates do not con-
forrn to the inner boundaries ("holes" ) of the problem
domain. This means that the formulation of accurate
differenced versions of the boundary conditions is con-
siderably more involved here than in the other two ap-
proaches described in this paper. Second, because we use
a uniform Cartesian grid (constant mesh increment, h, in
each of the coordinate directions), the combination of (1)
the need to resolve steep gradients near the holes and (2)
limitations on our computational resources (memory and
time), places a severe restriction on the radius at which
the outer edge of the computational domain is located.
In practice this means that we must impose the asymp-

totic condition (7) in a regime where the neglected terms
in the multipole expansion are still signifi. cant. These
shortcomings are apparent in the numerical results dis-
cussed in Sec. IV and we make some brief remarks about
potential remedies in Sec. V.

In Cartesian coordinates, Eqs. (3), (5), and (7), which
we solve numerically, are

Bzg B2$ B2$
OX2 Oy2 OZ2

+ +

Bg „Beati, B$n* +n~ in'

Bg B$ Bg

A,1 -7-2
8

)
2m

(23)

(24)

where

A =A A'~ (26)

r = gx' i y'+ z

(*—* )'+(y-y )'+(z-z )'

(27)

A= 1)2)

(28)

n~ = (n~, nial, n~~) are the unit normals to the holes,
and the "centers" of the holes are located at C
(x~, y, z ). Equation (24) holds at the hole surfaces
and Eq. (25) is imposed at the outer boundary. The non-
linear Hamiltonian constraint is solved iteratively using
a linearization which, given an approximate solution $0,
determines the new iterate g:

Bz@ B2$ B2@ 7 -2
Bx2 By~ Bz~ 8

(29)

The computational domain we use is a subset of a uni-
form, cubical lattice centered at (0, 0, 0) and having n+1
grid-points on an edge:

((ih, jh, kh) ), n n n n
k +1 o ~ ~ 1))2)2)''')2)2)

where h is the (unique) discretization scale. As a matter
of convenience, we will refer to any point with coordi-
nates of the form (ih, jh, kh), with i, j, k integers, as a
lattice point, even though it may not be contained in the
actual computational domain. One of the key features of
the Cartesian approach is that points of the lattice (30)
are used to approximate the inner boundaries (i.e. , the
"holes" ) of the solution domain. Figure 2 schematically
illustrates a typical computational domain which might
be used for the case of a computation involving a sin-
gle hole in two dimensions. Define two lattice points to
be nearest neighbors of each other if they are separated
by precisely one unit in any single coordinate direction.
Thus, any lattice point in two or three dimensions has
four or six nearest neighbors, respectively. A "surface"
in the lattice is closed if it separates the lattice points
into two disjoint sets such that no member of one set is
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a nearest neighbor of a member of the other set. In gen-
eral then, the boundary points representing a hole (such
as those marked with a ~ in the figure) are chosen so
that (1) each set of boundary points is closed and (2) the
points are as close as possible to the true location of the
continuum inner boundary.

In addition to the inner boundary points, the compu-
tational domain contains interior points (those marked
with a + in the figure) and outer boundary points (filled
boxes). We further categorize any point on a bound-
ary as a singLe-edge, doubLe-edge, or triple-edge boundary
point according to whether the point has one, two, or
three nearest-neighbors, respectively, which lie outside of
the discrete domain. For example, in Fig. 2, the four
corner points are double-edge boundary points, and the
remaining outer boundary points are single-edge. Simi-
larly, there are six double-edge inner boundary points in
the figure, including the point enclosed by the doubled-
diamond. As we shall now discuss, this substantial vari-
ety in the types of points in the computational domain
results in a proliferation of specific difference equations
which must be generated in order to produce a reason-
ably accurate solution.

Our finite-difFerence analogues of the system (29), (24),
and (25) are generated using standard O(h2) centered,
forward, and backward approximations to first and sec-
ond derivatives. However, as discussed below, and in con-
trast to the previously described scheme based on Cadez
coordinates, we have not implemented a scheme with true
O(h ) truncation error; rather we anticipate only O(h)
convergence in the limit h ~ 0 and possibly indetermi-

i

~ + + + + Q+ + + +

~ + + + + Q+' + + +

g + + + + Q+ ~ ~ +

~ + +

+ + + + +

+ + + + +

+ + + + +

+ + + ~

+ + + ~

+ + + ~

~ + + + + + + Q+ + + +

FIG. 2. Schematic representation of the computational
domain for a hypothetical, 2D, single-hole Cartesian calcu-
lation. i and j are lattice indices. Plus signs denote inte-
rior points; filled circles and squares mark inner and outer
boundary points respectively. Points marked with a dot (in
the interior of the hole) are not used in the computation.
The three groupings of larger symbols represent three dis-
tinct finite-diR'erence stencits, each of which is "centered" at
the point surrounded by a doubled symbol. See text for fur-
ther explanation.

nate convergence behavior at practical resolutions.
Adopting the usual finite-difFerence notation

f(ih, jh, kh) = f, ~ k, we employ the following formulas
for the 2: derivatives:

B@ . . Bg
(ih, jh, kh) =

Bz ' ' Bxi jk
= ~'+" k ~* i'k+0(h')

2h
"~'i+2,j,k + ~'i+i,j,k ~'i,j,k

2h
34ij, k 4@i—i,j,k + 3' 2,j,k —

( g)
2h

Bz@, . B2@
, (ih, jh, kh) =-

= ~'+" k ~"k+~' "" O(h')
2 +

2

Vi+3,j,k + Qi+2j, k Vi+1,j,k + Mi,j,k
2

20',j,k
—54*-i,j,k + 4@'-2,j,k —0'-s, j,k

(3i)

(32)

(34)

(35)

(36)

and the obvious counterparts for the y and z derivatives.
As is often the case in finite-difference work, it is conve-
nient to describe the derivation of our discrete equations
in terms of stencils. The stencil associated with any given
finite-difference expression applied at some generic lattice
point (ih, jh, kh) is simply the set of points (or neighbor-
hood) explicitly referenced in that expression. Again, for
illustrative purposes, Fig. 2 displays examples of three
distinct stencils for the two-dimensional case. Each sten-

cil is represented as a grouping of large-sized symbols
and each stencil is to be considered centered at the lat-
tice point surrounded by a doubled symbol. For each
distinct stencil we derive a separate difFerence equation
based on a discretization of the interior equation (29)
and, where appropriate, one of the boundary conditions
(24) or (25). In order to gain some sense of how this
process is carried out for the 3D, two black-hole case, it
is instructive to consider the derivation of 2D difference
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equations associated with the three stencils depicted in
Fig. 2.

We first consider the stencil represented by boxes in
Fig. 2. Using (34) and the analogous formula for the
y derivative in (29) and ignoring any z dependence, we
obtain the difference expression

4+i,7 + V*-i,j + A,j+i + 0',j-i —40',7
h2

which may also be applied at any other grid point marked
with a+.

Now consider the stencil composed of circles which is
centered at the double-circled point. In this case, we use
centered-differenced versions of both the interior equa-
tion (29) and the inner boundary condition (24). Thus,
in addition to (37) we have

Note that although we have used "second-order" differ-
ences to generate this last expression, it is, for a general
inner boundary point, only a first order-accurate version
of the inner boundary condition since the boundary point
will, as shown in the figure, generally lie a distance O(h)
from the r = r surface. Second-order accurate formulas
could be generated using Taylor series expansion and the
governing difFerential equations, but we have not done
so. Now, (37) and (38) both involve the value g, j+i,
which is defined on a lattice point lying outside the com-
putational domain. Therefore, we solve (38) for Q, j+i,
and substitute the result in (37), yielding an expression
involving only the points of the stencil:

h
i j+2g, j i — 4+

rn~
~72

A-ag —s.
~ = —A2 Q

(39)

The stencil marked by diamonds in Fig. 2 is centered on a double-edge boundary point. In this case, application
of centered difference formulas to the interior and boundary equations results in references to two points which lie
outside of the computational domain. In order to derive a single equation for the center point we employ forward
difFerencing in the y direction, and centered differencing in the x direction to get

and

pi+1 j + Pi 1 j 0i j+3—+ 4',j+2 5 Pi,j+1 7 ( 2 i —s) i 2 i —7
h~ (40)

7/ii+1,j @i i,j —y 4i,j+2 + 44'i,j +1 3',j
2h "~ 2h 2r', 2

As before, solution of the discrete boundary condition for the value 7/i, +.i j, followed by substitution of the result into
the differenced interior equation, yields a single equation involving only the stencil unknowns:

n~
Q, j+2+ 4 —5

n& hij',j+i — 3
nx rnid

A Qo, . @,,j = —A go . (42)

As a last example of the derivation of our differ-
ence equations in Cartesian coordinates, we consider
yet again the case of a stencil centered on a boundary
point of a hole, but this time for the 3D case. Let
the center point have coordinates (ih, jh, kh) and as-
sume that of the point's six nearest neighbors, the three
with coordinates ((i —1)h,j h, kh), (ih, (j —1)h, kh),
and (ih, jh, (k —l)h) lie outside the numerical domain.
Then, by definition, (ih, jh, kh) is a triple-edge bound-
ary point. In such a case, we use forward difFerences
in two of the coordinate directions, and centered differ-
ences in the other. Now, as we will discuss shortly, the
complete set of difference equations is solved using a line-
relaxation method in which blocks of unknowns, such as

i = —n/2 n/2 with j and k fixed, are up-

dated ("relaxed" ) simultaneously. We will refer to the
coordinate direction along which a block of unknowns
extends as the scanning direction. Then, at a triple-edge
boundary point, we always forward or backward differ-
ence in the scanning direction. To determine the type
of differencing to be applied along the other two direc-
tions, we examine the components of the normal —the
direction having the smallest component is the direction
in which we use centered difFerences. In the current ex-
ample, assume we are scanning in the x direction and
that ~n, &( ( ~nyi &~, then we use forward differences in
the x and y directions and centered differences in the z
direction to get the following discrete forms of the Hamil-
tonian constraint and inner boundary condition:
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h [ Qi+3j,k + 4$1+2j,k 54i+1 j,k @i,j+3,k + 4',j+2,k 4i,j+1,k

+ 0',j,k+1+ 0',j,k 1+-20',j,kj —— &'0p ', 0',j = —&'0p ", , (43)

ni, j,k
4"+—2,j,k+ 44'+i, j,k —34,,, k

2h i,j,k
&',j—+2,k + 44",j+i,k —34',j,k

2h

Solving (44) for Q, j,k 1 and substituting in (43) we get

z+ ijk P&,j,k+1 4i,j,k 1—
2h 2T,

(44)

I

l

—0+sjk+ 4—-2 . .
n
nz

i,j,k

n
Qi+2, j,k +

i,j,k
@'+i,j,k

n"—@',j+s,k+ 4 ——,
i,j,k

n&
4i,j+2,k +

i,j,k
&t",&+i,k

h
+2@',j,k+1+ 2+

Tnz
n—3 +3-
n n i jk

7.„,& @p, k &/&, ,j,k = —A gp (45)

Clearly, there are seven other distinct stencils for inner triple-edge boundaries in three dimensions, all of which can
be readily obtained from (45) by suitable permutations of the i, j, and k indices.

At this point, the procedure we use to generate our difFerence equations should be reasonably clear. Altogether,
including the various single-, double-, and triple-edge boundary cases, we use 77 distinct stencils in the code.

The finite-difference discretization of (29), (24), and (25) we have outlined above produces a large, sparse set of
linear equations which, as mentioned previously, is solved using an iterative, line-relaxation technique. The "kernel"
of the algorithm, a single line-relaxation sweep, can be most clearly defined and understood if we momentarily ignore
boundary conditions and focus on the solution of the difFerenced form of (29):

-2 2 —8 2 —7
0i+l,j,k + 4i l,j,k +—4i,j+1,k + 4i j 1,k + @i,j,k+1—+ 4i j,k —1 64i,j,k + 0p i j k Pi,j,k — + 0p

(46)

Now let Q. .
k denote the values of the stored grid function after the mth iteration of the solution process. Then, the

equations

h
—2 „,(m+1) 2 &

(m, +1)
&
(m+1) +2 &

8 (m) ~(m-+1}-

@(m) + ~(m) + @(m) + ~(m) 4~(m)
.
+2~ 7. (m)

i j+1,k i j—1,k i j,k+1 i j,k —1 i j,k (47)

define a line-Gauss-Seidel (LGS) iteration for the system
(46). For fixed j and k, (47) is a linear tridiagonal sys-

tem for the n+ 1 unknowns g,. k, i = —n/2 n/2.(m+1) .

A complete relaxation su&eel consists of the solution of
(n+ 1) such tridiagonal systems, one for each pairing
of j and A:—after such a sweep each unknown has been
updated exactly one time. We refer to the iteration de-
fined by (47) as x-LGS since the lines of unknowns which
are simultaneously updated extend along the 2; direction.
Clearly, we can also define y-LGS and z-LGS iterations.

Gauss-Seidel relaxation generally has a notoriously
slow convergence rate, particularly in the limit h —+ 0.
In order to speed convergence, it is usually helpful to
employ the technique of overrettaxation. For example, as-

~(m+1) ~(m+1) + (1 )
q(m)

i&3& &21
(48)

where g( .
k

) satisfies the Gauss-Seidel equations (47),
&3 &

and a is the overrelaxation parameter which generally
must satisfy 1 ( w ( 2. Although our algorithm incor-
porates this strategy, with an h-dependent, empirically
determined w, we also use another, somewhat ad hoc,
technique which basically amounts to an additional over-

relaxation applied on a pointwise basis. Again, assuming
that we are scanning in the x direction, rather than solv-

ing (47), we solve

sociated with the x-LGS iteration (47) is the x-LSOR
(line successive overrelaxation) iteration:
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g —2 ],(m+1) 4 ~ (m+1)
&
(m+1) -+2 &

8-, (m)
&
(m+1)

g
—2 (~) + (m) + (m) + (m) 2 (m) -+2 7- (m)

~)2s

Together, equations (47) and (49) define the core of
what we call an 2:-LSOR sweep. Where necessary, bound-
ary equations are simultaneously solved with the interior
equations [such as (47)], but boundary values are never
over relaxed.

Briefiy then, our complete iterative procedure for solv-
ing the Hamiltonian constraint proceeds as follows. We
perform x-LSOR, y-LSOR, and z-LSOR sweeps in suc-
cession until

~(m+ 1} @(m}ij,A: ij,k

for some convergence parameter, e, typically 1 x 10
Each d-LSOR sweep (d = x, y or z) requires the solu-
tion of (n+ 1) linear systems in n+ 1 unknowns. Each
linear system is either (1) tridiagonal, a situation which
occurs whenever the discrete equations involve only cen-
tered difi'erences in the d direction or (2) 7 diagona/, if
the equations involve forward or backward difFerences in
the d-direction. The tridiagonal systems are solved us-
ing a tridiagonal solver which has been optimized for the
particular machine architectures (Cray Y/MP, Cray 2)
on which the code is run, while the 7 diagonal systems
are solved using a biconjugate-gradient method. In both
cases, the linear system can be solved using O(n) op-
erations, so a complete d-LSOR sweep requires 0(ns)
computational work. Empirically, we usually obtain con-
vergence with O(n) sweeps; this represents the optimal
asymptotic performance which can be expected for an
LSOR method. Thus, our algorithm requires O(N ~ )
operations to compute a solution on a mesh containing
N = n unknowns. We note that for large X this implies
significantly poorer performance than should be possible
with a multigrid technique.

I

at arbitrary locations [9]. Since that time, there have
been a number of significant theoretical [17] and practi-
cal [18] developments in its use. Kansa [19] was the first
to apply the method to the solution of partial difFerential
equations, and his techniques are basically those followed
here.

The use of MQ in numerical relativity has been de-
scribed in two previous papers [20, 21]. In Ref. [20] a
number of numerical experiments were performed to test
the feasibility of the method. Single black-hole initial
data sets in 3D Cartesian coordinates were constructed
and MQ was found to be accurate and very easy to irn-
plernent. In Ref. [21], a brief description was given of the
extension of that work to the construction of 3D initial-
data sets for two black holes in the case of Misner data
[22]. A short discussion of the numerical difficulties en-
countered and some possible remedies was also presented.
Here, we extend those previous works further in order
to construct general 3D two-black-hole initial data, once
again in a Cartesian coordinate system.

References [20, 21] indicated that a straightforward ap-
plication of MQ to the solution of the Hamiltonian con-
straint for g produces poor results due to the asymp-
totically fiat nature of the conformal factor (for fiat or
mild gradients, MQ is noisy and inaccurate). Substan-
tially more accurate results were obtained by transform-
ing to a new variable, C, whose growth is unbounded with
distance such behavior is better represented by the MQ
basis function [23]. Based on the single-black-hole and
Misner data experiments, 4 is given by

4 =1+AC.

C. The multiquadric approach

The multiquadric (MQ) approximation scheme was
first used by Hardy in 1968 for two-dimensional (2D) sur-
face interpolation of geographical data points, measured

In the above, if C are the coordinate positions of the
centers of holes n = 1, 2, then r = b,&ATE' Ax&, where
Lx.~ = x —C~, a~ are the radii of the holes and b,z is
the Kronecker b function. Then, Eq. (3) is transformed
to become

Lx2V', C

where Q~ and Q, are the flat space Cartesian Laplacian and grad operators respectively, and 'D = 6,~Alai&xz. The
boundary conditions also need to be transformed. On the spherical outer boundary of radius r«i«, expression (7) is
written as
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3'D2

i )
(a,a21)' ' (
(rir2p ( 2ri 2r2 p

(53)

holding at 6,&z'z& = r „~„,where 'D = 6,~z'Az~ . The
boundary condition (5) at the throat of hole 2, in terms
of 4, is written as

AAz2 V', C— 5 t' ai ) (3D 1'1

2 (ri) ( ri 2p

N

@=ci+) cqgq,
q=2

(55)

holding at 6,~6x24x2 ——a2. A similar expression can be
written for the boundary condition at the throat of hole
l.

Although the resulting system is more cumbersome
than the original one, nevertheless it is still a simple pro-
cedure to solve it using the MQ method. To begin, the
function O is approximated as a linear sum of MQ basis
functions plus an appended constant [19,23]

It should be noted that many other choices of s are
possible [18]. Various schemes for choosing expressions
for s2 have been discussed in Refs. [9, 18], but most of
these schemes are understood heuristically at best, and
are generally tuned on the basis of empirical studies. Ex-
pression (57) appears to work well since it produces a
diverse range of basis function shapes, which helps in ap-
proximating a wide variety of surfaces.

While the MQ approach allows the positions of the
N data points (xq, yq, zq) to be arbitrary, it is prudent
to have a dense distribution of points in those regions
of the computational domain where the functions to be
evaluated are expected to vary most rapidly. For the
problem at hand this is obviously around the throats of
the two black holes. Figure 3 shows the distribution of
data points for the high resolution AlB8 configuration
(discussed in the next section). On the left-hand side all
N = 1994 points are shown in projection. The right-
hand side shows the same projections for the region near
the black holes. These points have been distributed so
as to lie on two sets of concentric spherical surfaces with
radii increasing geometrically (by a factor of —1.1) from
the center of each hole. The outer boundary points have
been placed on a spherical surface satisfying r „t„——350
for this particular case, and the radii of the two holes is
aq ——a2 ——1. Note that no data points lie inside the holes,
i.e. within the regions defined by 6,~4z' Az~ ( a2.

Now, given the expansion (55), it is a simple matter to
construct first, second, and higher derivative approxima-
tions of 4, for example,

where cq are the expansion coeKcients to be determined,
N is the total number of data points used and gq is given
by gq = gq

—gi, with gq the MQ radial basis function
and

AC' ~ 0gq

q=2 q=2

X Xq X X]

gq gl
(58)

gq
——[(z —xq) + (y —yq) + (z —zq) + sq]' (56)

In Eq. (56), following Kansa [19],the quantity s is given
by

c)2C

BX

NI
C

X
gq

q=2

N

) Cq

q=2

1 1 (x —zq)2

gq g] gq
3

X X1+ 3 )

gg
(59)( 2 (q —1)/(N —1)

2 2
]

Smax

min
(57)

which, along with (55), can be substituted into Eqs. (52)—
(54). Since Eq. (52) is nonlinear, however, global lin-
earization is required first, similar to Eq. (29) of Sec.
III B. Once the substitutions have been made the result
is a system of N linear algebraic equations for the co-
eKcients cq. This system can be written in the matrix
form

where s;„~ ~„are arbitrary input parameters. Although
arbitrary, the actual values of s;„g „do affect the ac-
curacy of the solution obtained (see, e.g. , Ref. [20]) and
so this can be a difficulty in the practical use of MQ.
Some experimentation is required; however, Ref. [20] in-
dicates that, in general, the ratio s „/s;„should be as
large as possible, consistent with solutions that are not
obviously incorrect (e.g. , wild oscillations). For all the
MQ computations described in this paper we set typical
values of s;„=1 and s

(60)Sc=b,
where c = (ci, c2, . . . , civ) and where the entries of S
and b are given by

a3+—2

r25
6 a3iS g

———
A r'

1

4000.

+
I I

—+ —+ —-~„A"[1+~C.]-s,3 f'aia2 l 1 1 O'D 7—
4g Jr2ir 9 r r r r

S„q ——gqS„g + 3
6,, (z„' —z', ) (z& —z~) 6,, (x„' —z', ) (z& —z', )

gq g& gq

1 a2ri ) ~ a2 ~ 1 (air2
2 air29 ) r2 ( 2 (a2ri )

1+ —
( [~i(iq) —&i(ii)] + —

s I
1+ —

I
~ &2(pq) 2(pl)
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if (xz, y&, z„) lies on the boundary at r „t,„,and by

+a;(pq) =
gq

if the data point (x„,y„, z„) lies within the interior of the
computational domain, by

5 ay 3V 1

1

1 (aga21 y ( 3'Db+— 1+
2 i,rtr2) g 2rz~)

(~g) 3'Vg& (a2& ( 3Z)2&

(aga21 ' ' 317' 3V2')
+ 1 — 2—

g ryrg p 2ry 2r2

b;, x„'(x'„—x', ) 6,,2:„'(x'„—2.",)p p q p p

Qq gl

~pq —gq ~pl + + +2(pq) + +2(~1)

1
p 2

if (xz, y&, z&) lies on the throat of hole 2 (similar expres-
sions hold for points lying on the throat of hole 1). ln
the above aI1 quantities that are not specifically labeled
with an index p or q are evaluated in terms of the data
point (2:„,y„, z„).

Kansa [19] and Dubal [20], among others, have dis-
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FIG. 3. Typical distribution of data points for a multiquadrics computation. Each panel on the left-hand side is a projection
of all N data points onto a plane passing through the origin. Panels on the right shower details of the point distribution near
the holes.
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cussed the highly ill-conditioned nature of the system
(60). In general, S is a futt N x N matrix with a con-
dition number 102O or higher. The solution of (60)
is not amenable to straightforward LU decomposition—
standard iterative and direct methods will not work due
to roundofF error. As shown in Ref. [20], however, it
can be solved successfully using the method of singular-
value decomposition (SVD) [24, 25] with single-precision
FORTRAN arithmetic on a Cray Y-MP8/864 (64-bit word
representation). The routine svDGMp described in Ref.
[24] worked well for this problem. The quantity 40 is ob-
tained via the expansion (55) using previously computed
values of cq (or an initial guess), and is updated using
fixed-point iteration of (60) (see Ref. [20]). In the ma-
jority of cases convergence of C is rapid, taking less than
ten iterations to achieve a maximum relative difference
of ( 1 x 10 between adjacent iterated values of C. We
also use iterative refinement [24] to recover some of the
lost significant figures in the solution of (60). Unfortu-
nately, the svD algorithm is expensive since it has a high
operation count at O(Ns), although for many problems
N can be considerably smaller in the case of MQ than for
finite-difference methods, for a given level of accuracy.

IV. aESUr,TS AmD COMPAarSOm OF
METHODS

A. Methodology

In this section, we assess and compare the relative
performance of the three algorithms described above by
considering the solution of the Hamiltonian constraint
for several initial configurations describing two black
holes. The basic methodology we adopt in our analysis
is the straightforward technique of convergence testing
for any given physical problem and specific solution tech-
nique we generate numerical results at several difFerent
resolutions (different basic scales of discretization h for
the finite-difFerence methods, or number N of basis func-
tions for the MQ). From these convergence series we can
then estimate, in the ideal case, (1) the actual level of
error, at a given resolution, in any given solution, and
(2) the rate of convergence of the numerical solution to
the continuum solution, again at some specific resolu-
tion. This approach was adopted in a previous compar-
ison (Choptuik et at. [10]) of different numerical tech-
niques which had been designed for the solution of a
particular problem in numerical relativity. The point of
this approach is that, at least for finite difference codes,
quantities such as the level of error and convergence rate

should be intrinsically (i.e., without reference to an an-
alytic solution or a previously computed numerical solu-
tion) assessable. However, the error analysis of the basic
numerical methods employed in [10] was expedited by the
availability of high-accuracy numerical results generated
from the application of Richardson-extrapolation tech-
niques to the "raw" output of one of the methods. In the
current case as well, the convergence behavior of one of
the methods —the Cadez schem"- is such that the output
from the algorithm is amenable to Richardson extrapo-
lation. Both theoretical and empirical evidence support
our confidence that these extrapolated values are suffi-
ciently accurate to be considered exact for the purpose
of assessing the errors and convergence rates of the "raw"
output of the three different methods.

B. Model parameters

We have considered five different models in our com-
parison of the three methods. As illustrated in Table I,
each model is characterized by a considerable number of
parameters. Recall from Sec. III A Eq. (9) that n is the
dimensionless ratio of the radii of the two holes, while t9
is the spatial separation of the holes in units of the radius
of the first hole, aq. The three-vectors Pq, P2, Sq and
S2 can be associated, roughly speaking, with the linear
momenta and spins of the two holes —the identification
becomes precise only in the limit of large separation of
the holes. The parameter r „q„difFers from the other six
in that it has no physical significanc" rather, it is the
approximate outer radius of the computational domain
[the radius at which the Robin boundary condition (7)
is imposed] used in the corresponding Cadez calculations
which, in turn, were used to generate the reference re-
sults. Note that in terms of the six physical parameters
there are only three distinct models —A2B8TS (TS since
the initial data for this case generates a time-symmetric
spacetime), A1B8 and A2B8. Models A1B8NR (NR for
near) and A2B8NR diff'er from their non-NR counter-
parts only in the setting of r „t„,which, for the NR
computations, was chosen to roughly coincide with the
outer "radius" of the computational domain used in the
Cartesian calculations. For all of the Cartesian compu-
tations, this radius was about 14a~. By generating ref-
erence values with a reduced r „t,„,we are able to assess
the efFect of the smaller computational domain (relative
to the other two algorithms) employed in the Cartesian
solutions. The point is that imposing the boundary con-
dition (7) at a smaller outer radius, r'„~„(r „t,„,does
not produce the same solution as that obtained by trun-

TABLE I. Parameters for various two-hole calculations used in the comparison.

A2B8TS
A1B8
A1B8NR
A2B8
A2B8NR

8

8

8

+1/ai

(0, 0, 0)
(14,0, 0)
(14,0, 0)
(15,0, 0)
(15,0, 0)

Si/a',

(0, 0, 0)
(—280, 280, 0)
(—280, 280, 0)
(—20, 20, 0)
(—20, 20, 0)

P2/ai

(0, 0, 0)
(—14, 0, 0)
(—14, 0, 0)
(—15, 0, 0)
(—15,0, 0)

S2/a,

(0, 0, 0)
(0, 280, 280)
(0, 280, 280)
(0, 20, 20)
(0, 20, 20)

~outer

730
350
17

730
18
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cating at T „~„asolution with the boundary condition
set at Touter

We ascribe no particular physical significance to the
three basic models we consider; the various parame-
ter combinations enumerated in Table I were chosen to
produce relatively interesting and illuminating data sets
from the numerical viewpoint, which were also germane
to the issue of generating initial data for "realistic" black-
hole encounters. Thus, based on experience gleaned from
axisymrnetric computations [3, 26], we chose P = 8 for
the separation parameter in order to produce configu-
rations containing two separate holes (no single, outer
apparent horizon or event horizon which envelops both
throats), yet where interaction effects are still signifi-
cant. We include a time-symmetric model providing us
with an analytic solution [22], and a useful calibration of
our error-assessment. For the models with nonvanishing
P~, each hole has momentum corresponding to relativis-
tic motion. In addition, the total linear momentum of
the "configuration" vanishes (Pq + P2 = 0) so as not
to degrade the Robin boundary condition (7). The spin
vectors Sa endow the holes in the AlB8/A1B8NR and
A2B8/A2B8NR models with what we consider "large"
and "moderate" amounts of spin, respectively (the A1B8
holes are almost certainly nearly maximal). The cases
with nonvanishing P~ are "3 dimensional" but, without
spin, contain an orbital-plane symmetry. The spin vec-
tors were chosen to explicitly break this remaining sym-
metry and ensure that the models were truly "generic".
Finally, for all models, the coordinate centers of the black
holes were located on the z axis: specifically, for the A1B8
computations, Cq/aq = (0, 0, 4) and Cz/aq ——(0, 0, —4),
while for the A2B8 series, Cq/aq = (0, 0, 4.046875) and
C2/aq ——(0, 0, —3.953125).

C. Resolution parameters

For each method, and for each relevant model listed
in Table I, we performed computations at three dis-
tinct resolutions —we generically refer to these compu-
tations as low, medium, and high resolution runs. Ta-
ble II summarizes the values we used for the various
numerical parameters which fix the resolution of each
method. Recall from Sec. III A that the mesh structure
for the Cadez algorithm is described by six parameters—
2+,Z', 2, 8+,8, and P. For this scheme, the design of

the computational domain, coupled with the fact that
meaningful results are attainable on relatively coarse
meshes, makes a convergence test using a 4: 2: 1 ra-
tio of the low: medium: high resolution scales natu-
ral and computationally tractabl" thus, in going from a
low-to-medium or medium-to-high calculation, all six of
the Cadez mesh parameters are simply doubled.

As discussed in Sec. III B, a Cartesian computation is
characterized by a single discretization scale, h, or equiv-
alently, by the number of mesh points, n, on an edge
of' the computational cube, which, as the resolution is
varied, has a fixed physical length. Here, computer re-
sources limit our computations to a maximum n = 128
(we prefer n = 16k, for some integer k from hardware
considerations), but solutions generated with n = 32 are
not meaningful, so we have produced convergence series
using a 2: 3/2: 1 relation of the low: medium: high
resolution scales.

There is no single basic scale of discretization associ-
ated with the MQ method since the "grid" may have
an arbitrary structure. For a fixed computational do-
main it is expected that by increasing the number of data
points, N, the function to be evaluated will be sampled
more densely and thus approximated more accurately (al-
though there is no rigorous proof of this for general "grid"
structures in multiple dimensions; see the discussion in
Sec. IVE1 below). Our choice of N in the MQ cornpu-
tations has been governed by constraints similar to those
of the Cartesian approach. Below about N = 800 we find
that the solution is poor due to insuKcient sampling of
the solution domain. Above N = 2000 the computation
becomes very expensive because of the O(N ) operation
count of the svD algorithm. The low and high resolu-
tion values of N shown in Table III are representative
of these two extremes. For comparison purposes the low

med: high resolution scale ratio can be written (for
this 3D problem) in terms of N ~~s, and is then given
by 1.333: 1.125: l.

D. Details of the comparison

Our comparison is itself comprised of two parts which
are summarized in subsections IVE1 and IVE 2 below.
In both parts, errors (deviations) are computed at some
set of N„p reference points, labeled, for example, by
their Cartesian coordinates, (2:„y,, z, ), i = 1, . . . , N„&.

TABLE II. Parameters defining the various low-, medium- and high-resolution computations performed in the comparison.

Model Res. Cadez
2+ Z 2

Cartesian
n h

M
N r ~t,„/ag

A288TS
A2B8
A288NR

low
med.
high

2 2 20( 6) 8
4 4 40(12) 16
8 8 80(24) 32

8 16
16 32
32 64

64 0.450
96 0.300

128 0.225

842
1402
1994

730
730
730

A1B8
A1B8NR

low
med.
high

2 2 24( 8) 8
4 4 48(16) 16
8 8 96(32) 32

8 16
16 32
32 64

64 0.450
96 0.300

128 0.225

842
1402
1994

350
350
350

Values in parentheses are for the NR cases.
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TABLE III. Norms of pointwise relative deviations in g using extrapolated Cadez values as reference except for A2BSTS
where the reference solution is analytic.

Model

A2B8TS low
med.
high

extrap.

Cadez
llelli (conv. rate)

2.41 x 10
5.84 x 10 (2.04)
1.45 x 10 (2.01)
3.12 x10 '

1.06 x 10
2.67 x 10
6.29 x 10
1.33 x 10

Cartesian
)~
e (( i (conv. rate)

3.9 x 10
1.5 x 10 ( 2.4)
5.1 x 10 ( 3.7)

1.9 x 10
1.0 x 10
2.5 x 10

Multiquad ries

4.3 x 10 3 4.0 x 10
6.3 x 10 3 2.7 x 10
3.1 x 10 9.1 x 10

A1B8 low
med.
high

6.80 x 10
1.65 x 10 (2.04)
4.13 x 10 (2.00)

5.19 x 10
1.42 x 10
3.54 x 10

1.3 x 10
1.3 x 10 ( 0.0)
1.3 x 10 (—0.2)

4.5 x 1Q

4.4 x 10
4.4 x 10

3.9 x 10
1,9x 10
1.6 x 10

6.9 x 10
3.6 x ]0
2.6 x 10

A1B8NR low
med.
high

1.43 x 10
3.48 x 10 (2.04)
8.71 x 10 (2.00)

5.17 x 10
1.42 x 10
3.54 x 10

2.3 x 10
2.1 x 10 ( 0.3)
2.0 x 10 3

( 0.1)

1.2 x 10
1.]. x 10
1,1x 10

A2B8 low
med.
high

7 13 x 10
1.69 x 10 (2.08)
4.23 x 10 (2.00)

4.88 x 10
1.57 x 10
3.92 x 10

1.2x10 2

9.8 x 10 ( 0.5)
6.3 x 10 ( 1.5)

7.5 x 10
9,0x 1Q

2.0 x 10

7.7 x 10
4.6 x 10
2.1 x 10

6,9x 10
7.5 x 10
2.7 x 10

A2B8NR low
med.
high

1.74 x 10
4.12 x 10 (2.07)
1.03 x 10 (2.00)

4.93 x 10
1.58 x 10
3.96 x 10

8.9 x 10
6.1 x 10 ( 0.9)
2.7 x 10 ( 2.8)

7.4 x 10
8.8 x 10
1.4 x 10

In both subsections, for those models where an analytic
solution is not known (that is, for all models except
A2B8TS), we define "error" as deviation from a refer-
ence solution generated from Richardson extrapolation
of medium- and high-resolution Cadez results to the ap-
propriate set of reference points. We remark that, in
general, these points did not coincide with points actu-
ally used in the various "bare" Cadez, Cartesian, and MQ
computations. Thus, some post-processing of atl the ba-
sic results was generally necessary before the pointwise
subtractions required to produce error estimates could
be performed. We are confident, however, that we have,
for the most part, succeeded in keeping the error due to
post-processing small in comparison to the fundamental
truncation errors of the various schemes, so that the re-
ported levels of error are genuinely indicative of the level
of error in the basic solutions.

In the first part of the comparison (Sec. IVE1), the
reference points were simply the points used in the var-
ious low-resolution Cadez computations. In this case,
extrapolated values were generated using a two-step pro-
cedure: (1) the medium- and high-resolution values were
interpolated to the reference points (interpolation was
necessary due to the "zone-centered" nature of the Cadez
differencing scheme), then (2) an appropriate linear com-
bination of these interpolated values was formed to yield
Richardson-extrapolated values at the reference points.
In the second part of the comparison (Sec. IVE2), the
reference points were chosen to lie along that part of the
z axis contained within the computational domain used
in the Cartesian calculations. This is a region which
is, in some sense, excluded from the Cadez computa-
tions (but has no particular significance for the other
two methods) and, not surprisingly, this made the gen-

eration of extrapolated values somewhat more involved:
(1) The high- and medium-resolution results were sepa-
rately extrapolated (on the basis of Taylor, not Richard-
son, expansion) to the "natural" z-axis locations associ-
ated with their respective (il, (, p) values; (2) the z-axis
medium-resolution values were interpolated to the z-axis
high-resolution points; (3) a linear combination of the z-
axis medium- and the z-axis high-resolution values gave
z-axis (Richardson) extrapolated values at "natural" z-
axis high-resolution points; (4) a final interpolation along
the z-direction produced values at the desired reference
points.

Some care is required in producing such extrapolated
results. All of the extrapolations are based on the
premise that the solution Q~ ",produced by the Cadez
scheme, has the asymptotic (h ~ 0) expansion

@Cadez @+ h2 Cedez + h4 Cadez + (61)

where h is the basic scale of discretization and e2~

e4' ",. . . are h-independent functions. In the limit
h —+ 0, we expect output from the Cadez algorithm to ad-
here more and more accurately to (61) on the Cadez grid
points. In order to produce two-level extrapolated results
at a different set of points, we must ensure that we inter-
polate the "bare" results to suKciently high order that we
preserve the first two terms of (61). For example, in the
two-step procedure described above, linear (O(h2)) in-
terpolation of the medium- and high-resolution results to
the low-resolution grid points would be insuKcient since
that procedure would introduce new O(h2) terms which,
except for special mesh geometries, would not be (sig-
nificantly) "cancelled" by Richardson extrapolation. In
order to interpolate both @ and h2 eg~~'* correctly, we
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~

]remodel tref]). (62)

]

remodel

tref
]

]]e[/ =—m'ax

where the index i in these expressions ranges over the
N1 ~f of the N, gf values which lie within the computational
domain of the particular calculation under consideration.
For the finite difference solutions, we also estimate a con-
vergence rate by computing the ratio

»
I

lie"'lli/lie"'lli

ln(hi jh2)
(64)

where hi and hq are the low and medium, or medium and
high resolution discretization scales. Clearly, in the limit
hi, hz ~ 0, this ratio should approach p for an O(h")
difference scheme.

E. Results of the comparison

Global error analyai8

The results of the first part of our comparison are sum-
marized in Table III; here we make a few additional com-
ments about overall features of the comparison as well
as the general performance of individual methods. In
the first place, and perhaps most importantly, we ob-

need to use at least quadratic (O(hs)) interpolation. In
the generation of at/ of our Richardson-extrapolated ref-
erence results we have been conservative in our interpo-
lation and (polynomial-) extrapolation operations, invari-
ably using a higher order of interpolation than is strictly
necessary.

As mentioned above, the various "bare" results which
were produced by running each code-model pair at three
different resolutions also had to be post-processed in or-
der to produce values at the specific sets of reference
points just described. The Cadez values were (again con-
servatively) cubically (O(h4)) interpolated to the refer-
ence locations, while linear interpolation was employed
for the Cartesian quantities (fundamental considerations
and direct numerical experiments indicate that the O(h2)
errors incurred by the linear interpolation are negligible
in comparison to the truncation error of the scheme).
We also note that we made no attempt to compute er-
rors in the Cartesian results at points which lie outside
the (rather small) Cartesian computational domain. Fi-
nally, the functional-approximation nature of the MQ
provides a natural mechanism for producing a numeri-
cal solution value at any point within the MQ compu-
tational domain —Eq. (55) was simply evaluated at ar-
bitrary (x, y, z) using the appropriate set of numerically
computed basis coefficients.

In Sec. IVE j., we quantify the basic level of error in
any of the numerical computations g 'd' in terms of
the following discrete Sq and E~ norms of the relative
deviation from the reference solution g'e~:

serve that the tabulated results show a satisfying level
of agreement among the output of the various numerical
schemes. For all three methods, we generally have aver-
age agreement of the high resolution results to within 1'%%uo

or so, and for most of the calculations, there is a general
trend of decreasing deviation with increasing resolution.

In addition to this overall agreement, the superior ac-
curacy of the Cadez results in comparison to the results
from the other two methods is also striking. Particularly
noteworthy is the clear O(h ) convergence manifested by
all of the Cadez computations; this convergence behavior
is significantly better than that of either of the other two
algorithms and, as a result, the high-resolution Cadez re-
sults are generally well over an order of magnitude (and
in some instances nearly two orders) more accurate than
the best Cartesian or MQ results. Furthermore, as pre-
viously discussed, because of this rather precise O(h2)
convergence, the Cadez results can be substantially im-
proved using Richardson extrapolation. For example, Ta-
ble III shows that for the time-symmetric computation
(A2B8TS), two-level extrapolation provides nearly a 500-
fold improvement on the accuracy of the high-resolution
results (the improvement in the E~ norm is not so dra-
matic, but we have not studied this issue in any detail).
Based on the similarity of the observed levels of deviation
in the Cadez results from model to model, we conclude
(self-consistently) that the other extrapolated solutions
(reference solutions) have similar accuracy.

In contrast to the Cadez results, the general conver-
gence properties of the Cartesian data sets are more
difficult to assess and quantify. As anticipated in Sec.
IIIB, we believe that the somewhat erratic convergence
behavior of the method seen in Table III is largely at-
tributable to (1) The nature of our approximation of the
inner boundary conditions [which are generally O(h) ac-
curate while the discretization of the interior equations is
O(h2)], and (2) the small diameter of the Cartesian com-
putational domain. The A1B8NR and A2B8NR models
were introduced specifically to estimate the relative ef-
fect of this second aspect of the Cartesian computations
on the overall level of error. As can be seen from Ta-
ble III, errors in the Cartesian results in comparison to
the NR reference solutions are significantly less than the
deviations from the solution of the corresponding base
model. In addition, the Cartesian convergence rates of
the NR data sets are clearly superior for both the A1B8
and A2B8 models. For a model like AlB8 the error in-
duced by imposing the outer boundary condition at such
a small radius is a significant (if not dominant) fraction of
the total error, even for the low-resolution computation.

A rigorous analysis of the convergence behavior of the
MQ results is difficult. In the case of a 1D, uniform, inff-
nite grid some quantitative results have been found [23].
The convergence rate under such idealized conditions is
exponential (as in pseudospectral methods). In the gen-
eral case, however, the convergence behavior appears to
be a function, not only of N, but also of the arbitrary
parameters 8;„g and the form of the functions to be
solved for. An experiment on the convergence behav-
ior of the scheme when applied to the single-black-hole
initial-data problem was presented in Ref. [20]. There,
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a general trend of increasing accuracy with increasing N
and ratio s „/s;„was found. Unfortunately, as both of
these parameters increase so does the condition number
of the matrix. For any given precision of Boating-point
arithmetic, there comes a point when the matrix condi-
tion number is so high as to render its solution mean-
ingless. Even before this extreme situation is reached
the solution deteriorates due to loss of significant figures.
Therefore, increasing N and s ~„/s;„does not produce
a monotonic increase in accuracy (at least for the solution
method described here).

c
U

03
C3

03

C3

03

N

r )

A1BH: Cndez

13

p

IQw t p. s.
I »p.d. t p. s.

8. z-axis error analysis

The second part of our comparison focused on one par-
ticular model (AlB8), and a set of about 130 reference
points lying along the z axis (x = p = 0) within the do-
main of the Cartesian computations. The results of this
comparison are summarized in Figs. 4—8. Figure 4 shows
a superposition of the data from all three high-resolution
runs of the AlB8 model (symbols are plotted at every
third reference point). Apart from the slight deviation of
the Cartesian results for larger values of ~z, difFerences
among the solutions are not discernible on the scale of
the graph. Figures 5—8 show detailed views of the con-
vergence behavior of the various methods along the z
axis. Note that the vertical scales of Figs. 5—6 and 8 are
identical, while that of Fig. 7 is about half that of the
others.

I l

O'IB8: High res.

high res.
I I

10

FIG, 5. z-axis convergence series of the Cadez computa-
tions for model A1B8. In this and subsequent figures, devi-
ations are computed with respect to reference results gener-
ated using the four-step Richardson-extrapolative procedure
described in the text. Here the rapid [quantitatively O(h )]
and regular convergence characteristic of all of the Cadez cal-
culations performed in our comparison is evident. Note that
the relative deviations are largest in the vicinity of the Cade'
singularity, which for model A1B8 is located at (0, 0, 0).

In Fig. 5 the rapid [quantitatively O(h )j convergence
of the Cadez data is again apparent. (Some of the low-
resolution deviations have been clipped, but without any
significant loss of information since the convergence is so
good. ) We remark that the figure presents a somewhat
less glowing assessment of the accuracy of the Cadez re-

N
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()

Cctdez

Multiquadric

Cur tesiar1

1c

c
U

03

03

C3

03

A l B8: C(jr'I es I cjr1

I',

~ I

li

0

IPiw rP. s.
p.d. t p.s.

FIG. 4. Superposition of high-resolution Cadez, multi-
quadrics and Cartesian results along the z axis for model
A1B8. See Tables I and II for model and resolution pa-
rameters respectively, and refer to the text for discussion
of the post-processing that was applied to each "raw" high-
resolution data set in order to produce a cut along the z axis.
Observe that differences among the various solutions are not
visible on the scale of this graph, except at larger values of
IzI—near the edges the Cartesian computational domain—
where the Cartesian results show a slight deviation. In this
and subsequent figures, symbols are plotted every third data
point.

hiah res.
I I

FIG, 6. z-axis convergence series of the Cartesian com-
putations for model A1B8. Although a general trend of de-
creasing error with increasing resolution can be seen in this
plot, the effect of the small computational domain used in this
and the A2B8 and A2B8TS Cartesian calculations is clear-
the accuracy is limited not by poor resolution, but by the
approximate nature of the outer boundary condition (7), im-
posed here at r —15.
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FIG. 7. z-axis convergence series of the Cartesian com-
putations for model A188NR. Here the reference solution
was generated by Richardson-extrapolating Cadez results for
model A1B8NR where the outer boundary condition (7) was
applied at r = 17 to roughly coincide with the radius at which
the condition was imposed in the Cartesian calculations. As
expected, in comparison to the previous figure, the conver-
gence of the Cartesian results is substantially improved (note
the reduced vertical scale of this plot).

suits than does Table III. (Recall that the error norms
reported in Table III were computed using sets of refer-
ence points naturally associated with the low resolution
Cadez calculations. ) Indeed, we find that the basic level
of relative error observed along the z axis in Fig. 5—in
the vicinity of the holes, and particularly near the Cadez
singularity —is at least an order of magnitude worse than
the tabulated errors. Although we have not studied the
issue in detail, this "arnplification" of the level of error
seems quite plausible given the nature of the Cadez co-
ordinates and the fact that the z axis is not naturally
well represented in this system. However, the "contin-
uation" of any basic numerical solution to an arbitrary
point within the bounds of a computational domain can
be of considerable interest in general, and, in this re-
gard, we feel that the deviations seen in Fig. 5 represent
characteristic levels of "worst-case" error for the Cadez
calculations.

Figures 6 and 7 show errors along the z axis in the var-
ious Cartesian solutions of the A1B8 and A1B8NR mod-
els, respectively. It is clear from Fig. 6 (as well as Fig. 4)
that the errors in the AlB8 calculation are proportion-
ately largest near the outer boundary of the computa-
tional domain, particularly for the highest resolution cal-
culation. When errors are computed using the A1B8NR
reference solution (Fig. 7), there is a significant reduc-
tion in the overall level of error at all resolutions (which
is also apparent from the results listed in Table III) and
visibly better convergence behavior.

Finally, Fig. 8 displays the pointwise errors of the var-
ious multiquadrics results along the z axis. Again, it is
currently dificult for us to make any quantitative state-
ments concerning the convergence of the MQ method.

FIG. 8. z-axis convergence series of the multiquadrics
computations for model A188, As with Fig. 6, there is an
overall trend of decreasing error with increasing resolution.
However, as discussed in the text, analysis of the conver-
gence of the MQ scheme is complicated by the influence of
adjustable parameters other than the number of data points,
N.

We generally observe smaller relative errors at higher res-
olutions (in accord with the results in Table III), but, for
example, the errors between the holes in the medium-
resolution calculation are significantly less than the cor-
responding errors in the high-resolution data. We also
note that the forms of the error functions show little cor-
relation with the solution g (or derivatives of Q); this
is perhaps to be expected given the global nature of the
MQ method.

V. CONCLUSIONS

It is clear that all three of the methods described in
this paper can construct useful initial-data sets to be used
in the simulation of black-hole collisions. Each method,
however, has its strengths and weaknesses both from the
point of view of simply constructing initial-data sets and
for the eventual evolution of a prescribed system.

For the task of constructing an initial-data set as accu-
rately as possible for a given amount of computational ef-
fort, the Cadez approach is undoubtedly the best choice.
Its one shortcoming is the lower resolution and accuracy
of the region between the two holes, near the Cadez sin-
gularity. This shortcoming can, however, be alleviated
with the use of an adaptive-gridding algorithm to in-
crease the grid resolution in this area. With the eventual
move to time evolutions of these initial-data sets in mind,
the need to consider alternatives to the Cadez approach
is apparent. The numerical instabilities which are often
associated with evolution schemes built upon curvilinear
coordinates like those of Cadez must be considered as a
significant threat to the eventual success of any "Cadez"
evolution scheme. While the Cadez approach should not
be abandoned, alternative approaches which can avoid
numerical instabilitites associated with coordinate sin-
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gularities should be investigated.
Both the Cartesian and the MQ approaches described

in this paper are free of coordinate singularities and may
provide effective alternatives to the Cadez approach. For
the first time in the field of numerical relativity, a Carte-
sian coordinate system has been successfully used in a
problem with "nontrivial" boundary topologies. The uni-
form gridding used at present, however, produces a distri-
bution of grid points which is far from ideal. This is the
cause of the two major shortcomings of the Cartesian ap-
proach described here: the relatively low resolution near
the inner boundaries which hinders the accuracy of im-
posing the inner boundary condition and the necessity of
positioning the outer boundary at too close a "radius. "
As with the Cadez approach, the use of adaptive gridding
should provide an effective means of addressing both of
these problems.

Finally, the MQ method remains as an intriguing alter-
native approach. This global, spectral-like scheme may
provide a uniquely different approach to the problem of
evolving the collision of two black holes. As described
here, the major drawback is the ill conditioning of the
matrix system to be solved. Recent work, however, indi-
cates that by using a more sophisticated implementation

of the MQ method, incorporating domain decomposition
and blending techniques [27], the ill-conditioning problem
can be eliminated. Moreover, the number of operations
required to solve the system is then substantially reduced
and larger numbers of data points may be used to give
higher accuracy.
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