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The radius of gyration is a familiar concept in Newtonian mechanics and a suitably defined relativistic
generalization of it turns out to be very useful for analyzing rotational effects in strong gravitational
fields. The present paper contains a discussion of the properties of this quantity and of its level surfaces
(the von Zeipel cylinders) and also of its connection with thc effective potential for photon motion and
with ideas of centrifugal force. The direction of increase of the radius of gyration gives a preferred
determination of the local outward direction relevant for the dynamical effects of rotation, but this direc-
tion becomes misaligned with the global outward direction in strong-field situations. This misalignment
underlies some apparently counterintuitive behavior of the centrifugal force in strong fields which has

recently been the subject of considerable interest.

PACS number(s): 04.20.Cv, 95.30.Lz, 97.60.Sm

I. INTRODUCTION

In Newtonian mechanics, the idea of radius of gyration
is a familiar one in connection with the rotational proper-
ties of rigid bodies. It is defined as the radius of the cir-
cular path on which a pointlike particle having the same
mass and angular velocity as the rigid body would also
have the same angular momentum; in other words, it is
the value of 7 given by the equation

J=M#Q (1)
where J is the angular momentum, M is the mass, and Q
is the angular velocity, so that
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For a point particle moving along a circle, the value of 7
given by Eq. (2) is (trivially) just the ordinary radius of
the circle.

In general relativity, things are more complicated be-
cause there is more than one satisfactory way of measur-
ing the radius of a circle. Two standard measures are the
circumferential radius (the proper circumference divided
by 27) and the radial proper distance. If a generalization
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of Eq. (2) is used as the definition of 7 for a point particle
moving along the circle, then this provides a third mea-
sure. We use the generalization

1/2
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where .L is the angular momentum of the particle and &
is its energy. Whereas in Newtonian theory these three
ways of measuring radius give results which are identical,
in general relativity they are distinct. We propose that 7
is the right quantity to use for discussing the dynamical
effects of rotation and that the direction of increase of 7
defines the local outward direction relevant for this pur-
pose. It turns out that when formulas are written in
terms of 7, a very simple and elegant unified picture
emerges.

The level surfaces of 7, defined as above, are the von
Zeipel cylinders, which were first discussed in the context
of general relativity by Abramowicz [1] and have since
proved to be a very useful concept for analyzing the be-
havior of rotating fluids in axially symmetric, stationary
space-times. They are normally introduced as surfaces
on which the ratio (¢/Q) is constant (where ¢ is the
specific angular momentum .£ /&), but it now seems more
obvious to speak of them as the surfaces on which the ra-
dius of gyration is constant. In Newtonian theory, they
are ordinary straight cylinders, but in general relativity
their shape becomes more complicated as they are dis-
torted by space-time curvature and it is even possible for
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their topology to be noncylindrical.! Knowledge of this
and of the resulting consequences is an important key for
understanding rotational effects in general relativity.

As recently emphasized by de Felice [4], in strong-field
situations, it can become unclear which directions should
properly be identified as the ‘“‘inward” and “outward”
ones. What should be done depends on the context [5].
From a “global” point of view, the outward direction is
the direction of increase of the proper circumference of
concentric circles, but for rotational purposes the out-
ward direction should be identified with the local direc-
tion of increase of 7 (i.e., with the outward normal to the
von Zeipel cylinders).

For the main part of this paper, we will restrict our dis-
cussion to the case of motion in a background space-time
which is static and axially symmetric. Generalization to
the case of a stationary space-time is straightforward,
however, and has already been completed. Extension to
completely general space-times is presently under investi-
gation. Some parts of the present discussion have been
foreshadowed in an earlier paper by Abramowicz [3], but
more details are given here within a unified approach. In
Sec. II, we review briefly the argument given by
Abramowicz when introducing his proposed definition of
centrifugal force in general relativity. This definition is
seen to fit very naturally within the present discussion.
In Sec. III, we demonstrate a surprising connection be-
tween the radius of gyration and the effective potential
for photon motion. The equatorial effective potential
curve and the form of the von Zeipel cylinders for the
case of a vacuum Schwarzschild (black-hole) space-time
are already well known (see, for example, Shapiro and
Teukolsky [6] for the former and Abramowicz [3] for the
latter). However, it is instructive to consider also the sit-
uation for conditions which are seriously relativistic but
not as extreme as those for black holes and, for this pur-
pose, we have made corresponding calculations for a se-
quence of spherically symmetric models each consisting
of a constant-density central object surrounded by a vac-
uum, giving the linked Schwarzschild interior and exteri-
or solutions. While it is clear that these models are not
realistic representations of real astrophysical objects
(such as neutron stars, for example), they are very useful
for probing the effects of general relativity where it devi-
ates significantly from Newtonian theory, particularly as
they allow many calculations to be carried out analytical-
ly. In Sec. IV we present a series of figures showing the
progressive changes in the shapes of the effective poten-
tial curves and von Zeipel cylinders as one proceeds from
models which are only mildly relativistic to ones where
the relativistic effects are overwhelming. Finally, in the
concluding section, we draw together the interconnec-
tions between the different topics which we have been dis-
cussing.

lAbramowicz [1] proved that, under some particular condi-

tions, von Zeipel cylinders must have cylindrical topology.
However, further studies [2,3] showed that these conditions
were overly restrictive and that cylindrical topology corre-
sponds just to a particular case.

II. DEFINITION OF CENTRIFUGAL FORCE
IN GENERAL RELATIVITY

As mentioned above, we here restrict our attention to
circular motion within a space-time which is static and
axially symmetric and which therefore has two orthogo-
nal Killing vector fields, which we will denote, respective-
ly, by n“ (timelike) and £” (spacelike). We use units in
which ¢ =G =1 and adopt the spacelike signature con-
vention (—,+,+,+); V, denotes the covariant deriva-
tive in the space-time; greek indices are taken to run from
0 to 3.

First, we will give invariant definitions of various quan-
tities which will be used in the subsequent discussion.
The proper circumferential radii of circles whose symme-
try axis corresponds to that of the space-time are given
by

r=Vv/(&§), 4)

and the ‘““global” outward direction is that of the vector
V.

For general geodesic motion with four-velocity v¢,
there is one constant of the motion associated with each
of the symmetries of the space-time: the energy
&6=—n%, and the angular momentum .L=¢&%,. The
quantity 7 is constructed using & and .£L (whether or not
the motion is geodesic) and also the angular velocity Q:
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It is defined to be strictly non-negative. The associated
“local” outward direction is that of the vector V 7.

For circular motion of a test particle with a nonzero
rest mass within the sort of space-time which we are con-
sidering, the four-velocity can be written as

ae n*+ Q"

S Vol oen] ©
and the acceleration a, EvﬁVBva is given by
, =L Vo () +Q%V (EE) )
2 (g +QUEE)
A stationary observer (1 =0) with four-velocity
u= S — (8)

V' —(nm)

uniquely defines a global rest frame and a projected
three-space. The orbital speed in this projected three-
space is

QrF
y=—" 9
Vi1—-%?
Equation (7) can then be rewritten in the form
1 DA
a,==V,In[—(nn)]——V 7. (10)
2 7

In order to keep the particle moving on its circular path,
a force must in general be applied so as to produce the
acceleration given by Eq. (10), except that in the special
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case of geodesic motion this applied force goes to zero.

In Newtonian theory, where gravity appears as an ap-
plied force, we are used to thinking of the condition for
motion on a free circular orbit as being given by the bal-
ance between gravity and the centrifugal force. Also, it is
usual to describe the effect produced (for example) on
passengers in a car which turns a sharp corner as being
due to centrifugal force. There is no necessity for intro-
ducing the concept of centrifugal force in these cases (one
could always talk in terms of the applied force producing
an acceleration rather than of it acting against another
force), but it has proved to be a very useful concept in
analyzing physical situations. It is natural, therefore, to
ask how an equivalent idea of centrifugal force could be
introduced in general relativity. Here, there is the
difference that gravity now appears as part of the
acceleration, and so the question arises of how one
should identify the ‘‘gravitational” and ‘“‘cen-
trifugal” parts of the acceleration vector. This question
is controversial; in principle, there is not only one unique
way to do it. Abramowicz [3] argued that since the grav-
itational force is normally thought of as being indepen-
dent of velocity, the natural splitting consists of identify-
ing the first term on the right-hand side of Eq. (10) as the
“gravitational force per unit mass” and the second term
as the “centrifugal force per unit mass.” For a particle
with rest mass m, the centrifugal force is then given by
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@a=mo?va”r' . (11)
A consequence of this definition is that the centrifugal
force always acts in the local outward direction (as given
by V,P even if this becomes misaligned with the global
outward direction (as given by V7). In the vacuum
Schwarzschild metric, the acceleration becomes indepen-
dent of velocity on the circular photon orbit at »r=3M
(V7 is zero there), and interior to this the local and glo-
bal outward directions are directly opposite for motion in
the equatorial plane.

The approach leading to Eq. (11) has been criticized by
de Felice [4] on the grounds that (i) he doubts the value of
introducing the idea of centrifugal force into general rela-
tivity at all and (ii) if one is to introduce it then one
should choose a definition which will keep it always
pointing in a direction away from the axis of rotation.
We take the view that the concept of centrifugal force is a
valuable one to introduce into general relativity and that
while it is certainly true that the definition is not unique,
the simplicity and elegance of the formulas resulting from
definition (11) and the formal unity to which it gives rise
are powerful arguments in its favor. Also, the reversal of
direction does not seem counterintuitive when viewed in
the light of the fact that ¢, is always aligned with V7,
which we have argued defines the local outward direction
in the way relevant for consideration of the dynamical
effects of rotation. Indeed, a definition of centrifugal
force which did not have the property of always being
aligned with V7 would appear to be counterintuitive. In
the remainder of this paper, we will therefore use the
term “‘centrifugal force” to mean the quantity defined by
Eq. (11).
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III. EFFECTIVE POTENTIAL FOR PHOTON MOTION
AND ITS RELATION TO THE RADIUS
OF GYRATION

The connection between the behavior of centrifugal
force and the location of the circular photon orbit in the
vacuum Schwarzschild geometry suggests that circular
photon orbits might in general play an important role in
connection with rotational effects. This provides motiva-
tion for investigating the behavior of the effective poten-
tial for photon motion in general static space-times.

Using the condition (vv)=0 for photon motion and
defining V* to be the component of the photon four-
velocity orthogonal to both 7, and £,, one obtains

&? L2
VV)=———— , 12
(vv) ) () (12)
which can be rearranged to give
2
) )= & _qp (13)

where the left-hand side is strictly non-negative and V4
is the effective potential for photon motion,? given by

172
eff . | T % (14)
A remarkable consequence of Eq. (14) is that
Vo= (15)
4
(we define it to be positive), giving
Co=—mo0FV,V g . (16)

The equipotential surfaces for photon motion precisely
coincide with the level surfaces of 7 (the von Zeipel
cylinders), and the direction of the centrifugal force @,
(which is the direction of increase of 7) is the direction of
decrease of V4. Circular photon orbits occur at local ex-
trema of the effective potential, with maxima correspond-
ing to unstable orbits and minima to stable ones. The
centrifugal force is zero on circular photon orbits and, in
the equatorial plane, always points away from unstable
ones and towards stable ones. In the next section, we il-
lustrate these features for a particular case.

2Note that in the literature there are two different conventions
for the definition of YV, one being that used here and the other
defining V¢ to be the square of the present quantity. For the
purposes of this paper there is no particular advantage of adopt-
ing one convention rather than the other, but the one used here
is definitely preferable when the treatment is extended to gen-
eral stationary space-times. In a preliminary report on the
present work [7], the alternative convention was used, and so
there are some small differences in formulas and graphs between
that paper and the present one.
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IV. EFFECTIVE POTENTIAL CURVES AND
VON ZEIPEL CYLINDERS FOR THE INTERIOR
AND EXTERIOR SCHWARZSCHILD METRICS

As mentioned in the Introduction, the equatorial
effective-potential curve and the structure of the von
Zeipel cylinders are already well known for the case of
Schwarzschild black holes. Here, we want to investigate
the situation for objects which are not as extreme as
black holes and which will provide a link between the fa-
miliar Newtonian conditions and the extreme relativistic
ones. For this purpose, we have carried out a study of
space-times generated by nonrotating spheres of matter
with constant density and surrounded by vacuum (giving
the linked Schwarzschild interior and exterior solutions).
We have examined a sequence of models with progres-
sively increasing degrees of compactness, and these can
be seen as representing a quasistationary contraction.
The models are very simple but provide a useful probe of
the effects being considered.

For both the interior and exterior solutions, we write
the metric in the standard form

2R sinf

3V 1—2M/R,—V1—(2M/R_NR/R,}
F= :
R sinf
r—— Py R ZR -
V1—2M /R *

In the equatorial plane, R coincides with r as defined by
Eq. (4).

The results for our sequence of models are presented in
Figs. 1-5, which are drawn for a succession of decreasing
values of R, /2M. For each model we show (a) the curve
of the photon effective potential (V .4=1/7) in the equa-
torial plane as a function of radius r and (b) a cross sec-
tion through the von Zeipel cylinders in the plane con-
taining the radial direction and the rotation axis [the
drawings have been constructed in terms of the standard
Schwarzschild coordinates of Eq. (17)]. The dashed line
in the von Zeipel diagrams marks the surface of the
sphere; interior to this there is matter with a constant
density; exterior to it, there is vacuum. The cylinders
have been drawn at equal spacing in 7. We note that our
results are exactly the lowest-order ones for the sequence
of slowly rotating models studied by Chandrasekhar and
Miller [8] and hence are supplementary to the results
presented in that earlier paper.

For R, /2M =2.0 (Fig. 1), the effective-potential curve
differs only very slightly from the equivalent Newtonian
one (a rectangular hyperbola), but a more obvious
difference is seen for the von Zeipel cylinders. The ones
with the largest radii are near to being straight cylinders,
but those with smaller radii are pulled significantly in-
wards in the vicinity of the equatorial plane. For
R, /2M =1.5 (Fig. 2), the value at which the circular
photon orbit of the vacuum Schwarzschild space-time is
coincident with the surface of the sphere, the effective-
potential curve has developed a stationary point (an
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ds*=—e?dt’+e**dR*+ RXd6*+ sin’0d ¢?) , (17

where (#,R,0,¢) are spherical polar coordinates. Interior
to the matter,
172

ezv:l 3 1_2M |- M R 211/2)2
4 R, R, |R. ’
(18)
wm [ R ]
2A —
=(1— , 19
¢ [ R, |R, ] (19)

where M is the total mass of the sphere and R, is its ra-
dius, while the external solution is

2v— “2)\:1sz .

e e R (20)
The squared lengths of the Killing vectors are then
(qm)=—e? and (££)=R?sin’4 , 21)
so that
*
(22)
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FIG. 1. The equatorial photon effective-potential curve for
R4« /2M =2.0 and a cross section through the corresponding
von Zeipel cylinders in a plane containing the rotation axis.
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FIG. 2. The equivalent of Fig. 1 for Ry /2M =1.5.

inflection) at » =3M and the centrifugal force has gone to
zero there. The von Zeipel cylinder which touches the
sphere at the equator has developed a cusp at which the
normal vector has zero length.

For models which are more compact than this, a spe-
cial role is played by the cylinder which intersects the
equatorial plane at the unstable photon orbit (having
r =3M and 7=F,=3V'3M), since this separates regions
with different regimes of behavior. Each of the von
Zeipel diagrams shows cylinders with 7 ranging from
7./3 to 57,/3 in equal intervals of 7./3. For
R,/2M=1.2 (Fig. 3), the effective-potential curve has
developed a clear minimum corresponding to a stable cir-
cular photon orbit internal to the matter. The existence
of these stable orbits was first demonstrated and dis-
cussed by de Felice [9]. They are located at

172

R, R,—M /4
* * , (23)

2M R,—2M

R _2V2
R, 3

and, after their first appearance at the equator when
R, =3M, they move progressively inwards through the
matter region (in the sense of decreasing R /R,) as R, is
further reduced. The unstable circular photon orbit in
the vacuum region remains at R =3M. Recalling that 7
increases when YV decreases, one sees that, in the equa-
torial plane, the local and global outward directions be-
come opposite inbetween the two circular photon orbits
but coincide elsewhere. The centrifugal force, which is
always aligned with the local outward direction, becomes
globally inward pointing in the equatorial plane between
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FIG. 3. The equivalent of Fig. 1 for Ry /2M =1.2.

the two circular photon orbits.

The central part of the diagram for the von Zeipel
cylinders has become rather complicated by
R,/2M=1.2, and it is helpful to consider each of the
cylinders separately for this case. Figure 4 shows first the
equatorial photon effective-potential curve with horizon-
tal dashed lines marking the magnitude of YV 4 on each of
the cylinders. The other frames of the figure then show
the cross sections through each of the cylinders in turn.
For the lowest dashed line (corresponding to the outer-
most cylinder having 7=>57, /3) there is only one point of
intersection of the dashed line with the curve and hence
only one value of r for which the cylinder intersects the
equatorial plane. This cylinder is nearly Newtonian but
bends inwards slightly near to the equatorial plane. Mov-
ing upwards, the next dashed line (corresponding to the
cylinder with #=47,/3) has three points of intersection
with the curve, and hence there are three values of r at
which the equatorial plane is crossed. This “cylinder”
has an outer part with normal cylindrical topology but
also a disconnected inner part with toroidal topology.
The dynamical outward normal vectors V7 point to-
wards the exterior of the part with cylindrical topology
but towards the interior of the toroidal section. This is a
general behavior. As one moves to cylinders with de-
creasing 7, the toroidal section first appears as a torus of
zero thickness coinciding with the stable circular photon
orbit. Moving up again, the third dashed line (corre-
sponding to the critical cylinder with #=7,) intersects the
curve at two points, and so there are two values of r at
which the equatorial plane is crossed. The section with
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toroidal topology has now expanded and joins the part
with a cylindrical topology at the cusp (at » =3M). The
directions of V7 follow the behavior described above.
For the next dashed line (¥ =27, /3), there is again only a
single point of intersection with the curve and the
toroidal region has reconnected with the cylindrical one
giving a strictly cylindrical topology throughout. Final-
ly, we show the innermost cylinder (with #=7, /3), which
corresponds to the top dashed line.

Returning to our sequence of models with decreasing
R, /2M, Fig. 5 shows the situation for the most compact
possible equilibrium model, which has R, /2M =1.125.
(The central pressure is infinite in this case.) Here, the
minimum in the effective-potential curve has moved to
r =0; all cylinders with 7, <7 < o« have both outer and
inner sections and the holes in the middle of the tori have
closed up. (Note that only the cylinders with our five
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chosen values of 7 have been illustrated here. The inner-
most torus shown is completely filled by a family of fur-
ther tori which are the counterparts of the family of outer
cylindrical sections stretching out to infinity.) Finally, in
Fig. 6 we show the corresponding situation for a
Schwarzschild black hole with the dashed line on the von
Zeipel diagram here marking the position of the event
horizon (R, /2M =1.0). Now, all of the cylinders have
been expelled from the interior of the event horizon, and
those with 7= 7. consist of an outer part with cylindrical
topology and an inner part with spheroidal topology
which is tangential to the event horizon at the poles. As
F— oo, the inner spheroidal region becomes closer and
closer to being exactly coincident with the event horizon.
For 7 <7,, the cylinders form two disconnected parts, one
above the equatorial plane and one below it, with each
part being closed off at R =2M, where it becomes tangen-

7 =57/3
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FIG. 4. Individual von Zeipel cylinders for the case R x /2M =1.2. See text for details.
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FIG. 5. The equivalent of Fig. 1 for R, /2M =1.125.
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FIG. 6. The equivalent of Fig. 1 for a Schwarzschild black
hole.
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tial to the event horizon at the poles in the same way as
the spheroidal sections. Following the behavior de-
scribed earlier, V 7 points towards the exterior of the
topologically cylindrical sections (and also of the cylin-
drical sections which are broken in the middle for 7 <7,)
but towards the interior of the spheroidal sections.

V. DISCUSSION AND CONCLUSION

In this paper, we have focused on the role of the radius
of gyration 7 as the dynamically important radial quanti-
ty for discussion of rotational properties. It has its origin
in the link between specific angular momentum and angu-
lar velocity; its gradient defines the local outward direc-
tion relevant for discussion of the dynamical effects of ro-
tation; its level surfaces are the von Zeipel cylinders
which are found also to correspond to the equipotential
surfaces of the effective potential for photon motion. Our
definition of centrifugal force in general relativity is made
in terms of the radius of gyration, and while this
definition depends to some extent on personal taste, we
argue that our choice is a particularly favored one.

The origin of this definition of centrifugal force comes
from the paper by Abramowicz, Carter, and Lasota [10],
who carried out their discussion in terms of the optical
reference geometry, a conformal adjustment of the pro-
jected three-space introduced in Sec. II in which the geo-
desic lines are the spatial projections of photon trajec-
tories. Up to this point, we have purposely not made any
reference to this in the present paper, but it is now worth
pointing out that the radius of gyration 7 is also precisely
the proper circumferential radius in the optical reference
geometry. Also, the fact that the von Zeipel cylinders
and the equipotential surfaces for photon motion coin-
cide is an indication of the underlying interconnection
which exists.

Study of the distortion of the von Zeipel cylinders in
strong fields gives some valuable insight into rotational
effects in general relativity. Abramowicz and Miller [11]
demonstrated how, within the present framework, it is
possible both to make a surprisingly accurate analytical
calculation of a strong-field rotational effect and also to
get an improved conceptual understanding of why it oc-
curred. The phenomenon studied there was the follow-
ing. If one takes an axisymmetric constant-density object
in uniform rotation (a Maclaurin spheroid) and considers
a quasistationary contraction in which the total mass and
angular momentum are conserved, then within Newtoni-
an theory one expects that (assuming axisymmetry is
maintained) the object will spin progressively faster and
become progressively more flattened, eventually ending
as a thin disc. When general relativistic corrections to
Newtonian theory need to be taken into account, the situ-
ation becomes more complicated. Chandrasekhar and
Miller [8] made a corresponding calculation for Maclau-
rin spheroids in full general relativity, but within the
slow-rotation regime, and found that as the contraction
proceeds the object first becomes progressively more flat-
tened (consistently with the Newtonian calculations) but
that the flattening reaches a maximum at R, /2M ~2.5
and subsequent further contraction would lead to the ob-
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ject becoming more spherical again. Abramowicz and
Miller demonstrated that this behavior can be repro-
duced to high accuracy with an analytic calculation using
Newtonian equations modified so as to follow relativistic
definitions of angular momentum and centrifugal force.®
Now it can be seen that the two types of correction intro-
duced there are closely interrelated; both result from dis-
tortion of the von Zeipel cylinders. (While dragging of
inertial frames is an important phenomenon in other con-
texts, it is not responsible for the reversal of ellipticity.)
Also, the relative increase in moment of inertia of com-
pact configurations (as shown by Fig. 2 of the paper by

3We point out that we are in disagreement with the analysis
made recently by Chakrabarti and Khanna [12] which we be-
lieve to be incorrect. We will discuss this in detail elsewhere.

Chandrasekhar and Miller [8]) is directly connected with
this distortion.

We have restricted attention here to static, axially sym-
metric space-times but, of course, eventually the main in-
terest is in more general situations. As mentioned previ-
ously, the extension to stationary space-times has already
been completed, and extension to completely general
space-times is currently under investigation.
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