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Microcanonical functional integral for the gravitational field
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The gravitational field in a spatially finite region is described as a microcanonical system. The density
of states v is expressed formally as a functional integral over Lorentzian metrics and is a functional of
the geometrical boundary data that are fixed in the corresponding action. These boundary data are the
thermodynamical extensive variables, including the energy and angular momentum of the system. When
the boundary data are chosen such that the system is described semiclassically by any real stationary ax-
isymmetric black hole, then in this same approximation lnv is shown to equal —' the area of the black-

hole event horizon. The canonical and grand canonical partition functions are obtained by integral
transforms of v that lead to "imaginary-time" functional integrals. A general form of the first law of
thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics,
the density of states is expressed as a real-time functional integral and then used to deduce Feynman s
imaginary-time functional integral for the canonical partition function.

PACS number(s): 04.20.Cv, 04.60.+n, 05.30.Ch

I. INTRODUCTION

The energy of a physical system is reflected in the grav-
itational field it produces, so the gravitational field at a
(spatially finite or infinite) closed surface that bounds the
system encodes information about the energy content.
By fixing appropriate components of the gravitational
field, the energy of a self-gravitating system can be
specified as boundary data. In statistical mechanics and
thermodynamics where the concept of energy plays a
central role, this circumstance allows for the direct
specification of microcanonical boundary conditions in
which the thermodynamical extensive variables (includ-
ing energy) are held fixed. Here, we exploit this special
property of the gravitational field in a direct construction
of a "microcanonical function integral, " a formal func-
tional integral expression for the density of states, which
characterizes a system with microcanonical boundary
conditions.

The canonical partition function for nonrelativistic
mechanics was first expressed as an imaginary-time func-
tional integral by Feynman [I]. This prescription was
later generalized to fiat-space field theory [2], then to
self-gravitating systems by Gibbons and Hawking [3]. As
an alternative to this line of development, we present a
direct expression of the density of states for nonrelativis-
tic mechanics as a real-time functional integral. The gen-
eralization of this result to flat-space field theory is not
immediate, because in that case fixing the energy involves
a restriction on the integral of the Hamiltonian over the
entire spatial extent of the system. However, the general-
ization to gravitating systems is quite natural, because
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the presence of gravity allows the energy to be fixed
directly by the boundary data. In this paper, we consider
the functional integral expression for the density of states
for systems consisting only of the gravitational field. The
inclusion of various matter fields will be given elsewhere
[4]. Inasmuch as all systems are self-gravitating, even if
only weakly, the formalism developed here is, in princi-
ple, completely general.

One of the key features of the present analysis is the
use of finite boundaries in space. There are a number of
advantages to be gained by imposing boundary conditions
at a spatially finite location, as opposed to spatial infinity.
For example, with finite spatial boundaries, there is no
need to assume asymptotic flatness in spacelike direc-
tions. This is important, because a self-gravitating ther-
modynamical system generically does not satisfy asymp-
totic flatness. In particular, the system semiclassically
approximated by a black hole in equilibrium with Hawk-
ing radiation is not asymptotically flat when the back re-
action of radiation on the geometry is taken into account
[5]. Another advantage of using finite spatial boundaries
appears in the treatment of rotation. Since any system in
thermal equilibrium must rotate rigidly (if at all) [6,7],
such systems necessarily have finite spatial extent. Thus,
a Kerr black hole surrounded by Hawking radiation can
be treated as the semiclassical approximation to a
thermal equilibrium system only if a spatially finite
boundary is employed. As a final example, observe that
the usual thermodynamic limit requiring infinite spatial
extent does not exist for an equilibrium self-gravitating
system at nonzero temperature. This is because the sys-
tem is unstable to gravitational collapse, or recollapse if a
black hole is already present. The instability of such a
spatially infinite system at fixed temperature is reflected
in a formally negative value for the heat capacity, which,
in turn, implies that the canonical partition function
diverges. (See, for example, Ref. [8].) On the other hand,
a spatially finite system can avoid such di%culties. For
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the gravitational field at relatively 1ow temperature, the
system is approximated by flat space filled with dilute
gravitational radiation; at relatively high temperature the
system is approximated semiclassically by a large black
hole surrounded by sparse gravitational radiation [5,9].

Self-gravitating systems in thermal equilibrium are typ-
ically spatially inhomogeneous because of gravitational
"clumping. " In particular, the temperature of an equilib-
rium system may vary in space due to gravitational red-
shifting [10]. As a consequence, such systems are charac-
terized not by a single temperature, but can be described
by a temperature field which is a local function defined on
the spatial two-boundary [11,12]. Correspondingly, the
thermodynamical conjugate of inverse temperature is not
simply the total energy, but rather an energy surface den-
sity which is a local function on the spatial two-
boundary. The microcanonical or canonical descriptions
of a self-gravitating system are obtained by fixing the en-
ergy surface density or surface temperature (respectively)
as boundary data. Generally, all thermodynamic inten-
sive and extensive variables are functions defined on the
spatial boundary. The appropriate definitions of energy
density as well as angular momentum density are dis-
cussed in detail in Ref. [13],and are reviewed in Sec. III.

The density of states for the gravitational field is
defined here as a functional of the energy surface density,
momentum surface density, and the two-metric on the
spatial boundary of the system. It is expressed formally
as a functional integral over Lorentzian metrics satisfying
the boundary conditions, and includes contributions from
manifolds of various topologies. We evaluate the density
of states in a "zero-order" approximation in which the
functional integral is approximated by its integrand eval-
uated at an appropriate saddle point. When the bound-
ary conditions are chosen such that the system is approx-
imated classically by a stationary axisymmetric black
hole, then in the zero-order approximation the entropy
(identified as the logarithm of the density of states in ab-
solute units G =c =fi=ks =1) equals —,

' the area of the
black hole's event horizon. This result applies to any sta-
tionary axisymmetric black hole, including those that are
distorted relative to the standard Kerr family by station-
ary external matter fields. This result also extends to
black holes coupled to electromagnetic and Yang-Mills
fields [4]. (The result also does not appear to depend on
axisymmetry. ) When the boundary conditions for the
density of states are chosen such that the system is ap-
proximated classically by flat space-time, it is shown that
the entropy vanishes in the zero-order approximation, as
expected.

In nonrelativistic mechanics, the canonical partition
function is defined by a sum over energy levels weighted
by the Boltzmann factor and appropriate degeneracy fac-
tors. In the cases we shall treat, this is generalized and
expressed as a (functional) integral transform of the den-
sity of states. At the level of thermodynamics, the
change of boundary data amounts to a (functional)
Legendre transformation between the energy density and
the inverse temperature, which are thermodynamically
conjugate variables. At the level of dynamics, this
change of boundary data amounts to a canonical trans-

formation and the energy density and inverse tempera-
ture are given by the boundary values of a canonically
conjugate pair of variables. For this interpretation,
canonical conjugacy is defined with respect to the history
of the spatial boundary, not with respect to the usual spa-
tial time slices. Analogous relationship hold for the an-
gular momentum density and its conjugate, the angular
velocity, as well as other pairs of conjugate variables.
These results reveal an intimate connection between ther-
modynamical and canonical conj ugacy for self-
gravitating systems [14].

In Sec. II, we present a real-time functional integral ex-
pression for the density of states in nonrelativistic
mechanics. The relevant action functional is Jacobi s ac-
tion [15,16], in which the energy of the system is fixed.
Details of the construction are given in an Appendix. In
Sec. III, we draw on the analysis of Ref. [13] to obtain a
"microcanonical action, " an action functional for which
the appropriate boundary conditions include fixed energy
surface density, momentum surface density, and bound-
ary two-metric. The microcanonical action is used in
Sec. IV to express the density of states formally as a func-
tional integral. The furictional integral is then evaluated
in the saddle point or zero-order approximation to show
that the entropy of any stationary axisymmetric black
hole is —,

' the area of its event horizon. In Sec. V, the
canonical and grand canonical partition functions are de-
rived from the microcanonical construction and the
correspondence between thermodynamical and canonical
conjugacy is described. The first law of thermodynamics
is derived in Sec. VI by considering variations of the mi-
crocanonical action with respect to the boundary data.

II. DENSITY OF STATES
IN NONRELATIVISTIC QUANTUM MECHANICS

v(E) =Tro(E H), — (2.1)

where H is the Hamiltonian operator for the system. The
number of quantum states between E, and E2 is

dE v(E), (2.2)

as seen by taking the trace in a basis of energy eigen-
states. Using a coordinate basis for the trace, the density
of states becomes

v(E)= Jdx( l&(xE H)lx ~~ (2.3)

where x represents a set of configuration coordinates, x ',
x, . . . . The matrix elements in the integrand above are
the diagonal entries of the matrix (x"~5(E H)jx'), —
which can be expressed as

In this section, the formal expression of the density of
states as a real-time functional integral is derived for non-
relativistic systems with a finite number of degrees of
freedom. Our starting point is the density of states ex-
pressed as
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&x"ln(E —H)lx'&

d T i ET/fi i i —iBT/'Ii

2~%
(2.4)

Z(P)= f dEe
0 27Tl

X J d(r/A)e
I oo

ao x(T)=x {(Sr+ET)/RvE = d T dx 2)He
21TA —m x(0) =x (2.6)

This expression for v(E) is an integral over all histories
x (t) that are periodic for some real time interval. In the
Appendix, it is shown that this functional integral is pre-
cisely the sum over periodic histories constructed from
Jacobi's action SE [15,16]. In Jacobi's action, the energy
E is fixed rather than the time interval T. Consequently
the path integral for the density of states can be written
as

v(E)= fX)H e (2.7)

where it is understood that the histories H contributing
to this path integral are periodic in real time. This is the
key result that will be generalized to the case of self-
gravitating systems: the density of states is a sum over
periodic histories, weighted by a phase that is given by
the action appropriate for describing the system at fixed
energy.

The canonical partition function is obtained by sum-
ming the Boltzmann factor over each energy level. In
terms of the density of states, the partition function is
given by a Laplace transform:

In turn, the matrix elements in the integrand of Eq. (2.4)
can be expressed as a functional integral [1]:

&= f'" "XH.""". (2.5)
x(0)=x'

This functional integral is a sum over histories x (t) that
begin at x (0)=x' and end at x(T)=x", with 2)H denot-
ing a measure for the space of histories. The histories are
weighted by exp(iST/fi), where ST[x] is Hamilton's ac-
tion with a fixed time interval T.

Collecting together the above results, the density of
states becomes

X fg)H e (2.10)

This expression is simply the Laplace transform of the in-
verse Laplace transform of the functional integral in
parentheses. To be precise, the identification of the in-
tegral over ~/A with an inverse Laplace transform as-
sumes that the integration contour passes to the right of
any poles in the complex plane. Such points will be ig-
nored in the present formal analysis. Then the result of
the successive inverse Laplace and Laplace transforms is
to set r equal to A'/3 in the path integral factor, leaving

Z(/3)= f2)H e
T = —ifiP

(2. 1 1)

III. MICROCANONICAL ACTION

We begin by summarizing the results of Ref. [13].
Start with the action for gravity:

This is Feynman's result [1], that the canonical partition
function can be written as an "imaginary-time" function-
al integral.

The expression (2.11) for Z(P) is often taken as the
starting point for a treatment of thermodynamics by
functional integral methods. Observe that the existence
of the canonical partition function depends on the con-
vergence of the Laplace transform (2.8). If the density of
states increases too rapidly for large E, then Z(/3) is not
defined. This occurs when the heat capacity for the sys-
tem is formally negative, signaling a thermodynamical in-
stability. (The relationship between the convergence of
the Laplace transform for Z(/3) and the sign of the heat
capacity is spelled out in Ref. [8].) We regard the real-
time functional integral (2.7) for the density of states as a
more fundamental expression. In the following sections,
this result is generalized to the case of self-gravitating
systems.

Z(/3) = f dE v(E)e
0

(2.8) tl

S[g]= f d x& —g (A —2A)+ —f d x&hK
2K M K

where ))3 '=kE X(temperature) and kE is Boltzmann's
constant. Using the expression (2.1) for v(E) and assum-
ing the energy spectrum is positive gives the familiar re-
sult Z(/3)=Trexp( H/3) Altern—atively. , with the densi-
ty of states expressed as the path integral (2.6), the parti-
tion function becomes

z(/3) f dE e
—PE f dT eiETIAf ~H e' r

0
' 2A

(2.9)

where again H refers to periodic histories. With the
change of variables T = —i ~, the partition function be-
comes

d x&—ye —S1 0
K B

(3.1)

where K=8~ and Newton s constant is set to unity. The
spacetime manifold is M =X XI, the product of a space
manifold X and a real line interval I. The two-boundary
of space X is B, and the history of B is B=BXI. The
submanifolds of M that coincide with the end points of
the line interval I are the hypersurfaces t' and t". The
notation f ,',

"d x represents an integral over t" minus an
integral over t'. We also use the following notational
conventions. The metric and curvature tensor on space-
time M are g and %„&, respectively, the metric and
extrinsic curvature on the hypersurfaces X are h;. and
E, , respectively, and the metric and extrinsic curvature
on B are y," and 8;, respectively. (Latin letters i, j, etc. ,
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P'J= — (h ' h "'—h '"h ')(h 2D V—) .jcj (k I) (3.3)

The gravitational contributions to the Hamiltonian and
momentum constraints are

—[2P'JP; —(P ) ]— (R —2A),&h
v'h ' ' 2~

2D Pj, —

(3.4a)

(3.4b)

where R and D; are the curvature scalar and covariant
derivative on X, respectively. In the surface term of the
action (3.2), o. denotes the determinant of the metric ten-
sor on 8, and the energy surface density c. and momen-
tum surface-density j; are defined by

1 1 5Sz= —k+
a v'o 5N

2 Jk 1 6S—rJ, n„PJ—
h 0. 6V'

(3.5a)

(3.5b)

Here, o;, n;, and k denote (respectively) the induced
metric, the unit normal, and the trace of the extrinsic
curvature for 8 as a surface embedded in X. In writing
the Hamiltonian action, we have assumed that S, if
present, is a linear functional of the lapse and shift on 8,
in accordance with the discussion of Ref. [13].

The Hamiltonian obtained from the action (3.2) is

H= f d x(N&+ V'&, )+ f d x&o(NE V'j;). —
X B

(3.6)

The shift vector at the boundary 8 must satisfy
n; V'~~=0, so that the Hamiltonian does not generate
spatial di8'eomorphisms that map the field variables
across the boundary 8 of the space manifold X. This re-
striction implies that the Hamiltonian evolves the initial
data into a spacetime whose foliation by spacelike slices
is orthogonal to the boundary element B. With the sur-
face terms that appear in Eq. (3.6), the Hamiltonian has
well-defined functional derivatives with respect to the
canonical variables under the conditions that N, V', and
o,b are fixed on the boundary B.

are used as indices for tensors on both 8 and X. No
cause for confusion arises from this convention. ) The
term S in Eq. (3.1) is a functional of the metric y;z on
8; however, it will be seen that such a term is unneces-

sary.
The action S is written in canonical form by foliating

M into spacelike hypersurfaces X. Without loss of physi-
cal generality, we restrict these hypersurfaces to be or-
thogonal to the boundary element B. That is, on the
boundary element 8, the timelike unit normal u" of each
surface X is required to be orthogonal to the spacelike
unit normal of B. The result is [13]

S=f d x(pvh;, —N& —VVt'; )

—f d x&o(Ns —V'j;), (3.2)

where N is the lapse function, V' is the shift vector, and
the gravitational momentum conjugate to the metric h,
is

sab [kab+(n ai k)~ab]1 2 SS'
K V' —

y 5o,b
' (3.8)

where a' is the acceleration of the timelike unit normal of
the spacelike hypersurfaces. The expression (3.7) shows
that suitable boundary conditions for S are found by
fixing the induced metric on the boundary BM. That is,
fix the three-metric components h, on t' and t", and fix
the three-metric components N, V', and o.,b on B. Then
the surface terms in the variation 5S vanish, and solu-
tions of the equations of motion extremize the action S
with respect to variations that obey these boundary con-
ditions.

What we define as the mtcrocanonicaI action S is ob-
tained from S by adding boundary terms that change the
appropriate boundary conditions on 8 from fixed metric
components N, V', and o,b to fixed energy surface densi-

ty c., momentum surface density j„and boundary metric
O.,b. Thus, define

S =S+f d x&o(NcV'j,).—
=f d x(P'~h;J N& V'&;), — —

and from Eq. (3.7), the variation of S is

5S =(terms giving the equations of motion)

+ f d'x P'5h;,

+ f d x[N5(&oe) V'5(&—oj, )
B

+(N/o. /2)s' 5o,b] .

(3.9a)

(3.9b)

(3.10)

This result shows that solutions of the equations of
motion extremize S under variations in which c,, j„and
o.,b are held fixed on the boundary B. Observe that the
unspecified subtraction term S does not appear in the
action S, so in this sense the microcanonical action is
unique. Nevertheless, the variation (3.10) of S is ex-
pressed in terms of the surface stress-energy-momentum
components c, , j„and s', which do depend on S for

We use indices a, b, etc. , to denote components of ten-
sors on 8. Such tensors also can be viewed as tensors on
X that are orthogonal to the unit normal n' of B. Thus,
for example, we write the two-metric on 8 as cr,b or o.;,
the extrinsic curvature of 8 embedded in X as k,b or k, ,
the shift vector on 8 as V' or V', and the momentum sur-
face density as j, or j;. We also have occasion to view
these tensors as tensors on space-time, and will then use
space-time indices p, v, etc.

One can calculate, as in Ref. [13], that a general varia-
tion of the action S with respect to the canonical vari-
ables h;, P', lapse N, and shift V' is given by

5S=(terms giving the equations of motion)

+ f d xP'~5h;lJ

—f, d x&o [E5N j,5V' —(N/2)s—' 5o,b] . (3.7)

The term s' is the surface stress tensor on 8, defined by
[13]
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% =R +K„K~ (K) —2V—„(Ku"+a") . (3.11)

The extra boundary terms in S are written covariantly
by using the decomposition of the extrinsic curvature 6„
found in Ref. [13]. That analysis yields the relationships

k =(g~ +u~u )e„.,
2V, P"n !—v'h = —V~u e„ la-,

(3.12a)

(3.12b)

for the corresponding terms in E in j; [see Eqs. (3.5)]. The
microcanonical action in spacetime covariant form is
therefore

lt

S [g]= f d x&—g(W —2A)+ —f d x&hK
2K M K

d x&—) t e~"a.t .
1

K B P V (3.13)

Here, t is the scalar field defined on B that labels the foli-
ation on which E, j„and 0,I, are fixed, 0 is the extrin-
sic curvature tensor of B, and t" is the time vector field
defined on B that specifies the time direction. In terms
of the timelike unit normal u" of the slices B C B, these
quantities are given by u„= Na„t = (t —V„)/—N.

their definitions. However, since S is a linear functional
of the lapse and shift, the S dependences contained in
the various terms of 6S actually cancel.

The boundary terms in the variation (3.10) of S show
that N and &o E are canonically conjugate, where canoni-
cal conjugacy is defined with respect to the boundary ele-
ment B. Likewise, V' and —&oj, are canonically con-
jugate, as are (NVo l2)s' and o,b. The boundary terms
added to S in Eq. (3.9a) to obtain the microcanonical ac-
tion S amount to the addition of terms of the form "pq"
at B. These terms have the effect of changing the ap-
propriate boundary conditions from fixed "q" to fixed
conjugate "p."

The microcanonical action (3.9) can be written in
spacetime covariant form by using expression (3.1) for S
and the decomposition of the scalar curvature:

gous to energy for a nonrelativistic mechanical system.
In particular, the energy surface density c is the value
(per unit boundary area) of the Hamiltonian that gen-
erates unit magnitude proper time translations of the
boundary B, in the spacetime direction orthogonal to X.
Likewise, the momentum surface density j, is the value
(per unit boundary area) of the Hamiltonian that gen-
erates spatial diffeomorphisms in the 8/Bx' direction on
the boundary B.

The above considerations lead us to propose that the
density of states for a spatially finite, self-gravitating sys-
tem is a functional of the energy surface density c and
momentum surface density j, . In addition to these ener-
gylike quantities, the density of states is also a functional
of the metric o.,b on the boundary B, which specifies the
size and shape of the system. In the absence of matter
fields, these make up the complete set of variables and
v[e,j, , o,i, ] is interpreted as the density of quantum
states of the gravitational field with energy density,
momentum density, and boundary metric having the
values c, j„and o-,b. The action to be used in the func-
tional integral representation of v is S, which describes
the gravitational field with fixed c, j„and o.,b. Note that
c., j„and o.,& play the role of thermodynamical extensive
variables. These variables are all constructed from the
dynamical phase-space variables (h;~, P'J) for the system,
where the phase-space structure is defined using the folia-
tion of M into spacelike hypersurfaces. (We expect this
to be a defining feature of extensive variables for general
systems of gravitational and matter fields. ) On the other
hand, the variables N, V', and (N&tr l2)s' are not con-
structed from phase-space variables. However, these
variables are canonically conjugate to &o E, —&trj „and
cr,I, where canonical conjugacy is defined with respect to
the boundary element B. In Sec. VI, the relations of N,
V', and s'" to the intensive variables thermodynamically
conjugate to &o E, —&o'j, , and o,b are given.

By analogy with the functional integral (2.7) for the
density of states in nonrelativistic mechanics, the density
of states for the gravitational field is expressed formally
as

IV. MICROCANONICAL FUNCTIONAL INTEGRAL
v[s, j,o']=& f2)IIexp(iS ) . (4.1)

In Sec. II we showed that for nonrelativistic mechanics
the density of states is given by a sum over periodic, real-
time histories, where each history contributes a phase
determined by the action that describes the system at
fixed energy. In the case of nonrelativistic mechanics, the
energy is just the value of the Harniltonian that generates
unit time translations. For a self-gravitating system, the
Hamiltonian has a "many-fingered" character: space can
be pushed into the future in a variety of ways, governed
by different choices of lapse function X and shift vector
V'. The value of the Hamiltonian (3.6) depends on this
choice. More precisely, the value of the Hamiltonian is
determined by the choice of lapse and shift on the bound-
ary B, since the lapse and shift on the domain of X interi-
or to B are Lagrange multipliers for the (vanishing) Ham-
iltonian and momentum constraints. Accordingly, the
energy surface density c. and momentum surface density
j, for a self-gravitating system play a role that is analo-

S [g]= f d x&—g (%—2A)
1

2K M

dx& yt e" at. —1

K BM P V (4.2)

(Planck's constant has been set to unity. ) The sum over
M refers to a sum over manifolds of different topologies.
The three-boundary for each M is required to have a to-
pology BM=B XS'. If B has a two-sphere topology,
then the sum over topologies includes M =(ball) XS',
with aM=a(ball) XS' =S XS'. Another example is
M=(disk)XS, with aM=a(disk)XS'=S'XS . The
action S that appears in Eq. (4.1) is the microcanonical
action (3.13) of the previous section, but with the t' andt" terms dropped because the manifolds considered here
have a single boundary component BM = B:
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ds = Nd T +h;, ( dx—'+ V 'd T)( dx i+ V id T ), (4.3)

where N, V', and h; are T-independent functions of the
spatial coordinates x'. The horizon coincides with N=0.
For convenience, choose spatial coordinates that are
"corotating" with the horizon [18,12]. Then the proper
spatial velocity of the spatial coordinate system relative
to observers at rest in the T=constant slices vanishes on
the horizon, (V'/N)=0, and the Killing vector field
8/BT coincides with the null generator of the horizon
[18,19]. By assumption, the metric (4.3) satisfies the Ein-
stein equations, which are analytic diA'erential equations
in T. Therefore the Einstein equations are satisfied by the
above metric with T imaginary, or equivalently, with the

The functional integral (4.1) for v is a sum over Lorentzi-
an metrics g„. Note that the action (4.2) may require
the addition of a term that depends on the topology of M,
such as the Euler number.

In the boundary conditions on BM=B XS', the two-
metric o.,b that is fixed on the hypersurfaces B is typical-
ly real and spacelike. Likewise, the energy density c is
real, which requires the unit normal to BM to be space-
like. Therefore, the Lorentzian metrics on M must in-
duce a Lorentzian metric on BM, where the timelike
direction coincides with the periodically identified S'.
Note, however, that there are no nondegenerate Lorentzi-
an metrics on a manifold with topology M =(disk) XS
that also induce such a Lorentzian metric on BM. This
implies that the formal functional integral (4.1) for the
density of states must include degenerate metrics. (For a
discussion of the role of degenerate metrics in classical
and quantum gravity, see Ref. [17].)

Now consider the evaluation of the functional integral
(4.1) for fixed boundary data c., j„and cr,b that corre-
spond to a stationary, axisymmetric black hole. That is,
start with a real Lorentzian, stationary, axisymmetric,
black hole solution of the Einstein equations, and let
T=const be stationary time slices that contain the closed
orbits of the axial Killing vector field. Next, choose a to-
pologically spherical two-surface B that contains the or-
bits of the axial Killing vector field, and is contained in a
T=const hypersurface. From this surface B embedded in
a T=constant slice obtain the data c., j„and o. ,b. In the
functional integral for v[sjcr, ],, fix this data on each
t= constant slice of BM. Observe that, to the extent that
the physical system can be approximated by a single clas-
sical configuration, that configuration will be the real sta-
tionary black hole that is used to induce the boundary
data.

The functional integral (4.1) can be evaluated semiclas-
sically by searching for four-metrics g„ that extremize
S and satisfy the specified boundary conditions. Ob-
serve that the Lorentzian black hole geometry that was
used to motivated the choice of boundary conditions is
not an extremum of S, because it has the topology
[Wheeler (spatial) wormhole] X [time] and cannot be
placed on a manifold M with a single boundary S XS'.
However, there is a related complex four-metric that does
extremize S, and is described as follows. Let the
Lorentzian black hole be given by

where the coordinate T is real.
The complex metric (4.4) satisfies the Einstein equa-

tions everywhere on a manifold with topology
M =(disk) XS, with the possible exception of the points
N=O where the foliation T=constant degenerates. The
locus of those points N=O is a two-surface called the
"bolt" [20]. Near the bolt, the metric becomes

ds =N dT +h dx'dx (4.5)

and describes a Euclidean geometry. The sourceless Ein-
stein equations are not satisfied at the bolt if this
geometry has a conical singularity in the two-dimensional
submanifold that contains the unit normals n ' to the bolt
for each of the T=constant hypersurfaces. However,
there is no conical singularity if the circumferences of cir-
cles surrounding the bolt initially increase as 2~ times
proper radius. The circumference of such circles is given
by PN, where P is the period in coordinate time T.
Therefore the absence of conical singularities is ensured if
the condition

P (n '8;X) =2~ (4.6)

holds at each point on the bolt, where n ' is the unit nor-
mal to the bolt in one of the T=constant surfaces. Be-
cause the unit normal is proportional to 8;N at the bolt,
condition (4.6) restricts the period in coordinate time T to
be P =2m. /~H, where

is the surface gravity of the Lorentzian black hole (4.3)
[not to be confused with the constant x =87r that appears
in the action (3.1)]. Note that the surface gravity of a sta-
tionary axisymmetric black hole is a constant on its hor-
izon [19],so the period P =2vrlvH satisfies the condition
(4.6) at each point on the bolt.

The lapse function and shift vector for the metric (4.4)
are N= —iN and V'= —iV'. Thus, the complex metric
(4.4) and the Lorentzian metric (4.3) differ only by a fac-
tor of —i in their lapse functions and shift vectors. In
particular, the three-metric h," and its conjugate momen-
tum P '1 [see Eq. (3.3)] coincide for the stationary metrics
(4.3) and (4.4) [12]. Since the boundary data c,, j„and
o.,b are constructed from the canonical variables only,
the complex metric (4.4) satisfies the boundary conditions
imposed on the functional integral for v[s,j,o ].

The complex metric (4.4) with the periodic
identification given by Eq. (4.6) extremizes the action S
and satisfies the chosen boundary conditions for the den-
sity of states v[s,j,cr]. Although this metric is not in-
cluded in the sum over Lorentzian geometries (4.1), it can
be used for a steepest descents approximation to the func-
tional integral by distorting the contours of integration
for the lapse N and shift V' in the complex plane. Then
the density of states is approximated by

replacement T~ —iT. This leads to the complex black
hole metric

ds = —
( i—iv" ) dT +h, (dx' i—V'dT)(dx~ iV—JdT),

(4 4)
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v[E,j,o. ]=exp(iS [—iN, —iV, h ]), (4.7) S [
—iN, —iV, h ]=——f dT f d x')/ crn 'c),.N

K 0

where S [ iN—, —i V, h ] is the microcanonical action
(4.2) evaluated at the complex extremum (4.4). The den-
sity of states can be expressed approximately as

v[E,j,cr] =exp($[E,j,o ]), (4.8)

where $[E,j,o. ] is the entropy of the system. Then the
result (4.7) shows that the entropy is

$[E,j,cr]=iS [ iN, —iV—, h ] (4.9)

for the gravitational field with microcanonical boundary
conditions.

In order to evaluate S for the metric (4.4), first per-
form a canonical decomposition for the action (4.2) under
the assumption that the manifold M has the topology of a
punctured disk XS . That is, the spacelike hypersurfaces
2 have topology IXS, and the timelike direction is
periodically identified (S'). The outer boundary of the
disk corresponds to the three-boundary element B of M
[denoted c)M in Eq. (4.2)] on which the boundary condi-
tions c., j„and o.,b are imposed. The inner boundary of
the disk, the boundary of the puncture, appears as anoth-
er boundary element H for M. (No data are specified at
H. ) The canonical decomposition is largely a reversal of

the steps that lead from the form (3.9) for S to expres-
sion (3.13), which applies when X has a single boundary
B. In the present case, boundary terms appear at H
from the volume integral of the term V'„(Ku "+a")in W,
and from an integration by parts on the term involving
the shift vector and momentum constraint. The result is'

S = d x P'~h; —N —V'

+ f, d x&cr[n'(c);N)/a+2n; V P' /&h ], (4.10)

iThe boundary term at H has been given in Ref. [12].

where the expression a; =(d;N)/N for the acceleration of
the timelike unit normal has been used.

Now evaluate the action S on the punctured disk XS
for the complex metric (4.4), and take the limit as the
puncture disappears to obtain a manifold topology
M = (disk ) XS . In this limit, the smoothness of the
complex geometry is assured by the regularity condition
(4.6). Since the metric satisfies the Einstein equations, the
Hamiltonian and momentum constraints in Eq. (4.10)
vanish, and the terms P'h; also vanish by stationarity.
Moreover, the second boundary term at H is zero be-
cause the shift vector vanishes at the horizon. Thus, only
the first of the boundary terms at H survives. Evaluat-
ing this term for the complex metric (4.4), that is, for the
lapse function N = —iN, and using the regularity condi-
tion (4.6), the microcanonical action becomes

' f'dT fd'x&o

27Tl
AH

K

l
H4

(4.11)

Here, AH is the area of the event horizon for the
Lorentzian black hole (4.3).

The result (4.11) for the microcanonical action evalu-
ated at the extremum (4.4) leads to an approximation for
the entropy (4.9), which is

4[E,j,cr ]=—,
'

AH . (4.12)

The generality of the result (4.12) should be emphasized:
The boundary data E., j, and o. were chosen from a gen-
eral stationary, axisymmetric black hole that solves the
vacuum Einstein equations within a spatial region with
boundary B. Outside the boundary B, the black hole
space-time need not be free of matter or be asymptotical-
ly Oat. Thus, for example, the black hole can be distorted
relative to the standard Kerr family. Furthermore, recall
that the quantum-statistical system with this boundary
data must be classically approximated by the physical
black-hole solution that matches that boundary data.
The result (4.12) shows that the entropy of the system is
approximately —,

' the area of the event horizon of the
physical black-hole configuration that classically approxi-
mates the contents of the system.

It also should be emphasized that the microcanonical
action S is independent of the term S in Eq. (3.1); thus
the entropy is independent of S as has been shown in the
framework of the canonical partition function [9]. More-
over, by setting S =0 in the definitions (3.5a) and (3.5b),
the boundary data can be taken to be E =k /K,
j, = 2o;nk P~"/&—h, a. nd o.,b.

The calculations above have been carried out in the
"zero-order" or classical approximation. Beyond this ap-
proximation, the density of states will acquire a contribu-
tion arising from integration over quadratic terms in the
functional integral. Correspondingly, the entropy will ac-
quire corrections to the zero-order result AH/4. Physi-
cally, the system can be viewed in the zero-order approxi-
mation as consisting of a vacuum" black hole. The
next-order contribution to the functional integral is
viewed as arising from thermal gravitons surrounding the
black hole. It is known that any stationary, axisymmetric
system in thermodynamical equilibrium must rotate rig-
idly [6,7]. Therefore, the average distribution of graviton
radiation surrounding the black hole must rotate rigidly
with an angular velocity equal to that of the black-hole
horizon. As a consequence, an equilibrium thermo-
dynamical system cannot have an infinite spatial extent,
because the graviton Aux would then exceed the speed of
light beyond some speed-of-light surface surrounding the
black hole. This conclusion is supported by the analysis
of Frolov and Thorne [7], who show that for a quantum
field in the Hartle-Hawking vacuum state on a Kerr
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black-hole background, the Hadamard function is singu-
lar on and outside the speed-of-light surface. The above
observations indicate that the density of states calculation
of this section is not valid if the two-boundary B used to
generate the boundary data c., j„and o.,b is too far from
the (rotating) black hole. The difficulty should show itself
in the calculation of the quadratic contribution to the
functional integral for the density of states. One possibil-
ity is that for a too-large boundary B the contour for the
functional integral cannot be distorted from Lorentzian
metrics to pass through the extremum (4.4) along a path
of steepest descents, but only along a path of steepest as-
cents. In this case, there may be no (generally complex)
classical solution that dominates the functional integral
for the density of states.

Finally, consider the steepest descents evaluation of the
density of states (4.1) for boundary data E, j„and o,„
that correspond to Oat Lorentzian spacetime. That is,
use a two-boundary B in a stationary time slice of Aat
space-time to induce the boundary data, then fix this data
on each t=constant slice of BM. In this case, the same
Aat space-time that motivates the boundary conditions
can be periodically identified and placed on a manifold
with boundary topology B XS'. It therefore constitutes
a saddle point for the functional integral for v. More pre-
cisely, continuously many saddle points are obtained
since the periodic identification can be made with any
proper period. Since these saddle points all arise in a to-
pological sector with M=XXS', the action S can be
written in the form of Eq. (3.9). This shows that S van-
ishes at each of these saddle points, so the entropy (4.9)
vanishes in this "zero-order" approximation.

Z, [)h3,j,o ] = f2)(&o E) v[E,j,o. ]exp —f d

xylo

eP
B

(5.1)

The partition function can be evaluated approximately by
performing the integration over &os in a steepest des-
cents approximation. The stationary point in &oe is
given by the solution E(ht3) of the equation

(5.3)

which will be recognized as a generalized form of the usu-
al relation between the entropy of a system and its ther-
modynamic temperature. The approximation for the
canonical partition function becomes

lnz, [ht3,j,o ]=$[E(P),j,o. ]—f d xv'o. PE(P), (5.4)
B

which expresses the Massieu function lnZ, as a (function-
al) Legendre transform of the entropy S. The expecta-
tion value of energy density is defined by

5 lnZ,

where the exponential factor arises from a product of
Boltzmann factors for each point of B. Using the approx-
imate identification (4.8) of entropy 4 as the logarithm of
the density of states, Z, becomes

Z, [P j,o.]= f2)(&oE)exp 4[E,j,o]—f d x&oeP
B

(5.2)

V. CANONICAL PARTITION FUNCTIONS

The canonical partition function characterizes a sys-
tem that is open to exchange of energy with its surround-
ings and has fixed inverse temperature. In the case of
self-gravitating systems, the inverse temperature P is fixed
on the boundary B that separates the system from its sur-
roundings. Recall that P is not, in general, constant on 8.
The partition function is defined by an integral over ener-

gy densities &ere,

fD(&crE) v(&oE)exp —f d'xv'o. EPZ. B

(5.5)

This integral can be carried out in a steepest descents ap-
proximation, with the result (&ere) =&os(P).

By inserting expression (4.1) for the density of states
into Eq. (5.1), the canonical partition function can be
written as

Z, [p,j,o- ]=g fX)H exp iS —f d'x v'o pE
M B

=g f2)H exp iS —i f d3xV ctNE
M aM f dh Nl~ = —iP

=g f2)H exp(iS, )
M J ch Nl 8 = —ip

(5.6)

From the discussion of Sec. III, it is clear that S, is the
action appropriate for boundary conditions consisting of
fixed two-metric o.,&, fixed momentum density j„and
fixed lapse N on c)M The functional integral (5.6) is a
sum over Lorentzian metrics with these boundary condi-

tions. Furthermore, the gauge invariant part of N on the
boundary, namely, the proper distance J dt N

~ Jh, is

analytically continued to the imaginary value —iP The.
distance f dt N~lti denotes the proper length of curves in

the boundary BM =B XS ' that are orthogonal to the
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slices B and begin and end on the same slice. If it is pos-
sible to rotate the contours of integration for the lapse
function (at each point of M) to the imaginary axis, then
the functional integral (5.6) for Z, becomes a sum over
Euclidean metrics with cr,&, j„and f dt N ~z =/3 fixed on
BM. This prescription for the functional integral repre-
sentation of the canonical partition function generalizes
the results of Gibbons and Hawking [3] to allow for a
finite spatial boundary and the effects of rotation. Like-
wise, Eq. (5.10) below generalizes their results for the
grand canonical partition function.

The inverse temperature p that appears in the canoni-
cal partition function is the thermodynamic temperature
of the system. It is measured by the so-called "zero-
angular-momentum observers" (ZAMOs) [21] at B, that
is, by observers at rest on the spacelike slices B C B, and
whose four-velocities were earlier denoted by u". Like-
wise the "chemical potential" defined below is the angu-
lar velocity co of the system at B as measured by these
same ZAMOs. See Refs. [12,22] for discussions of P and
co as ZAMO-measured thermodynamical variables.

For the grand canonical partition function Zg, the sys-
tem is open to exchange of momentum as well as energy.
In the self-gravitating case, assume as in the previous sec-
tion that the fixed boundary metric o.,b is axisymmetric,
and let P' denote the axial Killing vector field on B The.
momentum density in the P' direction is &crj,P', and its
thermodynamical conjugate is pco with co denoting the
chemical potential. Below, co is identified as the angular
velocity of the system in the P' direction with respect to
the local proper time on B. (In Ref. [12] this proper-time
angular velocity was denoted by co.) The grand canonical
partition function is defined by transforming both from
fixed energy density +ere to fixed inverse temperature p
and from fixed angular momentum density &crj,P' to

fixed Pco:

Zg [P,Pco, cr ]=f2)(&crE)2)(&crj,g') v[8,j,o ]

Xexp —f d x&crP(e coj—,P')
B

(5.7)

(As defined here, Zg is still a functional of the component

ji of j, in the direction orthogonal to p . With axisym-
metric boundary data, j~ can be simply set equal to zero.
Alternatively, Z could be defined to include an integral
transformation of ji to a zero value of its conjugate. )

With the density of states approximated by the exponen-
tial of the entropy 4, the stationary point for a steepest
descents evaluation of Z is given by the simultaneous
solution of Eq. (5.3) and

6S
&(&crj,p')

(5.8)

In the zero-order approximation, the grand partition
function (5.7) becomes

lnZ =4—f d x&crp(e —coj,p'),
B

(5.9)

where c, and j,P' are functions of /3 and co that solve Eqs.
(5.3) and (5.8). Equation (5.9) expresses the Massieu func-
tion lnZ as a (functional) Legendre transformation of
the entropy S. The expectation values of &crcand.
&crj, P' are defined by derivatives of lnZ with respect to
p and pco, respectively. The results are approximated by
the solutions of Eqs. (5.3) and (5.8).

Combining the functional integral expression (4. 1) for
the density of states with the definition (5.7) for the grand
canonical partition function yields

Zg[P, Pco, cr] =g fX)H exp iS —f d x&crP(e coj,P')—
M

=g f2)H exp(iS )
M f dt NI& = —iti and f dt V~

&
= —ipse

(5.10)

V& is the component of the shift vector in the p'
direction. For axisymmetric boundary data with j~=0,
the action S is precisely the action S discussed in Sec. III
for which the two-metric o.,b, lapse N, and shift V' are
fixed on the boundary BM. In the functional integral
(5.10), the gauge-invariant distance fdt N~ti is fixed to
the value iP, and fdt V~~~—is fixed to the value —iPco
The quantity fdt V~~ii gives the amount of "twist" in
the periodic identification of the boundary BM =BXS'.
More precisely, note that the curves on BM that are or-
thogonal to the slices B and begin and end on a single
slice need not close. Then f dt V~~ii equals the proper
distance separating the initial and final points of such a
curve, as measured along a trajectory of the Killing vec-
tor field P', where V~=+cr&&V~. If the contours of in- dtN ~= —i (5.11a)

tegration for the lapse N and shift V~ are rotated to the
imaginary axis of the complex plane, then the functional
integral (5.10) becomes a sum over a set of complex
metrics with cr,l„ f dt N ~ =p, and f dt V~~~ =pco fixed
on BM.

Recall that the lapse function N and shift vector V' are
canonically conjugate to energy density &cr E and
momentum density —+crj„respectively, where canoni-
cal conjugacy is defined with respect to the boundary BM.
The functional integral expressions (5.6) and (5.10) for the
canonical and grand canonical partition functions show
that the canonical and thermodynamical conjugates of
the extensive variables &era and —&crj, are related by



47 MICROCANONICAL FUNCTIONAL INTEGRAL . . . 1429

f dt V~ B= —ipse) . (5.11b)

VI. THE FIRST LAW

The first law of thermodynamics expresses changes in
the entropy of a system in terms of changes in the exten-
sive variables. In the "zero-order" approximation, the
first law follows from the general variation of the micro-
canonical action S . That variation includes terms that
yield the classical equations of motion, plus boundary
terms that arise from integrations by parts. Those
boundary terms are just the ones displayed in Eq. (3.10)
for the boundary 8. Thus, the variation in S is

5S =(terms giving the equations of motion)

+ f d x[N5(&ere) V'5(&o.j,. )—
BM

+ (N~o/2)s'"5o. ,b
.
] . (6.1)

If the variations are restricted to those described by com-
plex black-hole solutions of the form (4.4) for difFerent
choices of boundary data (extensive variables) e, j„and
o.,b, then the terms giving the equations of motion vanish
and the variation becomes

Furthermore, consider the partition function that is ap-
propriate when the system is open to fluctuations in the
two-boundary metric o.,b, and define an intensive vari-
able (p&cr/2)p' that is thermodynamically conjugate to
o.,b. Writing this partition function as a functional in-

tegral shows that

f dt(NV o/2) s.'
~ti

= —i (p+o /2)p' . (5.12)

where (N&cr/2)s' is the canonical conjugate of cr,b and
s'" is the spatial stress tensor (3.8). Relations (5.11) and
(S.12) show that canonical and thermodynamical conju-
gacy are intimately connected [14]. Specifically, the ther-
modynamical conjugate of an extensive variable equals i
times the boundary value of the time integral of its
canonical conjugate. These relations also hold when
matter is minimally coupled to the gravitational field [4],
and can be generalized straightforwardly to cases of non-
rninimal coupling.

Now consider choosing boundary data for the various
partition functions such that the complex black hole solu-
tion (4.4) extremizes the corresponding action. In this
case, the lapse and shift are given by N = —iN and
V'= iV'—. Equation (5.11a) shows that the inverse tem-
perature P equals the proper length of a curve orthogonal
to the slices 8 in the boundary BM =8 XS' of the com-
plex black hole (4.4) [11,12]. From Eq. (5.11b) the chemi-
cal potential is ~= V ~/N. Thus, co is the proper angular
velocity of the Lorentzian black hole (4.3) in the P' direc-
tion, as measured by the ZAMOs [11,12]. Similarly, Eq.
(5.12) shows that p' equals the spatial stress tensor s '
for the Lorentzian black hole (4.3).

Using the identifications (5.11) and (5.12) for the complex
black holes and the approximation S=iS, this variation
becomes

M'[E, j,o. ] =5( AH/4)

= f d x[p5(&oE) pro—5(&oj,p')
8

+p(&op' /2)5o. ,i, ] . (6.3)

This is the first law of thermodynamics for the gravita-
tional field in a spatially finite region. It is seen to have
the form d 4= "PdE —Pco dJ +Pp d V,

" familiar from
standard thermodynamical treatments of nongravitating
systems. In fact, if the boundary data are chosen such
that p is a constant on 8, then the first term in Eq. (6.3)
becomes PdE, where E = J~d x&o.E is the total (quasi-
local) energy of the system [13]. If the boundary data are
chosen such that pc@ is a constant on 8, then the second
term in Eq. (6.3) becomes —pcs dJ, where
J = fzd x&oj,P' is the total angular momentum in the
P' direction [13]. Likewise, if the boundary data are
spherically symmetric, then the third term in Eq. (6.3) be-
comes Pp dA, where p is the surface pressure and A is
the surface area of 8 [9,14]. However, it should be em-
phasized that these simplifications hold simultaneously
only when the formalism is restricted to static, spherical-
ly symmetric systems. In order to treat a system that is
classically approximated by, say, a distorted
Schwarzchild black hole or a rotating black hole, it is
necessary to consider boundary data that are not con-
stant functions on the boundary surface 8 [11,12].
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APPENDIX: PATH INTEGRAL
FOR JACOBI'S ACTION

Consider a system described by the phase space x ', p „x, p2, . . . , and let o. denote a parameter along the
phase-space path that increases monotonically from o' at
one end point to o." at the other end point. Suppressing
the indices on x and p, Jacobi's action reads [16]

tl

Sz = f do [xp N&(x,p)], —
a'

where N is a Lagrange multiplier and
&(x,p) =H(x,p) E is a constraint —that sets the Hamil-
tonian M(x,p) equal to E. When varied with x(o')=x'
and x(o")=x" held fixed, this action yields Newton's
equations of motion with the restriction that the energy
take the value E. The Lagrange multiplier N has the in-
terpretation as the lapse in physical time:

5(iS )= f dt f d x[%5(&oe) V'5(&o j, )—

+(N&o/2)s ' 5tr,b] . .(6.2)

dt =N do. . (A2)

Note that Jacobi's action is invariant under the gauge
transformation
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5x = [x,e&], 5p = [p, eA'], 5N=e, (A3)

with e(cr) vanishing at the end points cr', o" .This trans-
formation is just the canonical version of reparametriza-
tion invariance, which rejects the arbitrariness in the
choice of a path parameter o..

We will now construct the sum over histories associat-
ed with Jacobi s action and show that its trace is precisely
the density of states v(E). The gauge redundancy will be
handled using Becchi-Rouet-Stora- Tyutin (BRST)
methods [23]. Let n denote the conjugate to N, so the
full set of constraints becomes it=0 and &=0. Intro-
duce the ghost coordinate C and momentum P associated
with the constraint &=0, and the ghost coordinate iP—
and momentum iC associated with the constraint sr=0.
The ghosts C, P, P, and C are all anticommuting. The
original phase-space variables, Lagrange multiplier and
its conjugate, and ghost variables constitute an extended
phase-space with fundamental Poisson brackets

[p,x]=—1,

(rr, N] = —1,

[P,C]= —1,

[C,P]= —1.

(A4)

(A5)

(A6)

(A7)

The theory is rank zero [23] since the constraints ir, &
have vanishing Poisson brackets with one another. As a
result the BRST generator is a simple sum of constraints
multiplied by ghost coordinates:

where the measure X)H is the product over time of the
Liouville measure on the extended phase space. The con-
ditions

x (o') =x', x (o")=x",

~(o') =0, ir(o ")=0,

C(o.') =0, C(o ")=0,
(Al 1)

C(o. ') =0, C(o" ) =0

Z~(x",x') = f2)x 2)p 2)NXlirX)C2)PX)C2)P

II

Xexp —f der(xp+Ntr+PC+CP

i PP N—&)—

are BRST invariant and imply Q(o') =0=0(cr"), and
thus constitute a consistent set of boundary conditions
[23] that we will adopt for the path integral (A10).

The Fradkin-Vilkovsiky theorem [23] states that the
path integral Zz(x",x') is independent of the choice of
gauge fixing function ter. For the purpose of evaluation, a
convenient choice is P=PN, so the path integral (A10)
becomes

0= —i rrP+&C. (A8)
(A12)

Sz= f do. (xp+¹r+PC+CP+[/, fl]), (A9)

where g is an anticommuting gauge fixing function on the
extended phase space. From the nilpotency of the BRST
generator, [Q, Q] =0, the action (A9) is seen to be invari-
ant under BRST transformations with C(o ') =0 and
C(o")=0. The path integral associated with Jacobi's ac-
tion is now written as

ZE(x",x') =f2)He (A10)

BRST transformations are defined by [,AE], with c. an
anticommuting parameter.

In the extended phase space, Jacobi's action becomes
With this choice of it the ghost contribution to the path
integral decouples, and can be independently evaluated
using any among a variety of techniques. One method is
to recognize that the ghost path integral equals the deter-
minant of the operator 0 /Bo. acting in the space of
functions that vanish at o' and o.". This determinant can
be regularized [24], yielding the result (o." cr'). The in-—
tegration over vr in the path integral (A12) gives a formal
infinite product (over o) of 6 functions of N, restricting
the lapse function N to be a constant. Thus, the result of
the Z)ir 2 N integration is to leave a single integral
dXO/2~6 over the constant value No of the lapse.

Collecting together the above results, the path integral
becomes

tl I II

Z~(x",x')= f dND fX)xi)p exp —f do. (xp —No&) (A13)

Using the identification (A2), the argument of the exponent can be expressed as an integral over t, while the integration
variable No(o "—o') is seen to equal the total time interval T = Jdt. This leads to

Zz(x",x')= fdT e' r"f2)x 2)p exp —' f dt
2m.A 0

dx
p —H

dt (A14)
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where the definition &=H E—has been used. The func-
tional integral over x and p contained in Eq. (A14) gives
the matrix elements of the evolution operator (2.5), so
comparison with Eq. (2.4) shows that the path integral
for Jacobi's action is

Z (x",x')=(x"i5(E H—)i x'). (A15)

The trace of this path integral is

v(E) = J dx ZE(x, x), (A16)

~In this context, the causal Green function is the Green func-
tion for the time-independent Schrodinger equation defined by
the Fourier transform of the retarded Green function for the
time-dependent Schrodinger equation.

the density of states.
The above analysis shows that the density of states is

the sum over periodic histories constructed from Jacobi's
action. Observe that this identification assumes the range
of integration for T is over all real values. Thus, the path
integral Zz(x",x') difFers from the causal Green func-
tion, which is obtained from expression (A14) by in-
tegrating over just positive values of T [25].

By integrating the total time T over all real values, the
path integral for v(E) consists of a sum over pairs of his-
tories, where the members of each pair are weighted with
opposite phases. To see this, consider a typical periodic

history x(t), p(t), with period T)0 that contributes
with phase exp(iS/A') to the path integral for the density
of states. Another history that contributes to v(E) is
x(t)=x(——t), p(t)—= —p( t—) with period T= —T (0.
As t decreases from 0 to T, the history x(t), p(t) passes
through the same sequence of configurations as obtained
from the original history for t ranging from 0 to T. Ob-
serve that the history x(t), p(t) is closely related to the
time reversed history x(t)—=x(T —t), p(t)—:—p(T —t),
which has period T and consists of the original sequence
of configurations taken in reversed order (for increasing
t). Now, if the system is time reversal invariant, then the
actions for the original history and the time reversed his-
tory are the same: denoting the Lagrangian by I.,

S=S=j dtL(x(t), P(t))
0

=I dt L(x(t),p(t)),
T

(A17)

where the last equality follows from a change of dummy
integration variables. But the phase in the path integral
associated with the history x(t), p(t) is determined by
S= jodt L (x,p ), so that S= —S. Therefore, the history
x(t), p(t) and the original history of x (t), p(t) represent
the same sequence of configurations but contribute with
phases of opposite signs to the path integral for v(E).
Consequently, each such pair of histories contributes to
v(E) with phase 2cos(S/ii)), confirming that the density
of states is real.
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