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Quasilocal energy and conserved charges derived from the gravitational action
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The quasilocal energy of gravitational and matter fields in a spatially bounded region is obtained by
employing a Hamilton-Jacobi analysis of the action functional. First, a surface stress-energy-momentum
tensor is defined by the functional derivative of the action with respect to the three-metric on 8, the his-
tory of the system's boundary. Energy surface density, momentum surface density, and spatial stress are
defined by projecting the surface stress tensor normally and tangentially to a family of spacelike two-
surfaces that foliate B. The integral of the energy surface density over such a two-surface 8 is the quasi-
local energy associated with a spacelike three-surface X whose orthogonal intersection with 8 is the
boundary B. The resulting expression for quasilocal energy is given in terms of the total mean curvature
of the spatial boundary 8 as a surface embedded in X. The quasilocal energy is also the value of the
Hamiltonian that generates unit magnitude proper-time translations on 8 in the timelike direction or-
thogonal to B. Conserved charges such as angular momentum are defined using the surface stress tensor
and Killing vector fields on 'B. For spacetimes that are asymptotically flat in spacelike directions, the
quasilocal energy and angular momentum defined here agree with the results of Arnowitt, Deser, and
Misner in the limit that the boundary tends to spatial infinity. For spherically symmetric spacetimes, it
is shown that the quasilocal energy has the correct Newtonian limit, and includes a negative contribu-
tion due to gravitational binding.

PACS number(s): 04.20.Cv, 04.20.Fy, 04.20.Me

I. INTRODUCTION

Considerable effort has been expended in attempts to
define quasilocal energy in general relativity [1]. Some
earlier efforts made use of pseudotensor methods, which
led to coordinate-dependent expressions whose geometric
meanings were not clear. Other approaches were based
on the identification of certain symmetries of the gravita-
tional action and the construction of associated Noether
charges. Some of the more recent efforts have focused
on constructing from the gravitational Cauchy data
mathematical expressions that exhibit certain physical
properties commonly associated with energy. Although
these approaches have led to some interesting mathemati-
cal results, no definitive expression for quasilocal energy
has emerged. In this paper we address the problem of
quasilocal energy from a somewhat different perspective
[2]. The action principle for gravity and matter is al-
lowed to dictate the definition of quasilocal energy and its
resulting properties through a Hamilton- Jacobi-type
analysis. Because of its intimate connection to the action
and the Hamiltonian, we believe our quasilocal energy is
a natural choice. Furthermore, this quasilocal energy has
arisen directly in the study of thermodynamics for self-
gravitating systems, where it plays the role of the thermo-
dynamic internal energy that is conjugate to inverse tem-
perature [3].

The basic idea for our definition of quasilocal energy is
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best presented by considering first an analogy. In nonre-
lativistic mechanics, the time interval T between initial
and final configurations enters the action as fixed end-
point data. The classical action S,~, the action functional
evaluated on a history that solves the classical equations
of motion, is an ordinary function of the time interval
and is identified as Hamilton's principal function [4].
Therefore S,~

satisfies the Hamilton-Jacobi equation
H = —BS,~ldT, which expresses the energy (Hamiltoni-
an) H of the classical solution as minus the time rate of
change of its action. By a similar analysis, we shall define
the quasilocal energy for gravitational and matter fields
in a spatially bounded region as minus the time rate of
change of the classical action.

We will deal with the physics of a spacetime region M
that is topologically the product of a three-space X and a
real line interval. The symbol X will be used informally
to denote either a family of spacelike slices that foliates
M or a particular leaf of the foliation, depending on the
context in which it is used. The boundary of X is B,
which need not be simply connected. The product of B
with segments of timelike world lines orthogonal to X at
B is denoted as B, an element of the three-boundary of
M. The end points of the world lines define three-
boundary elements denoted t' and t". The situation is
depicted in Fig. 1 in which B is chosen to have the topol-
ogy of a single two-sphere; because one spatial dimension
is suppressed, B is drawn as a closed curve. Often we will
refer to B as a three-boundary, although the complete
three-boundary of M actually consists of the sum of B,
t', and t".

Consider the usual action functional S' for gravity and
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among diQ'erent two-surfaces whose timelike unit normals
are contained in a common three-boundary B. Thus, the
quasilocal energy is not necessarily conserved. On the
other hand, conserved charges defined from the surface
stress tensor and Killing vector fields on 8 are indepen-
dent of the slice 8 within the three-boundary 8 that is
used for their evaluation.

In this paper, the Hamilton-Jacobi-type analysis lead-
ing to the stress-energy-momentum tensor, quasilocal en-

ergy, and conserved charges is explicitly carried out for
general relativity and matter, with the restriction that the
matter should be nonderivatively coupled to the gravita-
tional field. The method we use can be applied to any
generally covariant action that describes spacetime
geometry and matter. The sign conventions of Misner,
Thorne, and Wheeler [9] are used throughout, and l~

denotes 8~ times Newton's constant. In Sec. II, we
present some notation and a preliminary discussion of the
kinematical relationships needed for describing general
relativity in the presence of spatial boundaries. Section
III contains the analysis leading to the stress-energy-
momentum tensor. There it is shown that when the
bounded spacetime region is the history of a thin surface
layer, the stress tensor yields the Lanczos-Israel tensor
[10] describing the stress-energy-momentum content of a
thin surface layer. In Sec. IV, the energy surface density,
momentum surface density, spatial stress, and total quasi-
1ocal energy are defined. Also, the Hamiltonian describ-
ing general relativity on a manifold with boundary is de-
rived. Conserved charges are defined in Sec. V, with spe-
cial attention given to the description of angular momen-
turn. When the boundary 8 is at spatial infinity, the an-
gular momentum agrees with the definition of Arnowitt,
Deser, and Misner (ADM) [6]. Section VI is devoted to
an exploration of various properties of the quasilocal en-

ergy, and includes explicit calculations for spherically
symmetric Quid stars and black holes. It is shown that
the quasilocal energy of a spherical star agrees in the
Newtonian limit with the energy deduced from Newtoni-
an gravity. In addition, the first law of black-hole
mechanics (thermodynamics) for Schwarzschild black
holes is obtained directly by varying the quasilocal ener-

gy. Some of the mathematical details of our analysis are
collected in the Appendix.

II. PRELIMINARIES

=g~ ~~~dx

Ndt +h;, (—dx'+ V'dt )(dx~+ V&dt ), (2.1)

where X is the lapse function and V' is the shift vector.
Observe that lower case latin letters such as i,j,k, l

refer both to coordinates on 8 and to coordinates on
space X. When used as tensor indices, the meaning of
these latin letters is usually clear from the nature of the
tensor. On occasions in which these two index types
must be distinguished, we will underline the indices cor-
responding to coordinates on X; for example, hkI.

Throughout the analysis we assume that the hypersur-
face foliation X is "orthogonal" to 8, meaning that on
the boundary 8 the hypersurface normal u" and the
three-boundary normal n" satisfy (u n )~3 =0. Thus, n"
also can be viewed as a vector n' in X with unit length in
the hypersurface metric: n 'h, n ~~, = 1. So the unit nor-

mal in spacetime to the three-boundary 8 is also the unit

Our notation is summarized in Table I. The spacetime
metric is g„,and n is the outward pointing spacelike
unit normal to the three-boundary 8. The metric and
extrinsic curvature of 8 are denoted by y„and0„,re-
spectively. These spacetime tensors are defined on 8
only, and satisfy n "y„=Oand n"0„=0.In addition,
y" serves as the projection tensor onto B. y„and 0„
can be viewed alternatively as tensors on 8, denoted by
y; and 0;, where the indices i,j refer to coordinates on
8. The boundary momentum is ~'j, and is conjugate to

y; where canonical conjugacy is defined with respect to
the boundary 8 (see the Appendix).

I.et u" denote the future pointing timelike unit normal
to a family of spacelike hypersurfaces X that foliate
spacetime. The metric and extrinsic curvature for X are
given by the spacetime tensors h„andX„,respectively,
and h" is the projection tensor onto X. These tensors
also can be viewed as (time-dependent) tensors on X,
denoted by h;, K, , and h'=6'. . The momentum canoni-
cally conjugate to the spatial metric h; is denoted by I" .
Also, the spacetime metric can be written according to
the usual ADM decomposition [6]:

TABLE I. A summary of notation. Some spaces are left blank, either because they are not applic-
able, or because they are not needed. The symbol A is used for the Riemann tensor on M and is not a
tensor density. The unit normal for 'B embedded in M is also the unit normal for B embedded in X by
virtue of the condition ( u n ) =0 on B.

Spacetime M
Metric

Covariant
derivative

Unit
normal

Intrinsic
curvature

P.vcrp

Extrinsic
curvature Momentum

Hypersurfaces X
embedded in M +ij kl

PlJ

Three-boundary B
embedded in M 0;,

Two-boundary B
embedded in X n;
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where x', a =1,2, are coordinates on B and o.,& is the
two-metric on B. The extrinsic curvature of B as a sur-
face embedded in X is denoted by k,b. These tensors can
be viewed as spacetime tensors o.„andk„,or as tensors
on X or B by using indices i,j,k, /. Also, o. is the projec-
tion tensor onto B.

III. STRESS-ENERGY-MOMENTUM TENSOR

Hamilton-Jacobi theory provides a formal basis for
identifying the stress-energy-momentum as dictated by
the action. Before presenting this analysis, it will be use-
ful to provide a quick review of Hamilton-Jacobi theory
as applied to nonrelativistic mechanics. Start with the
action in canonical form:

S'= f dt p —H'(x, p, t)
dt

(3.1)

Now parametrize the system by introducing a coordinate
A, for the system path in state space (phase space and
time). The action becomes

S ' = f d A, [px t'H '(x,p, t ) ], — (3.2)

where the dot denotes a derivative with respect to X.
Varying this action gives

5S'=(terms giving the equations of motion)

+p5x i
~ H'5ti—(3.3)

Observe that by fixing x and t at the end points A,
' and A,",

the end-point (boundary) terms vanish in 5S'. With these
boundary conditions, solutions to the equations of motion
extremize S '.

Now restrict the variations in the action to variations
among classical solutions. In this case, the terms in Eq.
(3.3) giving the equations of motion vanish, leaving

(3.4)

where "cl"denotes evaluation at a classical solution. The
Hamilton-Jacobi equations follow from this expression:

normal in X to the two-boundary B. This restriction
simplifies enormously the technical details of our
analysis, and has the following logical basis as well. In
the canonical formalism, the boundary B is specified as a
fixed surface in X. The Hamiltonian must evolve the sys-
tem in a manner consistent with the presence of this
boundary, and cannot generate transformations that map
the canonical variables across B. This means that the
component of the shift vector normal to the boundary
must be restricted to vanish, V'n, ~s =0. From a space-
time point of view, this is the condition that the two-
boundary evolves into a three-surface that contains the
unit normal u" to the hypersurfaces X. Therefore, u"
and n" are orthogonal on B.

Because of the restriction (u n)~3 =0, the metric on

B can be decomposed as

y, dx'dx'= Ndt +—o,b(dx'+ V'dt)(dx + V dt),

the classical momentum and energy at the final boundary
X" are

as,',
ax

as,',
at"

(3.5a)

(3.5b)

This latter equation says that for a classical history, the
energy (Hamiltonian) at the boundary X" is minus the
change in the classical action due to a unit increase in the
final time t (A,")=t". [Similarly, variation of the initial
boundary time t(A, ')=t' leads to the energy at A, ', but
with no minus sign because positive changes in t de-
crease, rather than increase, the time interval. ]

The action for any system is ambiguous in the sense
that arbitrary functions of the fixed boundary data can be
added to the action without changing the resulting equa-
tions of motion. For example, for nonrelativistic
mechanics introduce a subtraction term

S'= dA, =h (t") h(t'—),0
&" dh (t)

di,
(3.6)

where h is an arbitrary function of t. The full action is
now defined by S =S' —S . The subtraction just shifts
the value of S' by a (boundary-data-dependent) constant,
and S has the standard canonical form with Hamiltonian
H =H'+dh Idt The v. ariation 5S is just as in Eq. (3.3)
but with H' replaced by H. The Hamilton-Jacobi equa-
tion for the energy at A,

"becomes

at
(3.7)

d x&—yO+S1 m

K B
(3.&)

where S is the matter action, including a possible
cosmological constant term. S' is a functional of the
four-metric g„and matter fields on M. The notation

j,', d x represents an integral over the three-boundary t"
minus an integral over the three-boundary t'. The varia-
tion in S' due to arbitrary variations in the metric and
matter fields is

5S'=(terms giving the equations of motion)

+(boundary terms coming

from the matter action)

+ f'd' p'5h, , + f, d' 't5y, ,t
(3.9)

Here, P'~ denotes the gravitational momentum conjugate

so that difterent subtraction terms lead to different values
of energy. If a particular physical system allows for a
subtraction S that gives a t-independent Hamiltonian,
such a choice is usually preferred.

For general relativity coupled to matter, consider first
the action suitable for fixation of the metric on the
boundary [11]:

ttS'= f d'x& gW+ f ' d—'x&h rC—
2K M K
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S =S' —S, (3.10)

where S is a functional of y; . Of course, S can depend
on the initial and final metrics h,' =h,"( t ') and
h,"=h;z(t") as well, but for present purposes we find no
advantage in allowing for such generality. The variation
in Sjust differs from the result in Eq. (3.9) by the term

ss'—5S = —f, d x 5y;. —= —f, d x ~o'5y;. ,
lJ

(3.11)

where ng is defined as the functional derivative of S .
Therefore m.d' is a function of the metric y; only.

The classical action S,&, the action S evaluated at a
classical solution, is a functional of the fixed boundary
data consisting of y, A j A j and matter fields. The
dependence of S,&

on this boundary data is obtained by
restricting the general variation (3.9)—(3.11) to variations
among classical solutions, which gives

5S,i =(terms involving variations in the matter fields)

+ f d x P,'~i5h;, + f, d x(~,", pro')5y;~—
8

(3.12)

The analogues of the Hamilton-Jacobi equation (3.5a) are
the relationships

6S,iPlJ Icl t
~h I

IJ

(3.13)

for the gravitational momentum at the boundary t", and
corresponding relationships for the matter variables at

to h;, as defined with respect to the spacelike hypersur-
faces t' and t", while ~'J is the gravitational momentum
conjugate to y;J, defined with respect to the three-
boundary B. We assume that the matter fields are
minimally coupled to gravity, so the matter action con-
tains no derivatives of the metric. In this case, the gravi-
tational momenta have the same form [Eqs. (A5) and
(A8) of the Appendix] as in vacuum general relativity.

The gravitational and matter fields must be restricted
by appropriate boundary conditions, so that the bound-
ary terms in 5S ' vanish. This is required for the action to
have well-defined functional derivatives that yield the
classical equations of motion, and in turn implies that the
action functional is extremized by solutions to those
equations of motion. A natural set of boundary condi-
tions consists in fixing on the boundaries the fields whose
variations appear in the boundary terms of 6S', so that
the variations of those fields indeed vanish. We will
adopt such boundary conditions. For the gravitational
variables in particular, the boundary three-metric y, is
fixed on B, and the hypersurface metric h, is fixed on t'
and t". (One alternative to S' is the action that differs
from S' by the exclusion of the boundary term involving
K. In that case, the term P'5h, " in 6S' is replaced by—h, 6P'J and the natural boundary conditions include
fixed P'J at t' and t". Such a change does not affect the
definition of the stress-energy-momentum tensor. )

The ambiguity in S is taken into account by subtract-
ing an arbitrary function of the fixed boundary data.
Thus, define the action

t". (The notation is slightly awkward: for nonrelativistic
mechanics, k is a coordinate while t and x are dynamical
variables; for gravity, t and x are coordinates. )

The analogue of the Hamilton-Jacobi equation (3.7) is
more subtle. In the gravitational action, the three-metric
components y; are the fixed boundary data that deter-
mine the time between spacelike hypersurfaces. Then the
analogue of the boundary data t" from the example of
nonrelativistic mechanics is included in y, ; but, of
course, the boundary metric provides more than just in-
formation about time. It gives the metrical distance for
all spacetime intervals in the boundary manifold B. Cor-
respondingly, the simple notion of energy in nonrelativis-
tic mechanics becomes generalized to a surface stress-
energy-momentum tensor for spacetime and matter,
defined by

5S„
V' —

y 5y,,
(3.14)

The functional derivative of S,&
is determined from the

variation Eq. (3.12) to be

6S,i
cI 0&

lj

so the stress tensor becomes

~'J = 2
( vr,", ~OJ ).ci 0

(3.15)

(3.16)

It is interesting to note the similarity between definition
(3.14) and the standard definition

2 5S
v' —g 5g„,

(3.17)

for the matter stress tensor T" . It should be emphasized
that ~'J characterizes the entire system, including contribu-
tions from both the gravitational field and the matter
fields.

The Hamilton-Jacobi equation (3.15) and the corre-
sponding matter equations relate the coordinates and mo-
menta of the gravitational and matter fields as defined at
the boundary B. These boundary variables satisfy the
constraints of general relativity, as well as gauge con-
straints associated with invariances of the matter action.
In particular, the boundary momentum constraint reads

0= ZS, vr" &—yT—"~, — (3.18)

Lj Tflj
l (3.19)

for the surface stress tensor. This result has a form simi-
lar to the equation of motion T„T"=0 for the matter
stress tensor, the key difference being the appearance of a

which is equivalent to the Einstein equation with one in-
dex projected normally to B and the other index project-
ed tangentially to B. Here, T'J=T" n„yJ is the matter
stress tensor (3.17), with indices projected normally and
tangentially to B. The momentum constraint (3.18) im-
plies that S,&

depends on the boundary data only to
within diffeornorphism of B. It also implies the relation-
ship
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source term —T"~ for the divergence of ~'~. The conse-
quences of Eq. (3.19) are explored in Sec. V, where con-
served charges are defined.

It is useful to keep in mind that the boundary B need
not be simply connected. An interesting application
arises when, for example, B consists of two concentric,
topologically spherical surfaces, B, and B2. There are
stress tensors associated with each connected part of the
boundary: r'( and wj. Consider the limit in which B

&
and

B2 coincide, so that the three-geometries on the histories
of Bi and B2 are identical. The total stress-energy-
momentum ~gL of the surface layer is just the sum of v'(
and ~j, which can be written as the difference

r'( wi—th the understanding that w( is now comput-
ed using the outward normal to B2. Inserting expression
(3.16) for the stress tensors, the terms involving mg cancel
and the surface layer stress tensor is given by

(~~]—~'j)
~„. (3.20)

IV. ENERGY SURFACE DENSITY, MOMENTUM
SURFACE DENSITY, AND SPATIAL STRESS

From the stress-energy-momentum tensor, the proper
energy surface density c., proper momentum surface den-

sity j„and spatial stress s' are defined by the normal
and tangential projections of ~'~ on a two-surface B:

1j- 6S„
v'o 5N ' (4.1a)

1lJja — 0 gi uj'T
V~

ah a b ij
I

6S,i
6V'

6S,i
5o.,b

(4. lb)

(4.1c)

The second equalities in Eqs. (4.1a)—(4.1c) follow from
definition (3.14) for r'~ and the relationships

a~,, /BN= —2u, u /X,

ay,, /a V'= —2~.„u,, /X,

~7 ij /~ab ~(i~j )]'

(4.2a)

(4.2b)

(4.2c)

The quantities E, j„ands' are tensors defined on a gen-
eric two-surface B. They represent the energy surface
density, momentum surface density, and spatial stress as-
sociated with matter and gravitational fields on the space-

This equation embodies the results of Lanczos and Israel
[10] on junction conditions in general relativity, which re-
late the jump in momentum ~'~ to the matter stress-
energy-momentum tensor of the surface layer. Equation
(3.20) actually shows that the jump in momentum gives
the total stress-energy-momentum for the layer. Evident-
ly, with the assumption that the geometries on each side
of the infinitesimally thin surface layer coincide, the grav-
itational contribution to wgL vanishes, and wgL equals the
matter stress tensor. Physically, this result rejects the
well-known absence of a local gravitational energy-
momentum [9].

like hypersurface X with boundary B. In particular, the
total quasilocal energy for X is given by

5S,iE= I d'x&o. = —I d'x
a a 5N

(4.3)

This expression is the closest analogue of the Hamilton-
Jacobi equation (3.7), which gives the energy in nonrela-
tivistic mechanics as minus the change in the classical ac-
tion due to a unit change in the boundary time t". Here,
the energy of X is written as minus the change in S,~

due
to a uniform, unit increase in the proper time between the
boundary surface B and its neighboring two-surface in
B, as measured normally to B. (See Fig. 2.) The change

in the classical action due to such a uniform variation is
expressed in Eq. (4.3) as the integral over B of the local
variation 6S,

&
/6N.

From the form (3.16) for the stress tensor, the energy
surface density, momentum surface density, and spatial
stress are each seen to consist of two terms. The first
term is proportional to projections of the classical gravi-
tational momentum m,'~&, and the second term is propor-
tional to projections of 7TO =5S /5p j. The projections of
~,'~& can be written in terms of the canonical variables h, ,
P'~, lapse N, and shift V' by making use of Eq. (A18) of
the Appendix, while the projections of erg can be written
as functional derivatives of S by invoking the relation-
ships (4.2). Using these results, the proper energy surface
density (4.1a), momentum surface density (4.1b), and spa-
tial stress (4.1c) become

E= —ki„+ 6S'
(4.4a)

j = .2(rrgknIP —~&h )l.)—
1 6S

&o 5V'

ab 1 ah ab 2 5Ss' =—[k' +(n a —k)o' ]~„—

(4.4b)

(4.4c)

The momentum surface density in Eq. (4.4b)
viewed as a vector in B by changing the a indices to i, or
as a vector in X by changing the a indices to i.

Thus far, the subtraction term S has been treated as
an unspecified functional of the fixed boundary data y;,
which arises from an inherent ambiguity in the action.
We now restrict the form of S by demanding that the en-
ergy surface density E and momentum surface density j, of
a particular spacelike hypersurface X should depend only
on the canonical variables h;, P" dined on X. This re-
quirement implies that c. and j, are functions on phase
space. Observe that no such restriction is placed on the
spatial stress: s' is interpreted as the fIux of the a com-
ponent of momentum in the b direction, so s' should de-
pend on the way the canonical data evolve in time. This
dependence is already clear from the presence of the ac-
celeration a of the timelike unit normal in the expression
(4.4c) for the spatial stress. On the other hand, the first
terms in Eqs. (4.4a) and (4.4b), those that do not involve
S, are functions only of the canonical variables.

An obvious choice for a subtraction term S that
satisfies the above criterion is simply S =0. More gen-
erally, the complete expressions for energy surface densi-
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+2&cr V'(o,kn&P "'/v'h —)/0]. (4.5)

H«e, klo and (cr,k niP —"/&h ) ~0 are arbitrary functions of
the two-metric o.,&. As suggested by their notation, one
method of specifying these functions is to choose a refer-
ence space, that is, a fixed spacelike slice of some fixed
spacetime, and then consider a surface in the slice whose
induced two-metric is o.,b. If such a two-surface exists, it
can be used to evaluate k and o,knIP "'/&h, y—ielding the
desired functions of o,b. With the subtraction term (4.5),
the energy surface density and momentum surface densi-
ty become

s = ( k /ic ) ~
o',

j, = 2(cr,kn—&P "'/&h ) ~—o',

(4.6a)

(4.6b)

where ~0 denotes evaluation for the classical solution
minus evaluation for the chosen reference space. Note
that "evaluation for the classical solution" is actually
evaluation for a particular spacelike hypersurface in the
spacetime, that is, evaluation at a particular point in
phase space. By definition, c, and j, vanish for the refer-
ence space, so the freedom to choose dift'erent reference
spaces is just the freedom to choose the zero of energy
and momentum for the system. Observe that Eq. (4.6b)
can also be written as a tensor equation in X:

ty and momentum surface density will be functions only
of the canonical variables if S is a linear functional of
the lapse X and shift V' on the boundary. %'ith such a
choice for S, the functional derivatives appearing in Eqs.
(4.4a) and (4.4b) are functions only of the two-boundary
metric o.,b, which is the projection of the hypersurface
metric h;. onto the boundary B.

Restricted to a linear functional of the lapse and shift,
S can be written as

S = —j, d x[X&cr(k/~)~0

itive curvature two-metrics with two-sphere topology.
Note in particular that for a Oat slice of Rat spacetime,
(cr,k n&P

" /&—h ) ~o vanishes since P " is —identically zero.
Henceforth, we shall adopt the Aat reference space sub-

traction term, assuming its existence and uniqueness for
the two-metrics of interest. The quasilocal energy (4.3)
then becomes

E=— d2x o. k —k0,
/C B

(4.8)

S= j d xX&h [R+K K" (K) ]-
2K M LMV

d xN&ok —S .3 0
K 8

(4.9)

Next, use expressions (A4) and (A5) for the hypersurface
extrinsic curvature and momentum to obtain

which is ( I/ic times) the total mean curvature of B as em-
bedded in X, minus the total mean curvature of B as em-
bedded in Aat space. In this equation, the superAuous
"cl" has been dropped. For spacetimes that are asymp-
totically Aat in spacelike directions, the energy (4.8) with
B at spatial infinity agrees with the ADM energy [6]. In
the more usual expression for the ADM energy [6], the
Rat space subtraction is also present, but it is hidden in
the use of ordinary derivatives acting on the metric ten-
sor components in the asymptotically Aat space with
Cartesian coordinates.

Now consider the action (3.10) written in canonical
form. For simplicity, we will omit the matter field (and
cosmological constant) contribution S, although its in-
clusion is straightforward. Using the space-time split
(A20) of the curvature % and the trace O of the three-
boundary extrinsic curvature from Eq. (A17), the action
becomes

j'= 2(o'i, nlP" /—&h )~" (4.7)
N+h [K„,K" (K) ]=2rc[P—'~h, 2P'~D, V)"—

2lcNG, kiP'JP—"'], (4.10)
where we have returned to the practice of omitting the
underbars on indices for tensors in X.

The construction of k~0 and (cr,j, n&P "'/&h ) ~0 de--

scribed above is sensible only if the two-metric cr, b

indeed can be embedded in the reference space, and if the
embedding is unique. As a concrete example, choose a
Aat three-dimensional slice of Hat spacetime as the refer-
ence space. In this case, there are a considerable number
of existence and uniqueness results concerning the
embedding of a surface in R . For example, it is known
that any Riemannian manifold with two-sphere topology
and everywhere positive curvature can be globally im-
mersed in R [12]. (An immersion differs from an embed-
ding by allowing for self-intersection of the surface. ) The
Cohn-Vossen theorem [12] states that any compact sur-
face contained in R whose curvature is everywhere non-
negative is unwarpable. (Unwarpable means the surface
is uniquely determined by its two-metric, up to transla-
tions or rotations in R .) From these results it follows
that the functions k~0 and (cr,kn&P

" /&h )
~ o are uniq—uely

determined by the flat reference space, at least for all pos-

S = I d x[P'Jh; —X&—V'&, ]

—f, d x&o [RE—V'j;], (4.11)

where the gravitational contributions to the Hamiltonian
and momentum constraints are

&=(21c)G&kiP' P"' &h R /(2~), —

2D, P,J. —
(4.12a)

(4.12b)

In Eq. (4.11), c, and j; denote the energy surface density
(4.6a) and momentum surface density (4.7), but with "cl"
omitted in favor of evaluation at the generic phase space
point h,", P'~. From the action (4.11), the Hamiltonian is
explicitly determined to be

where Gjki=(h;kh, I+h;&hjk hjhk&)/(2&h —) is the in-
verse superspace metric. Inserting this result into the ac-
tion (4.9) and using the explicit form (4.5) for S gives the
action in canonical form:
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H = f d x(N&+ V'&, )+ f d x&o(NE V—'j;).
X 8

(4.13)

Qg(t" A3B)—Q~(t'n 3B)=—f ' d'x&T(u„T&g )

(5.5)

The quasilocal energy is seen to equal the value of the
Hamiltonian that generates unit time translations orthog-
onal to the boundary 8, that is, the value of H with N = 1

and V'=0 on the boundary.

V. CHARGE

As mentioned in Sec. III, the stress-energy-momentum
tensor describing a solution to the equations of motion
for gravity and matter will satisfy the relationship

cQ lj TtlJ (5.1)

where T"~—:T" n„y~. This expression is similar to the
familiar equation of motion for the matter stress tensor,
namely V'„T"=0, and has a similar interpretation as an
approximate local conservation law [9]. The primary
difference is that the divergence of r'' in Eq. (5.1) contains
a source term, —T"J. To interpret Eq. (5.1) as a conser-
vation law, consider a sufficiently small "box" AB con-
tained in 8, over a sufficiently short time At, such that
the timelike unit normal u is approximately constant,
2);u =0. Contracting Eq. (5.1) with u' and integrating
over the spacetime region ABht gives the approximate
conservation law for the energy-momentum current den-
sity —u ~', whose components are the proper energy sur-
face density c and proper momentum surface density j, .
This conservation law states that the increase in time in
the total energy-momentum contained in 68 equals the
net energy-momentum that enters AB from within 8,
plus a contribution from the source —T"~. That contri-
bution is the matter energy-momentum —u T"~ that
passes through ABAt as it Aows across the boundary 8
into M.

The conservation law described above is approximate
because typically u ' is not a Killing vector field on 8, so
2)~, u -~ is not zero. If the boundary three-metric y, does
possess an isometry, then global conserved charges can be
defined as follows. Let g' denote a Killing vector field,
2)~;g&~=0, associated with an isometry of the boundary
three-metric. Contract expression (5.1) with g' and in-
tegrate over 8 to obtain

(5.2)
t"A3B—f, , d'x&cr(u, r"g& ) = —f, d'x& yT"'g, . —

This result follows from expressing the identity

f d x& g—V„(Ti'g )=0 in terms of surface integrals
over 8, t', and t".

For many applications, the source term on the right-
hand side of Eq. (5.4) will vanish either because there is
no matter in a neighborhood of the boundary 8, or more
specifically because the component of T"' in the g; direc-
tion vanishes. In this case, Eq. (5.4) describes the conser-
vation of charge: because t'038 and t"038 are arbi-
trary surfaces within B, Q& is independent of the two-
surface 8 used for its evaluation. This independence ap-
plies to arbitrary spacelike surfaces 8, not just to the
slices constituting some given foliation of B. On the oth-
er hand, the total energy E, defined by Eq. (4.3), is never
conserved in this strong sense. Although E may have the
same value on each slice of a carefully chosen foliation,
this value will generally diAer from the energy for other
two-surfaces.

The distinction between the charges Q& and energy E is
clarified by using definitions (4.1a) and (4.1b) to write the
energy-momentum current density as

u)7 —cu +J .

The charge (5.3) then becomes

Q&= J d x&o.(eu'+ j')g, .
8

(5.6)

(5.7)

Now consider the situation in which a Killing vector field

g, exists that is timelike, has unit length (g'g, = —1), and
is also surface forming. Then g,. is the unit normal to a
particular foliation of the three-boundary 8, and on each
slice of this foliation, the conditions g, =u, and g;j'=0
hold. Comparing the energy expression Eqs. (4.3) with
the charge (5.7) shows that the energy E associated with
such a slice equals minus the charge Q&. For other slices
that are not orthogonal to the Killing vector field g;, the
associated energy will generally differ from —

Q&.
An important example of charge is angular momen-

tum, which is defined whenever the boundary three-
metric admits a rotational symmetry. In this case, denote
the Killing vector field by P' and the charge by J—:Q&. If
the boundary 8 used to compute J is chosen to contain
the orbits of P', so P' is tangent to B, then according to
Eq. (5.7) the angular momentum can be written as

This equation naturally motivates the definition J=f d x&o j;p'. (5.8)

Q~(B)—= —f d x&cr(u;r'~g).
B

(5.3)

for the global "charge" Q&, where the component T"'g;
of the matter stress tensor serves as its source:

Q~(t" fl3B)—Q~(t'fl3B)= —f, d'x& yT"'g, —(5.4)

Note that when the surface Killing vector field g; can be
extended to a Killing vector field g„throughout M, Eq.
(5.4) can be written as

This expresses the total angular momentum as the in-
tegral over a two-surface 8, with unit normal orthogonal
to P', of the momentum surface density in the P' direc-
tion. Observe that J is minus the value of the Hamiltoni-
an (4.13) that generates a rotation along P'; that is, minus
the value of the Hamiltonian with N =0 and V'=P' on
the boundary. From Eq. (4.1b), which defines j, as a
functional derivative, J can be identified as the change in
the classical action due to a "twist" in the boundary
three-metric. The expression (5.8) for J also agrees with



47 QUASILOCAL ENERGY AND CONSERVED CHARGES DERIVED. . . 1415

the ADM angular momentum at infinity for asymptoti-
cally flat spacetimes [6].

According to the previous discussion, any change in
angular momentum is governed by T"'P;, which is the
Aux across the boundary B of the matter momentum in
the P' direction. If T"'P; vanishes, then the angular
momentum is conserved. A related and important prop-
erty of angular momentum holds whenever the Killing
vector field P' on 8 can be extended throughout M. In
particular, choose a slice X containing the orbits of P", so
that u /=0 and P' is a Killing vector field on X. Next,
write the momentum surface density (4.7) as simplyj'= 2okn—&P"'/&h, where "cl" has been omitted and
we have used the ffat reference space for which P"'jo van-
ishes. Then from Eq. (5.8) the angular momentum be-
comes

lar momentum of a Kerr black hole is more appropriately
defined by a single surface integral fd x& oj,p' over
some topologically spherical surface surrounding the
hole. This is the natural definition of J for, say, a star
with spatial topology R, so with this definition the angu-
lar momentum of stars and black holes are treated on an
equal footing.

VI. PROPERTIES OF THE ENERGY

One simple property that the quasi local energy
possesses is additivity. That is, consider space to consist
of two possibly intersecting regions X, and X2, and as-
sume that X&, Xz, X I U X2, and X

&
0 X2 all have smooth

boundaries so their energies can be computed from ex-
pression (4.8). It follows that the energy satisfies

J=—2 f d'xenon, P"P, j&h = f d'x( 2D;P")P,—. E(X, UX2)=E(X, )+E(X2)—E(Xi AX2), (6.1)

0= —2D, P'J vh T J, — (5.10)

with T"J= —u „T"h ~ denoting the proper matter
momentum density. Therefore, the total angular momen-
tum is

J=f d x&h T"~P (5.11)

the matter momentum density in the P" direction, in-
tegrated over a slice X that respects the spacetime sym-
metry P".

The above results reveal a similarity between angular
momentum J and the total electric charge enclosed by a
boundary B. With the matter momentum density in the
P" direction T"~PJ playing the role of electric charge den-
sity, Eq. (5.11) expresses the total charge J as an integral
over space of the charge density. The surface integral ex-
pression (5.8) for J is then analogous to the integral form
of gauss's law, gauss's law expresses the total charge as
a surface integral of the (radial) electric field, whereas Eq.
(5.8) expresses the total angular momentum as a surface
integral of the gravitational field j;P'.

Expression (5.11) for J implies that the total angular
momentum of any axisymmetric, vacuum spacetime re-
gion vanishes. This result applies in particular to the
Kerr black-hole solution, but deserves further comment
in that case. Recall that the spatial sections t =const of
the Kerr geometry, where t is the Boyer-Lindquist sta-
tionary time coordinate, contain the axial Killing vector
field. These slices have the topology of a Wheeler
wormhole, R XS . Therefore a single surface surround-
ing the black hole does not constitute a complete bound-
ary for a region of space X contained in a t =const slice.
That is, as assumed above, 8 should consist of two dis-
joint surfaces at diff'erent "radii, " and expression (5.8) for
J includes surface integral contributions from both sur-
faces. These contributions cancel, giving J=0 in agree-
ment with the result obtained from Eq. (5.11). The angu-

(5.9)

The term in parentheses is just the gravitational contribu-
tion (4.12b) to the momentum constraint, which in gen-
eral reads

ds = Ndt +h d—r +r (d8 +sin 8dg ), (6.2)

where X and h are functions of r only. Let X be the inte-
rior of a t=const slice with two-boundary B specified by
r =R =const. For simplicity, set Newton's constant to
unity, ~=8~. A straightforward calculation of the ex-
trinsic curvature k,b yields

The acceleration of the timelike unit normal u" satisfies

Xh
(6.4)

where X' is the derivative of X with respect to r. The
subtraction term Eq. (4.5) is given by

S = f dt d9dpNR sin8,o 1

4m
(6.5)

which is obtained by using k from Eq. (6.3) with h = 1.
From the above results, the proper energy surface-

density (4.4a) becomes

1

4m

1

rh R
(6.6)

while the proper momentum surface density (4.4b) van-
ishes. The trace of the spatial stress (4.4c) is given by

o,bs' = [2(n.a) —k]~,&

— —o,b, (6.7)

because the contributions from the common boundary of
any two adjacent regions will cancel. As a particular ex-
ample, let X, be topologically a ball with a two-sphere
boundary, and let X2 be topologically a thick shell sur-
rounding X&. In this case X& A X2 is empty and the total
energy of the ball X, U Xz is just the sum E(X,)+E(X2).

In order to gain some intuition for the quasilocal ener-
gy, consider the case of a static, spherically symmetric
spacetime
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5S'
5R

5S 2 5S
BR 5,b R ' 5 b

(6.8)

Combining these last two equations gives

ab 1 N' 1+
4a Nh rh

(6.9)

where the functional derivative of S can be obtained
from

by bringing the particles together from the boundary of
radius R. In this sense, E is the total energy of the sys-
tem contained within the boundary, rejecting precisely
the energy needed to create the particles, place them in
the system, and arrange them in the final configuration.
Any energy that may be expended or gained in the pro-
cess of bringing the particles to the boundary of the sys-
tem, say, from infinity, is irrelevant.

A related example is obtained by solving expression
(6.14) for m (R ), which yields

Also, the quasilocal energy (4.3) is
m (R)=E E /—2R. (6.16)

E =(r r/—h) ~it. (6.10)

h =(1—2m/r) (6.11)

From the discussion in Sec. V, it follows that the con-
served charge associated with the timelike static Killing
vector field with unit normalization at the boundary is
equal to minus the energy for a t=const slice; that is,
minus the energy computed in Eq. (6.10). Similarly, the
vanishing of j, for the t =const slices shows that the an-
gular momentum (5.8) is zero.

For a simple isentropic fiuid with energy density p(r)
and pressure p (r), the Hamiltonian constraint G,'= —8'
implies [9] E2 Q2E(~)=E— +

2R 2R ' (6.17)

If the boundary R is outside the matter, then
m (R)=m (~ )=E(~ ) is the total energy at infinity.
Then using the additivity of the quasilocal energy, Eq.
(6.16) expresses the energy at infinity as the sum of the
energy E within the radius R and the energy E /(2—R)
outside the radius R. The energy outside R is negative,
and in fact equals the Newtonian gravitational binding
energy associated with building a shell of mass E and ra-
dius R. For a charged spherically symmetric distribution
of matter, the corresponding analysis yields

N'

N
m +4~r p
r 2mr

where

m(r)=4vr f dr r p(r)+M.
0

Similarly, the Einstein equation G„"=8~pgives [9]

(6.12)

(6.13)

where Q is the total electric charge. In this case, the en-
ergy outside R consists of two contributions, the negative
gravitational binding energy E /(2R) and—the positive
electrostatic binding energy +Q /(2R) associated with
building a shell of charge Q and radius R.

As a final example, consider a black-hole solution
m =M. If the radius R and mass M are changed in such
a solution, the energy (6.14) varies according to

The Schwarzschild black-hole solution is obtained by
choosing p=p =0 and m =M, whereas a Auid star solu-
tion with p&0 must have M =0 for the geometry to be
smooth at the origin. In each case, the energy is

i /2

E=R 1 — 1— (6.14)
R

with m (R) defined in Eq. (6.12). Observe that for a com-
pact star or black hole, m (R) is finite as R ~ oo. Thus
the energy (6.14) becomes E~m( ~ ) in this limit, which
is precisely the ADM energy at infinity [13].

The Newtonian approximation for E consists in assum-
ing m /R to be small, which yields

1 —M/R
& I —2M/R

dR+ 1 dM.&I —2M /R

Now define the surface pressure by

(6.18)

. 1
S = Nabs

ab

2
1 1 —M/R

8m R v' I —2M /R
(6.19)

where Eq. (6.13) with p =0 has been inserted into the
trace (6.9) of the spatial stress. The change in energy now
becomes

dE= —s d(4vrR )+(8rrM&1 2M/R ) 'd(4~M ),—
E=m +m /2R. (6.15)

(6.20)
In this same approximation the first term, m (R), is just
the sum of the matter energy density plus the Newtonian
gravitational potential energy associated with assembling
the ball of Quid by bringing the individual particles to-
gether from infinity [13]. The second term in Eq. (6.15),
namely, m /2R, is just minus the Newtonian gravitation-
al potential energy associated with building a spherical
shell of radius R and mass m, by bringing the individual
particles together from infinity. Thus, in the Newtonian
approximation, the energy E has the natural interpreta-
tion as the sum of the matter energy density plus the po-
tential energy associated with assembling the ball of Quid

which is the first law of mechanics for static, spherically
symmetric black holes. This result also has an interpreta-
tion as the first law of thermodynamics for Schwarzschild

The quasilocal energy of Katz, Lynden-Bell, and Israel (see
Ref. [1]) is similar to our expression (4.8), but includes a factor
of the lapse function X on B. When applied to a static, charged,
spherically symmetric matter distribution, the Newtonian limit
of this quasilocal energy includes gravitational and electrostatic
binding energy contributions of the same sign.
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black holes [3,5]. Accordingly, the boundary surface area
4~R and the surface pressure s are thermodynamically
conjugate variables, and (4vrM ) is the Bekenstein-
Hawking entropy of the black hole (with fi and
Boltzmann's constant set equal to unity). The quantity
(8vrM+I —2M/R )

' is the Hawking black-hole temper-
ature blueshifted from infinity to the finite radius R.
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APPENDIX: KINEMATICS

The spacetime metric is g„,and u is the future point-
ing timelike unit normal for a family of spacelike hyper-
surfaces X that foliate spacetime. The normal is propor-
tional to the gradient of a scalar function t that labels the
hypersurfaces, so that u„=—Nt „where X is the lapse
function fixed by the condition u u = —1. A vector field
T" (or tensor field, in an obvious generalization) is said to
be "spatial" (or tangent to X) if it satisfies u T=0. The
metric on X is defined as the spatial tensor

Apv gpv+QpQv& (A 1)

which is induced on X by the spacetime metric g„.Note
that h„=g h

„

is the identity for spatial tensors.
The covariant derivative D„compatible with the spa-

tial metric h„ that acts on spatial tensors is defined by
projecting the spacetime covariant derivative 7'„.That
is, D is defined by D„f=h„VJ' for any scalar function
f, D„T=h„h&V T~ for any spatial vector T", and simi-
larly for higher rank tensors. The extrinsic curvature of
X as embedded in M is defined by

Using the adapted coordinates, the spacetime metric
can be written according to the usual ADM decomposi-
tion [6],

ds =g dx "dx

=(h„—u„u )dx"dx

Nd—t +h, ,(dx'+ V'dt )(dx~+ V'dt ), (A3)

where V'=ho = —Nu' is the shift vector. Also, the space
components of the extrinsic curvature (A2) become

K; = — [h; —2D(;V)],2X
(A4)

where the dot in h, denotes a derivative with respect to
the coordinate t. In addition, define the momentum for
the hypersurfaces X as

P'~= +h (Kh '~ K'J)—
2K

(A5)

Likewise, define the extrinsic curvature by

where h =det(h; ). This definition is appropriate if, as
we assume, the matter fields are minimally coupled to
gravity. (That is, the matter action does not contain
derivatives of the metric tensor. )

The intrinsic and extrinsic geometry of the three-
boundary B are defined analogously to the above
definitions for the family of hypersurfaces X. However,
in this case, the three-boundary B is not treated as a
member of a foliation of the spacetime M. (The space-
time topology may prohibit the extension of B into a fo-
liation throughout all of M. ) Let n" denote the outward
pointing spacelike normal to the boundary B and define
the metric on B by

(A6)

+p& 2 ~u Ap~ (A2a) op
= r (It n (A7)

(A2b)

where 5„is the Lie derivative along u". The expression
(A2b) for K„,is symmetric in p, and v because the unit
normal u" is surface forming, and has vanishing vorticity

It is convenient to introduce coordinates that are
adapted to the foliation by choosing t as the time coordi-
nate. Then the space coordinates x', i =1,2, 3 lie in the
surfaces X and 0/Bx' are spatial vectors. In these adapt-
ed coordinates, the normal satisfies u„=—N6„,and spa-
tial vector fields T~ have vanishing contravariant time
components, T =0. From the definition (Al), it follows
that the space components h'~ of the contravariant tensor
h" form the matrix inverse of the metric components h;,
so that h, kh =6J The space components of a spatial
vector are raised and lowered with h;~ and its inverse h '~,

since T; =g; T =h;. T~ and T'=g' T =h'JT . In partic-
ular, the spacetime tensors D„f,D„T,and K„,are
tangent to X, so D,f, D, T~, and K,~

are tensors on X with
indices raised and lowered by the metric h,".

&—) (o)" —o'),
2K

(A8)

where y=det(y; ).
Recall that the hypersurface foliation is restricted by

the condition (u. n )~, =0. With this in mind, define theB
metric on the two-boundaries B, which are the intersec-
tions of B and the family of slices X, as

—
gp + zlpQ ~ npn~. (A9)

Let 2)„denote the induced covariant derivative for ten-
sors that are tangent to B, defined by projecting the
spacetime covariant derivative onto B. Introducing in-
trinsic coordinates x', i =0, 1,2, on the three-boundary,
the intrinsic metric becomes r; . Tensors tangent to B,
such as the extrinsic curvature (A7), can be written as O,
with indices raised and lowered by r; and its inverse r .
Also define the boundary momentum by
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Also define the extrinsic curvature of 8 as embedded in X
by

(A 10)

where D is the covariant derivative on X. In coordi-
nates that are adapted to the foliation X and the three-
boundary 8, the line element on 8 is

yjdx'dxj= N—dt +o,b(dx'+ V'dt)(dx + V"dt),

(A 1 1)

where x', a =1,2, are the coordinates on B. Note that
o„andk„aredefined only on B.

We will now outline the steps involved in expressing
the extrinsic curvature of the three-boundary 8 in terms
of the intrinsic and extrinsic geometry of spacetime foli-
ated into spacelike hypersurfaces X. The derivation
makes repeated use of the restriction that on 8 the hy-
persurface normal u" and the three-boundary normal n"
are orthogonal. With this condition, n" is a unit normal
for both the three-boundary 8 embedded in spacetime
M, and for the two-boundaries 8 as embedded in the hy-
persurfaces X.

The identity tensor, expressed as 5„=(It„—u u ), can
be used to split 0 p into tensors whose free indices are
projected tangentially or normally to the hypersurfaces
X. This results in

where aP—=ul'V uP is the acceleration of the timelike hy-
P

persurface normal u.
The third term on the right-hand side of Eq. (A12) is

simPlified by recognizing that y~ u PV n p
= —@~n PV u p,

and by using the relationship h„y~=cr„h~on B. This
gives

2h(pu. )uPrPV pnp
———2~(pu. )nPhP Vpup

=2o.(„u )n K p ) (A15)

where IC & is the extrinsic curvature, defined in Eq. (A2),
for the hypersurfaces X.

Collecting these results together, the boundary extrin-
sic curvature is expressed as

O„=k +u u npa +2o(„u )n K p. (A16)

It immediately follows that the trace of the boundary ex-
trinsic curvature is

O=k —n paP. (A17)

Equation (A16) shows that the projection of O„ontoB is
the two-boundary extrinsic curvature k„,while the pro-
jection of O„along the normal u" is n a . The "off-
diagonal" projection of 0„is given by the "oft-diagonal"
projection of the hypersurface extrinsic curvature E„,
according to the relationship o."u 0„=—o. n E„.
The space-time split of 8„alsocan be written in terms
of the hypersurface momentum (A5) and the boundary
momentum (A8) as

+2k(pQ~)Q /~V np. (A12)
N&tr [k"+(n a )cr"—ky' ]

— — o'k'u "P nt. —2N &tr
2lC &h

Because u n =0 on 8, the projections onto 8 and X
commute, and the first term on the right-hand side of Eq.
(A 12) becomes

—h„hPy~V np= —y„hPh~V np

= —o. Dnp a v

(A13)

—u„u.u uPy&V, np=u„u.npaP, (A14)

By definition (A10), this is the extrinsic curvature of the
two-boundary 8 as embedded in X.

For the second term on the right-hand side of Eq.
(A12), observe that the hypersurface normal u" lies in the
three-boundary, so that on 8, u yl'=u)'. Also use the
relationshiP u~uPV np= —u~npV u, which is derived
by diff'erentiating u n ~3 =0. Then the second term inB
Eq. (A12) becomes

(A18)

In this equation, it is necessary to distinguish tensor in-
dices that refer to coordinates on 8, which are denoted
by i and j, from tensor indices that refer to coordinates
on the slices X, which are denoted by k and I.

The final mathematical ingredient needed for our
analysis is the space-time split of the curvature scalar A.
This is obtained from the decomposition

A =h " h ~% —2u t'u Apavp pv' (A19)

The Gauss-Codazzi relation [9] for the projection of the
Riemann tensor onto X gives the first term of Eq. (A19)
as h"'h ~W„ tt=R+(K) K„K"—The seco.nd term
of Eq. (A19) is rewritten using the Ricci identity
% „&u =27'( 7 )u&, contracting with u "g ~ and rear-
ranging derivatives gives u "u %„=(K)—K„,K"
+(r (Ku "+a"). Together, these results yield

A =R +K„K"' (K) —2V„(Ku"+—a") (A20).
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