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With the aid of causal thermodynamics, the Bianchi type-I cosmological model is analyzed under the

assumption of plane symmetry. The initial anisotropy gets rapidly extinguished, and for an ample range

of values of the parameters describing the cosmic Quid one has inAationary expansion.
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I. INTRODUCTION

It has been argued for a long time that dissipative pro-
cesses in the early stages of cosmic expansion may we11

account for the high degree of isotropy we observe today
and the huge value of the ratio of the number of photons
to baryons as well. However, most of the work done in
that direction so far (see [1,2], and references therein) was
based on the standard stationary Eckart theory of ir-
reversible processes [3], which is now known to be unsat-
isfactory since it allows for the occurrence of some un-
desirable effects incompatible with relativistic causality.
Among them there is the propagation of dissipative sig-
nals with boundless speed.

Recently, a more suitable theory free of such draw-
backs, the so-called "extended irreversible thermodynam-
ics" (EIT) [4], as formulated by Israel [5], Pavon, Jou,
and Casas-Vazquez [6], and Hiscock and Lindblom [7],
has been applied to the study of nonequilibrium processes
involved in cosmic evolution. As a consequence, some
novel results generalizing and/or correcting those arising
from the standard theory have emerged (see papers by
Calvao and Salim [8] and Pavon, Bafaluy, and Jou [9],
and references therein). The key features of KIT lies in
its considering the equilibrium and dissipative variables
on the same footing, a hypothesis well supported by sta-
tistical fluctuation theory and kinetic theory. This makes
EIT a suitable theory for dealing with nonstationary pro-
cesses, such as those expected to arise in the early
Universe, as relaxation terms appear naturally in the
transport equations for dissipative fluxes (for a review,
see the article by Jou, Casas-Vazquez, and Lebon [10]).
The purpose of this paper is to study the damping of an-
isotropy and entropy production in a Bianchi type-I
universe filled with a dissipative simple fluid character-
ized by transport coefficients of bulk and shear stresses as
well as by the corresponding relaxation terms. The sym-
metries of spacetime prevent heat flows from arising. We
shall make use of EIT to make sure that relativistic

causality is fully respected. However, as explained below,
we are forced to restrict ourselves to the "truncated" ver-
sion of the transport equations of EIT. Nevertheless, this
limitation is not a very serious one since the truncation
does not affect in any way the causality of the theory.
Owing to the fact that the system of differential equations
governing the evolution of the Universe cannot be solved
analytically, we turn to a qualitative analysis of the equa-
tions, in the case of plane symmetry, and we next proceed
to solve them numerically for some values of certain pa-
rameters defined below. Some numerical solutions are
shown graphically.

It turns out that the initial anisotropy disappears
quickly and, in genera1, neither the Friedmann nor the de
Sitter states happen to be attractors. However, for a wide
range of values of the parameters occurring in the equa-
tions, there exists an invariant stable submanifold of
phase space where the latter exhibits asymptotic stability.
The entropy production diverges for some values of the
parameters, while for some others it dies away quickly.

It is worth mentioning that there exist a variety of
mechanisms able to generate non-negligible viscous
stresses [11],notably the one connected with the matter-
radiation interaction. In addition to this, the existence of
dark matter has recently suggested a new one [12]. Non-
baryonic dark matter seems to exist abundantly, pervad-
ing the whole Universe, and it is thought to interact with
normal matter only gravitationally. This interaction may
conceivably give rise, on the average, to a "drag effect" of
one kind of matter on the other; this, in its turn, may be
viewed phenomenologically as viscosity. This is the usual
outcome of mixing up two different fluids.

The outline of this paper is as follows. Section II is de-
voted to presenting the above-mentioned differential
equations and analyzing them qualitatively for the case of
plane symmetry. In Sec. III the numerical analysis is car-
ried out and the entropy production studied. Finally, in
Sec. IV the main conclusions are summarized.

II. EVOLUTION EQUATIONS

*Electronic address: iftgl@ccuab l.uab. es
We consider the Bianchi type-I universe with the

metric
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3

ds = d—t + g R, (t)dx;

where the functions R; denote the scale factors. From
these, the Hubble parameters H; =d (lnR, )/dt, the aver-
age Hubble parameter H =

—,'+3,H;, and the total ex-
pansion W =g;=,H; are defined.

The source of the gravitational field is a simple viscous
fluid with a stress-energy tensor given by

T" =pu"u +P,ffh" +o." (2)

where p denotes the energy density and P,ff the effective
pressure,

P,ff =P +o. , (3)

P and o being the hydrostatic and scalar viscous pres-
sure, respectively, and o." the shear viscous pressure.
h" stands for the spatial projector g" +u "u .

The Einstein field equations read
3

W —gH;=2p, (4)

3

H, + WH; ——2 W+ W + g H, =P,~+
E=l l

The trace condition takes the form

(i =1,2, 3) . (5)

P =(y —1)p (7)

(the adiabatic index lies in the range 1 ~ y ~2, and it is
assumed to be a constant or at least to vary much slower
than any other variable in the theory) and with the trans-
port equations for the dissipative stresses. The latter as
given by EIT read

W+ W = ,'(p P,tt) .— —

This set of equations has to be supplemented with the
equation of state for the cosmic medium, which we take
as a baratropic fluid, i.e.,

cr+rbo = —gW,
cr" + ro""=.—2g(h'"h 'u' '~' —

—,
'h" W) .a P

(8')

(9')

This obviously limits the range of our conclusions, which
should be viewed as fully valid just for situations in which
the divergence of the terms (rb/Tg)u and (r, /Tg)u
becomes vanishingly small. Of course, there is no reason
a priori why it should be negligible, and what is more,
Hiscock and Salmonson [13] have shown the importance
of the first of these terms in the case of a Friedmann-
Robertson-Walker universe with flat-space sections filled
with a Boltzmann gas. However, from a cosmological
point of view, the relevance of their findings is rather lim-
ited (as recognized by the authors) since a Boltzmann gas
is not a realistic choice to illustrate cosmic evolution, for,
among other things, the temperature, rather than de-
crease, tends asymptotically to a constant value as the
Universe expands.

It is customary to express g and i) in terms of the ener-

gy density according to

Hiscock and Salmonson [13], in some specific scenarios.
However, because these terms involve the temperature of
the fluid, they are very difficult to deal with. Effectively,
in order to use them, a state equation relating the energy
density p to T is needed. Unfortunately, for the rapidly
expanding very early Universe, no such an equation, nor
even an approximate one, is known. In these cir-
cumstances one may be tempted to resort to the relation-
ship for thermal radiation, po- T . However, this would
be preposterous since, on the one hand, the relationship is
valid only for equilibrium and, on the other hand, the
bulk viscosity coeKcient would vanish, something that
we do not wish as we are interested in studying the effects
of bulk stresses on cosmic evolution. Any reliable expres-
sion linking p to T should depend very much on the
different kinds of particle species making up the cosmic
fluid and their proportions in it, something that no one
knows. Confronted with this difficulty, the only sensible
alternative is to drop the mentioned terms involving T
from Eqs. (8) and (9) and to content ourselves with using
the "truncated" transport equations instead:

o 1+—Tg u
b

2 Tg
.+rbo = —gW, g=ap

n=&p"

(10)

1 So." 1+—Tg u
2 . Tn

= —2g(h'"h 'u' '~' ——'h~ W)a P 3 (9)

a and P being positive-definite parameters of first order
satisfying the restrictions —,

' n —m, 0~ m ~
—,'. The re-

laxation times of bulk and shear stresses are given by

where the second terms on the left-hand side of (8) and (9)
stand for the relaxation terms alluded to above. These
are absent from Eckart's transport equations since in that
theory the unphysical assumption that they vanish is im-
plicitly made. An overdot indicates derivation with
respect to cosmic time, while g and g denote the bulk and
shear viscosity coefficients, respectively. Also absent
from Eckart's equations are the second terms within the
curly brackets on the left-hand side of (8) and (9). These,
which involve the temperature T of the cosmic fluid, do
not vanish in general and may be significant, as proved by

~b =0/p

w, =g/p,

(12)

(13)

3

P,tt= —
—,'W —

—,
' g H, —,'W, —

i =1

and, from (5) and (8)—(14),

(14)

respectively; these latter relationships follow from the re-
quirement that the speeds of the dissipative signals do not
exceed that of light in vacuum [14]. From (5) and (7), one
obtains



1398 VITTORIO ROMANO AND DIEGO PAVON 47

2
1 —n

H; —
—,'( W+2WW —WH; )+2H;(H;+ WH; —

—,
' W )+ WH;+P H;+ WH; —

—,'( W + W)

D 2

+2P
2

(H; —
—,
' W) =0 (i =1,2, 3),

(15)

whereas

W+2WW —— (2 —y)
3

3

WW —g HH; +a
1 —m

D 2 2

1 ——D ——'( W+ W )+ay
2 3 2

W =0 (16)

pPO -. D )0,
the dominant energy condition (DEC)

3

p+ P,s. ~0:—,
' W —g H; —' W ~ 0—

(17)

(18)

and the strong energy condition (SEC)

follows from (6) and (8)—(14). In order to simplify the no-
tation, the short D = W —g3 &H, has been adopted.

Equations (15) and (16) are the evolution equations for
the Hubble functions. In general, the latter must satisfy
the energy conditions [15],namely, the weak energy con-
dition (WEC)

3

p+ 3P,~ & 0—g H,'+ W & 0= W & 0 . (19)

However, it is doubtful whether these conditions hold
near the Planck era where strong quantum fields may dic-
tate the cosmic evolution.

To facilitate the qualitative analysis of the system of
equations (15) and (16), we restrict ourselves to the case
of plane symmetry H2 =H3. Admittedly, this is a limita-
tion; nonetheless, we expect that no essential difference
will arise with respect to the general case. Once the
plane-symmetry assumption is taken up, it is easy to
bring (15) and (16) into a first-order autonomous system:

H1= Y

H2= Y2,

Y) = —', W[4H + 5H—]——' W [2H )
—2Hq + Y( —Y~ ]

1 —n

—4 (H Y HY ) + 4 W—(H H)——2 2 D
3 1 1 2 2 9 1 2 3P

D
Y, —Y~+(H, H~ ) W+2P—

(20)

(21)

1+ (2 —y)[H& Yz+Hz Y&+ YzHz]+ 2a

L

'1 —m

D 2 D2
(2 —y )(2H )Hq+Hq )

——', ( W+ W )+a W . , (22)

Y2=— (5H)+13Hq)+ (2H) —2Hq+Y) —Y )+—'(H) Y) —Hp Y ) —'W (H

+(2—y)(H, Y~+H~ Y, +H~ Yp)+
1

2cx

1 —m
D2

m

D 2

(2 —y )(2H, H~+H, ) ——', ( W+ W )+a

1 D
3P 2

n

D 2

H, H~+(H, H~ )—W+2P— (23)

Because of the algebraic difhculties inherent to this sys-
tem, we have to give up finding all its singular points.
Nevertheless, if we restrict ourselves to isotropic singular
points, these can be found after letting H1=H2= A, 3
being a positive constant. From (22) it follows that

A " '[A(a3 A —yA)]=0
The solutions of this equation determine the singular

points. These are Z& =—(H& =Hz=H& =Hz=0), for
0 (m (2, a Friedmann-like state; and

r

3 cx
Z2 = H1=H2=

r

1/(1 —2m)

, H, =H2=0

for mW —,', which corresponds to a de Sitter state. In the
particular case y =3 o., m =

—,', one has the critical point
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Z~—:(H, =Hz =8, H, =Hz =0), where 8 C R+.
Furthermore, (24) can be written as

~3m ~ g 1 —2m

=0,
A

(25)

saddle point. Accordingly, there exists a two-
dimensional invariant manifold of solutions which tend
to Z2 as t ~ ~. For m & 2 the situation is a bit more in-
volved. Q» + Qzz is negative if and only if

and since

lim F( A) = lim
(1—2m) g 2(2 —m)

g ~ oo g —+ oo 3
(26)

where

Q = ——'A —2P 'A (3A )'

+(m —2)yAa '(3A )™,
Qiz=17A +2P 'A(3A )'

+2(m —2)yAa '(3A )'

Qz, = —", A +(m —2)yAa '(3A )' +AP '(3A )'

Qzz=5A +2(m —2)yAa '(3A )' —AP '(3A )'

From these expressions one has

Q„+Qzz=3A PA —3P '(3A )'

+(m —2)ya '(3A )' (28)

Qii Qzz QlzQ21

[162A +36(m —2)yAa '(3A )'

g]P 1A (3A2)1 —n
2

+9(m —2) a 'P '(3 A ) (29)

For m 2 one has Q»Qzz —Q, zQz, (0, whence Zz is a

where F( A) denotes the left-hand side of (25), we have
for m =

—,
' and m & 2 the singular point

Z~—:(H, =Hz = ~, Hi =Hz =0).
Likewise, the singular point Z~ = (H, =Kz = —~,

H, =Hz =0), which follows too from (26), could be con-
sidered, but this point, along with Z4, looks rather un-

physical; therefore, we are not pursuing their study any
further.

Except for the very particular case n =m = 1, the qual-
itative analysis of Z, is far too involved since the Jacobi-
an vanishes and the singularity cannot be removed by a
simple change of coordinates. Consequently, we have to
content ourselves with the numerical analysis of next sec-
tion. The qualitative analysis of the mentioned particular
case (n =m =1) is overed in the Appendix. It reveals
that in this particular case Z& is not an attractor.

The qualitative analysis of Zz [with
A =(3 a/y)'~' ", mA —,'] shows that the characteris-
tic polynomial of the Jacobian matrix at Zz reads

~( Q 1 1
+Qzz ) + Q11Q22 Q 12 Qzl ]

(27)

P '(3A )' "+(2—m)ya '(3A )' )—,'A,
whereas Q „Qzz —Q, zQz, is negative if and only if

162A +—"P 'A (3A )'

)9(2—m)ya '[4A (3A )' +P '] .

(30)

(31)

If the last relationship is satisfied, the same result as that
of the case m ~2, above, emerges. However, if the in-
equality signs in both (30) and (31) are reversed, the de
Sitter state becomes unstable. Furthermore, if (30) holds
and the inequality sign in (31) is reversed, then the de Sit-
ter expansion turns out to be stable. It can be straightfor-
wardly demonstrated that for 0& m 1/2 and 0&a & 1

the relationship (30) is satisfied quite independently of the
values assumed by P and n Like. wise, it is a very easy
matter to show that the relationship obtained from (31)
by reversing the inequality sign there is satisfied for
0&nz & 1/2 and 0&et &1 provided that y & 3+ . This
result is independent of P and n as well. Accordingly,
despite the de Sitter state not being an attractor in gen-
eral, it is nonetheless stable for a wide range of values of
the parameters describing the cosmic fluid.

It is worth noting that since A becomes very small for
m »1, Z2 gets very close to Z, . Hence we may loosely
say that the qualitative analysis of Z2 also applies to Z,
when m »1. However, it should be kept in mind that
from a qualitative point of view the de Sitter and Fried-
mann states are altogether different.

III. NUMERICAL ANALYSIS

Owing to the fact that analytical solutions of the auto-
nomous system of Eqs. (20)—(23) are very difficult to get,
we have performed instead an extensive numerical
analysis of the system in order to show those solutions
that are not close to either of the singular points. As a
matter of fact, the behavior of the solutions heavily de-
pends on the parameter m and the difference between the
initial values of the Hubble functions H, (0) and Hz(0).
The system is far more insensible to small changes in the
values of the parameter n and the adiabatic index y.

We can safely say that the initial anisotropy gets rapid-
ly suppressed for any reasonable starting value of the
Hubble parameters, whether they differ by two orders of
magnitude or in sign or both. Furthermore, all the solu-
tions fall into two categories: They end up either in a de
Sitter or in a diverging state. No Friedmann-like solution
was found. This, together with the qualitative analysis of
Z

&
for n =m = 1 of the last section, reveals that

Friedmann-like states are unstable. For illustrative pur-
poses some solutions are shown graphically [Figs. 1(a),
2(a), and 3(a)] as well as the evolutionary behavior of
p+P, s [Figs. 1(b), 2(b), and 3(b)] and p+3P, s. [Figs. 1(c),
2(c), and 3(c)]. We see that the de Sitter solution of Fig.
1(a) fails to comply with the SEC for late times. Figure
2(a) corresponds to an ever-diverging solution and is
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with

o=(2 —y)(2H Hj~+H ) —,'(W+—W ), (33)

thereby incompatible with observation (aside from violat-
ing the SEC}. However, Fig. 3(a), a de Sitter expansion
again, satisfies the energy conditions; nevertheless, there
is the problem of the exit from the inflation. In actual
fact, what would be nice is a solution that after a period
of isotropic inflation evolves toward a Friedmann-like ex-
pansion. We will have more to say about this in the next
section.

Because of the presence of dissipative processes, there
is a local entropy production given by [5—7]

+ g o "o;; . (i =1,2, 3),1 0. 1
(32)T g 2g

o;;=R; [H;+ WH, —
—,'(W+ W )] . (34)

IV. CONCLUDING REMARKS

We have studied the evolution of a Bianchi type-I
universe with viscous dissipation. The relativistic causal-
ity of the approach is guaranteed by our use of EIT
theory, even though we have used a "truncated" version

We assume that the temperature of the cosmic fluid is a
decreasing function of time, something very reasonable
for expanding universes. By means of the numerical solu-
tions of the autonomous system of Eqs. (20)—(23), we
have numerically calculated the quantity Ty [Figs. 1(d),
2(d}, and 3(d)]. Inspection of these figures show that, as
expected, Ty remains constant for de Sitter evolutions,
while it diverges for diverging Hubble functions.
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FIG. 1. Time evolution of (a) the Hubble functions and the quantities (b) p+P,&, (c) p+3P, ff, and (d) Ty for the parameters values
m =04, n = 3, y = l.5, a =0.5, P=0.9, H, (0)=0 2, Hz(0) =04, H, (0)=0.10, H~(0) = —0. 10. The SEC is soon violated.
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of it [Eqs. (8') and (9')] since, at present, there is no sensi-
ble way of using the full theory. Because of the latter,
our results should be viewed just as provisional until the
terms we have ignored in the full EIT transport equations
(8) and (9) can be taken into account, i.e., until a non-
equilibrium state equation p =p( T) for the very early
Universe becomes available. This we feel still lies a long
way ahead.

The initial anisotropy vanishes rapidly, and both the
qualitative and numerical analyses show that neither the
Friedmann nor the de Sitter states are attractors. This
latter finding is at variance with the results of Huang
[16], who concludes that the Bianchi type-I model
asymptotically evolves toward Friedmann or de Sitter ex-
pansions. The root of this discrepancy may be traced to
his relying on the traditional Eckart theory of irreversible

processes. Furthermore, he restricts himself to the case
of stiff matter (P =p). However, as mentioned before,
there is still a wide range of values of the parameters a, 13,
m, and n for which the universe undergoes a period of
inflationary expansion. As is well known [17], many
inAationary scenarios are beset with the problem of the
exit from the inAation. In our case the exit arises natural-
ly provided the main contribution to the bulk stress
comes from the interaction between unstable superheavy
particles (e.g. , fundamental strings, gauge bosons, etc. )

and relativistic particles. Once the former have decayed
or got sufficiently diluted, the bulk pressure vanishes and
the universe enters a radiation-dominated phase charac-
terized by a stable Friedmann-like expansion [18].

Accordingly, our results hint that the Bianchi type-I
cosmological model may well account for the main obser-
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. 2. Time evolution of (a) the Huble functions and the quantities (b) p+P, z, (c) p+3P,&, and (d) Tg for the parameters values

, a=0.5, P=0.9, H, (0)=0.2, H2(0)=0. 4, H, (0)=0.1(), H~(0)=0. 10. Both Hubble functions diverge as we])
as p+ P,ff and Ty. The SEC is not satisfied at late times.
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vational features of the Universe. It remains to be seen if
for more general Bianchi models the range of Quid pa-
rameters allowing for inAationary expansion is widened
or, on the contrary, shortened while still retaining the at-
tractive feature of a quick decay of the initial anisotropy.

3H =(P ' —a ')H, —(P '+2a ')H

whose characteristic polynomial is found to be

(A1)

around Z, results in the dynamical system of equations,

3H, = —(2P '+a ')H, +2(P ' —a ')H~,
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APPENDIX

In this appendix we detail the qualitative analysis of
the singular point Z& for n =I = 1. Linearization

~(X)=X'+(p-'+a-')X+-,'a-'p-'+;a-' .

The following cases arise;
(i) 9a —7p —2ap=0. In this case

H, = 3;exp(A, t )+B;t exp(At ) (i = 1,2),
with A, (0. It can be trivially integrated to give

H; = A, A, 'exp(A, t )

+B;A, 'exp(kt)It —A, ']+C, ,

(A2)

(A3)

(A4)

I I j 1
I

I I I I I I I I
I

I I I I
I

I I I I
I

I ~ I I

(b)

3—

I I I I I I I I I I I I

0—
I i i s i I I t i c i I r i | s I

100
TIME

200 50 100
TIME

150 200

I I I I
I

I I I I
I

I ~ I I I
I

~ I I I I
I

g ~ g ~

0—

-.2

+
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FICx. 3. Time evolution of (a} the Hubble functions and the quantities (b}p+P, &, (c}p+3P,&, and {d}Tg for the parameters values
m =1.5, n =1, y=1.5, a=0.5, P=0.9, H&(0)=0.2, Hz(0)=0. 4, II, (0)=0.10, H'2(0)=0. 11. Both Hubble functions soon reach a
common constant value (de Sitter expansion) and Ty vanishes almost at once. The SEC is not satisfied at late times.
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where the six constants 3;, B;, and C; depend on the ini-
tial values of H, and H, . Asymptotically, one has

lim H; =C;,
f ~ oo

(A5)

whence the Friedmann state will be an attractor if and
only if C, = Cz =0. However, from (A4) one has

C, =H;(0) —A;A, '+B; A.

which leads to the conditions

H(0)=A k ' B,A, —

(A6)

(A7)

(i =1,2), (AS)

with I—:(a+P)a 'I3 ' and 8=—&—A. The constants
3;*, 8;*, and C,* depend on the initial conditions. A
parallel reasoning to that of the previous case shows that
the Friedmann state will not be an attractor in general.

(iii) 9a —7P —2aP) 0. In this case the roots of P(A, )

for the Friedmann state being an attractor. Obviously,
these will not be met in general.

(ii) 9a —7P —2aP(0. In this case P(A, ) happens to
have two complex roots: namely,

A, , 2= —,
'

I
—(a '+p ')+i& —b, j,

9a —7P —2al3
9a2P2

The Hubble functions take the form

H; = 2;*exp( —I t )sinet +B exp( —I, )coset +C,*

are real and negative. The Hubble functions read

H, =K,M exp(k, t)+K,N exp(X2t)+C', ,

H2 =K& exp(A It )+K2exp(l zt)+ C2

with

aP[68*+l3—a]
4(a —P)

(A9)

H, (0)=K,MA, , '+K~NX2 ',
H2(0)=K, A, , '+K~A2 '

(A10)

are satisfied. However, this can only happen for a very
restricted set of initial conditions. Accordingly, we con-
clude by saying that ZI is not an attractor in general.

a/3[ —68*+P—a]
4(a —P)

and 8*=&A. We parenthetically note that in this case a
and P are necessarily different. The constants K; and C,

'

depend on the initial conditions and are given by

K, =H2(0) —(N —M)[H, (0)—H2(0)],

K2 =H2(0) —K, ,

C', =H, (0)—K,Mk, ' —K2NX2

C~ =H~(0) —K, A. ,
' —K~A, ~

Again, the Friedmann state will be realized if and only if
C =0 (i = 1,2), that is to say, if the equations
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