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Fermions in one-loop quantum cosmology
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In recent papers by D'Eath and Esposito two kinds of boundary conditions, local and nonlocal
(spectral), were used to study the contribution of fermions to the one-loop prefactor in the Hartle-
Hawking wave function of the Universe. Using the (-function technique they found that for the
case of massless Majorana fermions on a Rat background bounded by a three-sphere the values ((0)
coincide for the two kinds of boundary conditions mentioned above. Implementing our version of (
regularization elaborated earlier, we calculate ((0) for both the massive and massless fermions on the
background representing the part of the four-dimensional de Sitter sphere bounded by a three-sphere.
For the massless fermions our results coincide with results for a flat background and, consequently,
the results for both types of boundary conditions are the same. However, for massive fermions the
values g(0) for local and spectral boundary conditions differ on the de Sitter background and on the
flat one as well.

PACS number(s): 98.80.Dr, 04.60.+n

I. INTRODUCTION

In the last few years a lot of papers were devoted to cal-
culations in the one-loop approximation in quantum cos-
mology [1—14]. Some of these papers [1—3,5—7,9—14] deal
with calculation of the prefactor of the Hartle-Hawking
wave function of the Universe [15,16] using the asymp-
totic expansion of the heat kernel for fields of various
spins on manifolds with boundaries. It is worth notic-
ing that calculation of the Schwinger-DeWitt coeKcients
[17] on manifolds with boundaries is rather an old rnath-
ematical task which was considered also in Refs. [18—
24]. In the case of bosonic fields it seems quite natu-
ral to choose the Dirichlet boundary condition provided
we work only with physical degrees of freedom. Such a
choice of boundary conditions corresponds to a fixation
of prescribed values of physical fields on the boundary.
In the case of fermionic fields satisfying the first-order
Dirac equation we cannot require that all the spinor com-
ponents obey the Dirichlet boundary conditions, because
then the boundary data will be overdetermined. Thus
we have to choose some boundary conditions resorting to
certain physical and mathematical considerations.

There are two natural options of boundary conditions
for fermions: spectral and local. Both were considered in
recent works by D'Eath and Esposito [10,11]. The spec-
tral boundary conditions for fermions in quantum cos-
mology were initially considered by D'Eath and Halliwell
in Ref. [25]. They considered a quantum cosmological
model in which the Dirac field is regarded as a perturba-
tion around a Friedmann background gravitational model
containing a family of three-spheres of radius a(t). Us-
ing two-component spinor notation, the unprimed spin-2
field Q& on a given three-sphere may be split into a sum

+ Q&, where Q&+ is a sum of harmonics having
positive eigenvalues for the three-dimensional Dirac op-
erator, nA~ e ~ & )Ds on the S, and gA is a sum of
harmonics having negative eigenvalues. Here, n~~ is the
spinor version of the unit Euclidean normal to the three-

aw'sphere, e ~ is the spinor version of the orthonormal
spatial triad on the three-sphere, and ~3~D& is the three-
dimensional covariant derivative (j = 1, 2, 3) [25,26]. A
similar decomposition may be applied to the primed field

Boundary conditions for invesigating the Hartle-
Hawking quantum state may be found by asking for data
on a three-sphere bounding a compact region with a Rie-
mannian metric, such that the classical Dirac equation
is well posed. For a massless field, if one uses spectral
boundary conditions, one is forced to specify g&(+ and

on the boundary, and not g&(
) and g&(, ). In ad-

dition to these physical arguments, spectral boundary
conditions are of considerable mathematical interest and
their foundations lie in the theory of elliptic equations
and in the index theory for the Dirac operator [27].

One can also choose local boundary conditions for
fermionic fields. For a spin-~ Majorana field (Q~, gA )
in Riemannian space, these conditions are

n A'gA e@A'

on the bounding surface. Here e will be taken to be either
+1 or —1. These boundary conditions were introduced
by Breitenlohner, Freedmann, and Hawking [28,29] for
gauge supergravity theories in anti —de Sitter space, which
can be seen as the maximally supersymmetric solution of
the O(N) gauge supergravity theories. Another way of
introducing of local boundary conditions was proposed in
papers by Luckock and Moss [30] and Moss and Poletti
[5]. These conditions are formulated in terms of four-
component spinor fields and can be written as

'Electronic address: grgibrae. ins. su PC =0 (1.2)
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on the boundary, where P is a projector, which looks like
P = (1 e—ps'&n„)/2 F.or the case of spin-2 fields bound-
ary conditions (1.2) coincide with ones from Eq. (1.1). It
is important to stress that boundary conditions (1.2) are
self-consistent for both Majorana and Dirac spinors and
for massive fermions as well as for massless ones. Having
made the transformation from four-component spinors to
two-component ones we see that the boundary conditions
(1.1) survive in the massive case and in the case of Dirac
fermions are substituted by

~2,n„" @"= ~g"', (1.3)

A' A qA' (1.4)

where y+ is the second two-component spinor compound-
ing Dirac field (@,g~ ).

In Refs. [10,11] the one-loop prefactors in the Hartle-
Hawking wave function were studied using the general-
ized Riemann ( function formed from the squared eigen-
values of the four-dimensional fermionic operators. For a
massless Majorana sPin-~z field, the values g(0) describ-
ing scaling properties if the wave function were calcu-
lated on the fiat background bounded by a three-sphere
for the cases of local and spectral boundary conditions.
Remarkably, the same value ((0) = sso was found for
both the cases. The natural question arises as to whether
the equality of the local and spectral values for ((0) is a
feature peculiar to the highly symmetrical example of a
three-sphere surrounding a region of Hat four-space, or
whether there is an extension of this result to a more
general context.

This question is under consideration in the present pa-
per. In our preceding papers [12,13] a new version of
the g-function technique [31,32] was elaborated. This
version allows us to reduce the calculation of |,'(0) to a
comparatively simple manipulation with asymptotic ex-

pansions of basis functions of corresponding eigenvalue
equations. In Refs. [13,14] the value ((0) for a massive
spin-z field on the background representing the part of
a four-dimensional de Sitter sphere bounded by three-
sphere was calculated for the case of spectral boundary
conditions. After taking the corresponding limit our re-
sult coincides with one from [11].Here we calculate ((0)
for a massive spin-& field on the de Sitter background at
the local boundary conditions and compare our results
with the our preceding ones and with those by D'Eath
and Esposito [10,11]. We see that for the massless case
our results coincide with the corresponding ones for a
flat background and, hence, each other. However, for the
case of a massive spin- z field the results for the problems
with difFerent boundary conditions difFer not only on the
de Sitter background, but also on the fiat one.

In Sec. II we introduce notation for spinor harmonincs
and write down basis functions for the Dirac equation
and the equations determining eigenvalues for local and
spectral boundary conditions. The notation and logic
of exposition in this section coincide with those used in
the papers by D'Eath and Esposito [10,11] but their ap-
proach is generalized for the case of massive fermions,
both Majorana and Dirae. Section III contains a sketch
of the technique of the generalized ( function on a com-

pact Euclidean manifold with a boundary. In Sec. IV we

apply this technique to the spinor field and discuss the
obtained results.

II. EIGENVALUE EQUATIONS FOR
SPINOR FIELDS W'ITH LOCAL AND

SPECTRAL BOUNDARY CONDITIONS

In this section we shall use the notation of
Refs. [25,10,11]. The action of the Dirac field in the
curved background with the Lorentzian signature has the
form

4 A' p A -A' p 77%

S = —— d xe(P eAA, D&P +g ez&, D&y )+H.c. —
2 2

d42;e(y~P+ + P+ y~ ) + boundary terms. (2.1)

The gravitational field is described by the tetrad e„,
where a, b, ... = 0, 1, 2, 3 are tetrad indices and y„v, ... =
0, 1, 2, 3 are world indices, or equivalently by the Hermi-

tian spinor-valued forms

ep ep, a AA'
AA' a

where

I Z
~o = ) ~i = ) &= &)2)~)

2 2

where Z, are the Pauli matrices. It is necessary also
to introduce the unit timelike future-directed normal
to the boundary surface of our manifold n" and its
spinor version n which obeys relations nAA e,
0, nAA n = 1. The transition to the Euclidean signa-
ture can be achieved by rotating the basis e„~ —ie~,

while still using I orentzian conventions for the tetrad
metric g b and for spinors: the space-time metric g„
then becomes positive definite. It is convenient to de-

AA' ~ AA'
fine the Euclidean normal spinor, n++ = in, whic—h
corresponds to a unit spacelike normal vector, n".

The action (2.1) with corresponding boundary term
leads to the Dirac equations

p m p fA

2 2
(2.2)

p A~ . m p A~, m
eAAD &

2 2

Before consideration of the eigenvalue problem for the
Dirac operator it is necessary to introduce a complete
set of harmonics for the expansion of any spinor field



1382 A. YU. KAMENSHCHIK AND I. V. MISHAKOV

on the three-sphere. These harmonics were described in
Ref. [25]. In terms of these harmonics the expansion
for the Dirac field on the Friedmann-Robertson-Walker
background with the metric

ds2 = —dt's+a (t)d As

dy (n+ 2)y —mx=0,dr a(r)

dg (n+ 2s)g+
( )

+mx=0.

(2.10)

(2.11)

looks like

a-3/2 ). "'[ (t)P ( )+ (t) ( ))2'

(2.4)

Further, we can receive from (2,8)—(2.11) the following
set of Euclidean second-order equations:

d2x (n+ -) da (n+ I)s
g( ) d 2( )

x m x Oy (2 12)

—3/2 ).~"-'[ -.(t)&~'(x) + r-.(t)~7(x)]
d'y (n+ 2s) da (n+ s)2
d 2+ 2( ) d y —

2 y —m y=0, (213)

(2.5)

@
—3/2 ).~-"'[ -.(t)~"'( )+t-.(t) "'( )],

G X

dr2
(n+ —,') da (n+ —,')'

'( ) d '( )

(2.6)
-s/a ).4 [s-,(t).-";.(-) + t-, (t)-7. (x))27r

{2.7)
Here the harmonics p& and o.&, have positive eigenval-

ues 2 (n+ 2 ) of the intrinsic three-dimensional Dirac oper-
ator, n~~ e++ ~ ~ &D~ on the three-sphere, while the har-
monics P&q and cr&~ have negative eigenvalues —2i {n+2s);

D~ is the three-dimensional covariant derivative, n runs
from 0 to infinity, p and q from 1 to (n + 1)(n + 2)
[(n + l)(n + 2) is the multiplicity of the corresponding
eigenvalue of the three-dimensional Dirae operator). ni„"i
and P~i'q are a collection of matrices introduced for con-
venience, to avoid couplings between different values of
p in the expansion of the action, where, for each n, n~'i
is block diagonal in the indices pq, with blocks

Kdx (n+ ~2)x~

a(r) ) (2.16)

At the same time g must obey Eq (2.11).with Ag on the
right-hand side. Substituting (2.16) into (2.11) we ean
see that this equation is equivalent to Eq. (2.12) provided

Now, one can show that the eigenvalue problem for
Eqs. (2.12) and (2.15) is equivalent to one for a couple
of entangled equations (2.8) and (2.11). In fact, let us
suppose that the function 2: is an eigenfunction of the
second-order operator from Eq. (2.12) with eigenvalue A.
Then we can assume that there is some function y which
in combination with x gives a solution of the eigenvalue
problem for the couple of equations (2.8) and (2.11) with
the eigenvalue A. This function y can be found from
Eq. (2.8):

(A —m)' = A y m'. (2.17)

dx
d7

(n+ 2s)x

a(r) +my =0, (2.8)

dx (n+ 2s)x
(2.9)

Pg'i is block diagonal with blocks

(
(—1 —1

and the time-dependent coefficients rn„„,r„„,t„z,s„z, and
their complex conjugates are taken to be odd elements of
Grassmann algebra.

Now denoting m„„, t~„, by x and s„„and r „by y
and substituting (2.3)—(2.7) into (2.2) we can have the
following field equations after the transition to Euclidean
space-time:

Further if x and g satisfy the pair of equations (2.8) and
(2.11) with A obeying (2.17) that not only (2.12) but also
(2.15) is satisfied with the eigenvalue A.

Now, we ean find the connection between the determi-
nant of the first-order operator from Eqs. (2.8), (2.11),
and one of the second-order operator from Eq. (2.12).
One can see from the square equation (2.17) that each
eigenvalue A of the second-order operator corresponds
to two eigenvalues A of the first-order operator from
Eqs. (2.8), (2.11), and the product of these eigenvalues
Ai and A2 is equal to the A. Thus, we can say that the
determinant of this Brst-order operator is equal to the
determinant of the second-order operator. We can show
in a similar way that the determinant of the erst-order
operator from the second couple of equations (2.9) and
(2.10) is equal to the determinant of the second-order
operator from Eq. (2.12). Naturally, all that is written
above is correct provided consistent boundary conditions
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for x, y, x, and y are chosen.
Before specifying these boundary conditions we shall

find the basis functions of our equations which will be
used for the calculation of determinants of the corre-
sponding operators by with the help of the (-function
technique. Firstly, we fix the background as a Euclidean
de Sitter space with the metric

ds = dr +a (v')d As = R (d8 +sin 8d As),

(2.18)

where R is the radius and 8 is the "latitude" angle on
the de Sitter four-sphere.

Because Eqs. (2.13) and (2.15) coincide with (2.12) and
(2.14) correspondingly, we shall consider only equations

for x and x. On the background (2.18) these equations
with eigenvalue terms on the right-hand side turn into

d'x n+ —,
' (n+ —,')'

z+ &
cos8x —

z x —(m R +AR )x=0,
sin 8 sin 8

(2.19)

cos8x —
2 x (m R—+AR )x = 0.

sin 8 sin 8

(2.20)

We are interested in such solutions which are regular on
the part of the de Sitter sphere bounded by the three-
sphere, parametrized by the latitude angle 8+. After the
corresponding substitutions we find that 2: and x can be
expressed through hypergeometric functions

x„(8) = %stan" —pe I imam + AR, —imam + AR;n+ 2;sin„+s, 8 . 20

and

x„(8) = N2sin"+ —cos " ~ —2'
~

1+ i/m + AR, 1 —imam + AR;n+ 3;sin 20 (2.22)

where Nq and N2 are some normalization constants.
Now, we must write down boundary conditions in terms of obtained basis functions. In the case of spectral boundary

conditions the situation is very simple. We should fix on the boundary those harmonics that correspond to positive
eigenvalues of a three-dimensional sphere; i.e. , we have to require that functions m, s, r, and t obey the Dirichlet
boundary conditions. In other words the basis function (2.21) must be equal to zero on the boundary or

x„(8+) = Nqtan"+ + 2' ~ imam +AR, —imam +AR;n+2;sin
~

=0.. 28+&2'' 2
(2.23)

Equation (2.23) defines eigenvalues A and will be used
for the calculation ((0) for Dirac operator at spectral
boundary conditions. The result, which will be obtained
for the second-order operator (2.19), must be multiplied
by two for the Majorana spinor and by four for the Dirac
one.

The situation by local boundary conditions is more
complicated. We have to consider the Dirac and Majo-
rana cases separately.

Let us begin by considering local boundary conditions
for Dirac spinors. Substituting expansions (2.4) and (2.7)
for spinors P~ and y~ correspondingly into Eq. (1.3)
and using the relations from Ref. [25] which permit us to
express the harmonics p&", through p& and o&" through
+A' ~

-im ~(8+) = ~s ~(8+) (2.24)

it„„(8+)= er„„(8+). (2.25)

In quite a similar way, after substituting the expan-
sions (2.5) and (2.6) into the second local boundary con-
dition (1.4) we shall get another pair of relations

is„„(8+)= em„~(8+),

(8+) = t (8+).

(2.26)

(2.27)

It will be convenient to rewrite our relations (2.24)—
(2.28) through x, y, x, and y. In this case Eqs. (2.24)
and (2.25) turn into

—ix (8+) =~y (8+) (2.28)

where (A H„) is the block-diagonal matrix with blocks
& 0

I, we can obtain the relations

ix (8+) =~y (8+)

and Eqs. (2.26) and (2.27) turn into

iy (8+) =~* (8+)

—iy (8+) = &x (8+).

(2.29)

(2.30)

(2.31)
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To obtain the equation determining the eigenvalues for
the Dirac equation at local boundary conditions, just like
Eq. (2.23) defines such eigenvalues for the problem with
spectral boundary conditions, we have to consider simul-
taneously the Dirac equations (2.8)—(2.11) and boundary

conditions (2.28)—(2.31). To begin with, let us consider
Eqs. (2.28) and (2.8). Remembering that x„(8) and y„(8)
are defined as (2.21) and (2.22) we can have from (2.28)
the following relation between normalization constants
Ni and N2.

Ni iesinB+ zFi(1+ iv m2+ AR, 1 —igm2+ AR;n+ 3;sin ~2)
N2 2 2Fi(iv m + AR,

imam

—+ AR n + 2 sin ~2)

We can also obtain from (2.8), by using well-known formula [33]

(2.32)

F( —1 5+I +1 )dz c
the relation

Ni (A —m) R(n + 2)
N2 m2~2 + pg2

Equating (2.32) and (2.33) we have the following condition on the eigenvalues:

2' i m + R, —i m + B;n+2;sin 2 8+'l ie(m +A)RsinB+

(2.33)

xzFi
~
1+i/m + AR, 1 —imam + AR;n+ 3;sin

~

= 0. (2.34)
. , 8+1

2

Analogously, from Eqs. (2.29) and (2.8) we can obtain the following condition on the eigenvalues

2Fi
~

iQmz + AR, —igm2 + AR; n+ 2; sin 2 8+. ~ 'CE(m + A)Bslil
2p 2n+2 A —m

x2Fi
~

1 + imam + AR, 1 —imam + AR; n + 3; sin = 0. (2.35)l 2

Multiplying (2.34) by (2.35) and taking into account that e~ = 1 and (A —m)~ = m2 + A [see Eqs. (2.17)], we have
the condition

2 8+~ m~+A R2sin 8+
2 ) 4(n+2)22Fi

~ imam + AR, —imam + AR; n+ 2; sin
~

+

x 2Fi
~
1+i+m +AR, 1 —imam +AR;n+3;sin. 28+&

'
= 0. (2.36)

It is possible to show that the combination of the bound-
ary conditions (2.30) and (2.31) with the equation of mo-
tion (2.10) gives us the eigenvalue condition (2.36) again.

Now we can consider the local boundary conditions for
Majorana spinors. Our exposition will be very close to
that of Ref. [10]. In the case of Majorana spinors lo-
cal boundary conditions (1.1) will entangle the functions
m„„and r„„with different values of p in contrast with
the case of Dirac spinors. To be precise we can say that
functions with adjacent values of index p, 2k + 1 and
2k+ 2, where k = 0, 1, . . . , 2(n+ 3), are entangled. It
will be enough to consider as a typical case a pair of
indices: p = 1 and p = 2. Let us introduce the notation

x —= m„y, X:—m„2, x = m„y, X = m„2,

y—:r„q, Y:—r„q, Q:—r„~, Y=r„2
(2.37)

ix(B+) = eX(8+), — (2.38)

iX(B+) = ex(8~), (2.39)

Now, substituting the expansions (2.4) and (2.5) into lo-
cal boundary conditions for Majorana spinors (1.1) we
can get the following conditions for functions (2.37):
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iY(8+) = sg(8+),

—iQ(8+) = eY(8+).

(2.40)

(2.41)

d7-

(n+ —,s)2:

a(r)
+(m —~)~=0, (2.42)

dx (n+ 2s)z+ ' +(m —A)z = o,
d7 a 'T

(2.43)

The Dirac eigenvalue equation has the following form for
Majorana spinors:

dv (& + 2)& —(m —A)g = 0,d~ a(~)
dg (n + —,')~ —(m —A)q = o.
d7- a(r)

(2.44)

(2.45)

A set of equations for X, Y, X, and Y is quite similar
to the system (2.42) and (2.45). Because the functions
x and y in Eqs. (2.38)—(2.45) are disentangled we can
consider for the beginning a pair of the conditions (2.38)
and (2.39) together with Eqs. (2.42) and (2.43). That
pair of equations gives the second-order equations which
coincide with (2.12) and (2.14). Thus we can introduce
the following system of basis functions:

. „+58 „xgx = Cousin"+~ —cos " ~ —2'
~

1+igm2+AR, 1 —imam +AR;n+3;sin2 —~,2 2 2
(2.46)

s8 „ i8 ( . 28X = C2sin"+~ —cos " ~ —2'
~

1+i+m +AR, 1 —imam 2+AR;n +3;sin
2 2 2

(2.47)

x = Cs tan"+ ~ —2' ~
i gm + AR, —igm2 + AR; n + 2; sin

„g8
2

(2.48)

. 20X = C4 tan" +& —2' ~

i gm + AR, —i gm2 + AR; n + 2; sin
2

(2.49)

Substituting (2.48) and (2.47) into (2.38) we have

sln6+2F1 1+i m2+ R, l-i m2+ B.n+3;sin'~2
= lE

2F1 x m + AB) —x m + AB) n+2)sin
(2.50)

Substituting (2.48) and (2.49) into (2.38) we obtain

C4 . sin8+ pe(1+iv'm +AR, l —imam +AR;n+3;sin ~))

pe(imam + AR) —imam + AR) n+. 2;sin ~2)
(2.51)

From Eq. (2.42) we obtain the relation

Cs (A —m)R(n+ 2)
Cg (m2 + A)R2

Analogously we can also obtain

C4 (A —m)R(n + 2)
C2 (m + A)R

Now combining together Eqs. (2.50)—(2.53) we have

C3 C4 C1 C4
C2C1 C3C2

(2.52)

(2.53)

sin 8+ (m +A)R [2'(1+ imam + AR, 1 —iv'ms+ AR;n+3;sin ~~)]2

(& + 2) [2Fy(imam + AR, —igm2 + AR; n + 2; sin ~2)]2

(2.54)
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or

zFq iy m +AD, ig—m +AR;n+2;sin. . 26+&
'

sin 8+ 2'
~

1+ imam + AR, 1 —imam + AR; n+ 3; sin
(m'+A)a' . , (. . .0+)

4(n+ 2)
= 0. (2.55)

We can also obtain the eigenvalue condition (2.55) con-
sidering harmonics denoted by y, g, Y, Y.

Thus, we have obtained the eigenvalue condition for
Majorana spinors provided local boundary conditions are
chosen. It is worthwhile to note that if in the case of spec-
tral boundary conditions the eigenvalue equation (2.23)
is the same for Majorana and Dirac spinors, in the case
of local boundary conditions the corresponding equations
(2.55) and (2.36) are different.

III. THE TECHNIQUE OF THE
GENERALIZED ( FUNCTION ON A COMPACT
EUCLIDEAN MANIFOLD %'ITH A BOUNDARY

@(q+) = exp( —I[qp] —Wg ) p), (3.1)

where q+ are the values of all (gravitational and matter)
fields on the boundary OM of the Euclidean manifold
M, qo are the solutions of classical equations of motion,
satisfying the corresponding boundary conditions, and
Wq ~ ~ are one-loop contributions to (3.1) which equals

1
p Tr ],n JPOOP (3.2)

where the second-order differential operator F is

b2I

6(b(
and ( are physical degrees of freedom. Introducing gen-
eralized Riemannian ( function

((s) = ) 1
(3.4)

A

(3.3)

where A are eigenvalues of F, it is possible to show [31,32]
that

W] )„p ————('(0) ——((0) ln p 2 (3 5)

Here p2 is a renormalization-mass parameter, reflecting
the renormalization ambiguity of the theory.

The main problem is connected with the necessity to
calculate ((0) and ('(0) without explicit knowledge of the
spectrum (3.3). It is possible to do using the methods
of the theory of functions of complex variables. Let us
suppose that we have a full set of basis functions u(~~m )
of operator (F + m ), i.e. ,

It is known that the Hartle-Hawking wave function
[15,16] in the one-loop approximation can be represented
in the form

(F+m )u(~~m ) =0, (3.6)

((s) = 1 dz——ln u(~+ ~m —z)z' dz
(3.8)

over the contour C in the complex plane of z, which
encircles all the roots of (3.7) (see Fig. 1). Using the
properties of basis functions [12] we can continuously de-
form the original contour of integration C to the new
one C, which encircles the cut in the complex plane of
the function z ', coinciding with the negative real axis
(see Fig. 1). After this Eq. (3.8) can be written as

sin mrs dM2 d
2 1nu(~+~m + M )

dz d 2——ln u(r+ ~m —z),
G z dz

1+
27ri

(3.9)

where the first term is a jump of the integrand of (3.8)
on the cut of the function z ', integrated along this cut
z = —M2, and C, is a circle around the point z = 0 of

Qz

FIG. 1. Integration contours C and C in the comple~
plane of the auxiliary mass parameter z.

where ~ is Euclidean time. Then the eigenvalues A of
F + m with Dirichlet zero boundary conditions satisfy
the equation

u(r+~m —A) = 0, (3 7)

where w+ is the value of Euclidean time parametrizing
the boundary BM. For example, in the case of spectral
boundary conditions for spinors Eq. (2.23) plays the role
of condition (3.7) defining the eigenvalues of the corre-
sponding second-order difFerential operator (2.19). At
the same time in the cases when we have more compli-
cated boundary conditions such as in Eqs. (2.36) and
(2.55), in Eqs. (3.7) it is necessary to use corresponding
combinations of basis functions. In further exposition we
shall write simply u(w+ ~mz —A) keeping in mind that in-
stead of u some combinations of basis functions or (in the
case of Robin boundary conditions) even a combination
including first derivatives of basis functions might stay.

Now using the Cauchy formula, we can write g(s) as
an integral
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some small radius s.
Let us transform Eq. (3.9) by the following sequence

of operations. First analytically continue both terms into
the neighborhood of s = 0 and then go to the limit z = 0.
The integral along C, will vanish because of the regular-
ity of u(w+~m —z) at z = 0. Thus, expression (3.9) is
boiled down to the integral along the cut.

For the case of the field theories with an infinite num-
ber of modes we have instead of (3.8) the expression

27ri

dz d 2——) lnu(r+ ~m —z),z' dz
A

(3.10)

where collective index A enumerates field harmonics. It
is necessary to use g regularization in a such way to pro-
vide also regularization of ultraviolet divergences. Be-
cause of the properties of so-called uniform asymptotic
expansions [34,35,12] we can carry this out by making
the change of integration variable z -+ nzz, where n is

dz d—I—( z, —s),z~ dz
(3.11)

where I( z, s—) is a manifestly regularized infinite sum:

I(—z, s) = ) 2 inu~(~+~mz —z).
A

(3.12)

The series (3.12) analytically continued from its conver-
gence domain generally has a pole at s = 0:

Ir 'M
I(M', s) = + I"(M') + O(s), (3.13)

where I+(M2) is a regular at s —+ 0.
After some calculations [12] it is possible to show that

an integer parametrizing index A. Making this change of
integration variable one can represent the t,

" function in
the form

((s) = (I )i s + I "(oo) —I "(0)+ s I (oo) —I (0)—
2dIi'"'(M )dM lnM + O(s ), (3.14)

where (I+)i~+ denotes the coefficient at the ln M2 in the
expansion of I+ at Mz ~ oo, I+(oo) is the finite part of
IR at M2 —+ oo. Thus we have

OO

n=o
(3.18)

((0) =(I"). +I""( ) —I' "(o) (3.15)

(3.16)

It is necessary to notice that the terms, including I&~ie

do not have analogous ones in a theory with a Bnite
number of modes. These terms are responsible for the
nontrivial renormalization of the ultraviolet divergences
performed by the ( function regularization.

The proposed method of calculating ((0) and g'(0)
requires knowledge of (I )i&&s, (I )(oo), (I )(0),
(Ii'~")(M2). These quantities can be obtained from
the uniform asymptotic expansion for basis functions in
the case where these functions and their expansions are
known. But the computation of these values is a tedious
task. However, it is not necessary to use all this infor-
mation for calculating only ((0). It is possible to sim-
plify the technique for the calculation of ((0) by using
a convenient choice of normalization of basis functions.
As a matter of fact we can choose the normalization for
these functions in a such way as to obtain the equality
(I~ ")(M )~M~ = 0. In this case (3.15) turns into

where dimA„denotes the degeneracy for harmonics cor-
responding to n (for two-component spinors dimA„=
(n + l)(n + 2), see Ref. [25]), u„ is a hypergeometric
function from (2.23) for the case of spectral boundary
conditions or a combination of hypergeometric functions
from formulas (2.36) or (2.55) for local boundary con-
ditions. Expanding u„ in inverse degrees of n we can
reduce (3.18) in the convergence domain 2s ) 4 to the
sum of usual Riemann ( functions. Then we investigate
the expression obtained at the limit s ~ 0. It was shown
in Ref. [12] that in the general case I(M2, s) can be rep-
resented as

k= —3 n=np
(3.19)

where no is a difFerent number for fields with different
spins. We can calculate (3.19) term by term using the
( regularization technique and obtaining the usual Rie-
mann ( functions. Taking into account that the only
simple pole of (R(z) is z = 1,

(3.17)

Let us consider in what way the term [Ii'~"(Mz)]/s ap-
pears in the decomposition (3.13) of a regularized sum
(3.12). We can rewrite the series I( z, s) in the form—

one easily finds from (2.37) that Ir '(M2) = I i (M2)/2.
Now to provide the right choice of normalization con-
stants for u„we can use the asymptotic formula for hy-
pergeometric function [36]: for ~A~

—+ oo
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a+A, b+A;C;
~

= ' ' ' ' 2o+b —'(1 e—
&)

—c+l/2(1+e —~)c—o—b —&/2P —&/21 —z l r(1 —b+ A)r (c)
r(1/2)r(c- b- &)

x [e(A
—b)( + e+i~(c—1/2) —(A+a)g] [1 + 0(~~

—y
~)]

z + (z2 —1)'/2 = e+&.

(3.20)

It is clear from (3.20) that only a term of expansion of ~(n+ 1)(n+ 2) ln2+q(a+ p, b+ p;c; l '), which gives a
contribution into I "(M ) = 0, at M —+ oo, originates from l (n + 1)(~ + 2) inr(c).
th«oliowing: in the case of spectral boundary conditions we must use the hypergeometric function (2.23) divided
by r(n+ 2) and in the case of local boundary conditions we must use expressions (2.36) and (2.55) for Dirac and
Maj»ana spino» co»espondingly divided by [r(n+ 2)] . It will be convenient to shift our summation index from n
to n —1. En this case the summation will begin from n = 1, and the degeneracy for two-component spinors will be

dimA„= n(n+ 1).

Now we can write down the expressions for I(M, s) which we shall use calculating ((0) according to formula (3.17).
For Majorana spinors at spectral boundary conditions,

2n(n+ 1) 2'(igm2+ M2R —i/m2+ M2R n+ 1 sin ~)
I(M &)Mepect = )

n=l

For Dirac spinors at spectral conditions we must take expression (3.21) multiplied by a factor 2.
For Dirac spinors at local boundary conditions we have

(3.21)

2n(n+ 1) 1I(™&S)D local = )
n=l

m +M R —i m +M B'n+l si~

2 g+ [2Fl(1+i+m +M R, 1 —imam +M R n+2;sin ~)]2
4(n+ 1)' ) 3 }

and for Majorana spinors at local boundary conditions we have

(3.22)

. n(n+1)I(M, s)Ml l = ) ln
n=l

+I B —i m2+M2B n+1 sin

2
6I

4(n+ 1)' [QEf(1 +i /m~ + M~R1 —i /m + M, ~R n + 2sin ~)] ).7 ) ) (3.23)

IV. B.ESULTS AND DISCUSSION

Now we are in position to calculate ((0) for spinors at different boundary conditions. To do it we must use formulas
(3.21)—(3.23) for calculating (IR)log and IPo" (0) and then substitute obtained results into formula (3.17).

Let us begin with the calculation of ((0) for Majorana spinors at spectral boundary conditions. Firstly, we calculate
(IR)l g. Using the asymptotic formula (3.20) we can extract from (3.21) the coefficient at ln M2 which looks like

n(n+1) /' 1 3 1
(I )l,g

——lim ) = -&~(-3) —-CR(—2) —-CR(—1)
e 0 &2e 2 2n=l

Remembering that (R(—3) = ~zo, (R(—2) = 0, (R(—1) = —~, we have

R(I )log M spect (4.1)

For calculation of IP "(0) we can equal M2 in the expression (3.21) to zero. After that for an extraction term
behaving like —from (3.21) it is enough to use the usual expansion of the hypergeometric function into series [33] and

n
the asymptotic formula for ln r(n) at n -+ oo. As a result of this procedure we have
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Ip"'(0)M,p„t —— + m R
i

—sin + + —sin +
~
+ m R ——sin + + —sin

360 l, 2 3 2 ) 2 2 3 2 )
Now substituting (4.1) and (4.2) into (3.17) we obtain

I,'(0)Mspect = 360+m R sin ——sin
~

+m R
~

—sin ——sin
ll 2 2 . 48+ 2 . f8+i 4 4(1 . 48+ 1 . f8+i

2 2 3 2

(4.2)

(4.3)

((0)D»spect for the Dirac sPinor field at sPectral bound-
ary conditions can be obtained by multiplying (4.3)
by two. It is easy to see that in the Bat-space limit
(R sin 8+ ——a+, 8+ —+ 0 where a+ is the radius of three-
sphere restricting the part of flat space) the expression
(4.3) turns into

y]. m4a4+
((0)M spect flat + (4.4)

and in the massless case coincides with the result from
Ref. [11]. Moreover, at m = 0 the dependence on 8+
dissappears from (4.3) and ((0) for the de Sitter case
coincides with one for the flat-space case. One can sup-
pose that this coincidence is naturally connected with
the well-known fact that the massless spinor field has the
property of conformal invariance. (It is worth adding
that the analogous coincidence of results for the de Sit-
ter background and for a Hat one were found also for a
conformally coupled massless field and for an electromag-
netic field [13,14].)

Now we can go to the calculation of I,"(0) for the case
of local boundary conditions. It is easy to see, looking at
the asymptotic formula (3.20), that the large-M factor

in the hypergeometric function with the third parameter
c = n+1 behaves like M ~ ~)' while the analogous fac-
tor in the hypergeometric function with the third param-
eter c = n+ 2 behaves like M " )' . Therefore, in ex-
pressions (3.22) and (3.23) the terms including functions

2Fi(l + iv'm + M R 1 —iv'm + M R n + 2; sin +
)

do not give a contribution to the coeKcient at ln M, i.e. ,
to (I+)los. Thus we ean see that (I )lozMlocal coincides
with (IR)l z M,p„t formula (4.1) and the corresponding
value for Dirac spinors difFers from (4.1) only by factor
2. In addition, calculating (IP")(0) in the massless case
m = 0 we find that at M = 0 and m = 0 terms including
2+1 (1 + t'gm2 + M2R I t'gm2 y M2R. rt + 2 ~ sjn2 ~)
disappear from expressions (3.22) and (3.23) and they
coincide with (3.21) precisely as (3.23) and up to factor
2 in the case of Dirac spinors (3.22). Thus, we have seen
the way in which, in the case of massless spinors, results
for ((0) calculated at spectral and local boundary con-
ditions coincide. However, in the case of massive spinors
we must calculate IP "(0) using expansions for combina-
tions of hypergeometrical functions which are arguments
of ln in formulas (3.22) and (3.23). After carrying out a
straightforward but a bit tedious calculations we obtain

Ip "(0)D l, l = +m R
I

—sin + +sin + ——sin + —m R
i

—sin + + —sin (4.5)

IP '(0)M l„,l = + m R
I

—sin ——sin + —s'n + m R
I

——sin + —sinpole 1 2 2 61 . 48+ 5 . 48+ 5 . s 8+ 4 4 ( 1 . 48+ 1 s 8+
(4.6}

Now, substituting the obtained results into (3.17) we have

((0)Dl, l = +m R
~

sin + —sin + + —sin + +m R —sin + + —sin

((0)Ml, l = +m R
i

——sin + + —sin + ——sin +
i
+m R +—sin + ——sin

360 ( 2 2 2 2 3 2 ) 2 2 3 2
(4.8)

It is easy to see from formulas (4.7) and (4.8) that in the
massless case I,"(0)Dl„ l and g(0)M local coincide with the
corresponding result for the case of spectral boundary
conditions and all of them coincide with the correspond-
ing results for a Hat background. At the same time for the
massive case the results for diferent kinds of boundary
conditions differ; moreover, there is a nontrivial diKer-
ence between the values of ((0)Dl,al and ((0)M l, l in
contrast with the case of spectral boundary conditions

11 m'a' m4a4
((0)D local flat = + ++ + (4.9)

11
((0)M local flat—

m'a' m4a4++ +
8 32

(4.10)

I

where g(0)D»ect is simply ((0)M»ect x 2. We can also
write down the expressions (4.7) and (4.8) for the ease of
massive spinors on the Hat background. We shall have
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289
((0)gravitino = ssp ~ (4.11)

Repeating the consideration of structure of ((0) repre-
sented in the present paper it is easy to see that due to
the masslessness of the gravitino the value of ((0)s,~v,«„o

Thus, we can see that the difFerence between values of
((0) at local and spectral boundary conditions is con-
nected with the nonzero mass of fermions and survives
not only on the de Sitter background but also on a Hat
one.

In our previous papers [13,14] ((0) was also calculated
for massless gravitinos on the de Sitter background at
spectral boundary conditions. Our results coincide with
one from Ref. [11]:

on the de Sitter background at local boundary conditions
will also coincide with (4.11).

In conclusion we have to recognize that one rather in-
tricate question is left beyond the scope of this paper.
We mean the problem of the discrepancy between the re-
sults of covariant calculations for fields with higher spins
(see Refs. [23,5,7]) and those obtained by working with
physical degrees of freedom (see Refs. [1—4,10—14]). It
is interesting that this problem appears not only in the
consideration of manifolds with a boundary but also in
the case of a compact manifold without boundary (see
Ref. [4]). Perhaps the origin of this discrepancy is con-
nected with subtle problems of quantization of higher-
spin fields on the nontrivial background. In any case, it
is worthy of further investigations.
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