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It has been speculated that Lorentzian wormholes of the Morris-Thorne type might be allowed by the
laws of physics at submicroscopic, e.g., Planck, scales and that a sufficiently advanced civilization might
be able to enlarge them to classical size. The purpose of this paper is to explore the possibility that
inflation might provide a natural mechanism for the enlargement of such wormholes to macroscopic
size. A new classical metric is presented for a Lorentzian wormhole which is embedded in a flat de Sitter
space. It is shown that the throat and the proper length of the wormhole inflate. The resulting proper-
ties and stress-energy tensor associated with this metric are discussed.

PACS number(s): 04.20.Cv, 04.60.+n

I. INTRODUCTION

There has been much interest recently in the Lorentzi-
an signature, traversable wormholes conjectured by
Morris and Thorne (MT) [1,2]. These wormholes have
no horizons and thus allow two-way passage through
them. As a result, violations of all known energy condi-
tions, including the weak energy condition (WEC) [3] and
averaged weak energy condition (AWEC) [4], must un-
avoidably occur at the throat of the wormhole. Another
disturbing (or intriguing, depending on one’s point of
view) property of these wormholes is the possibility of
transforming them into time machines for backward time
travel [5,6] and thereby, perhaps, for causality violation.
Whether such wormholes are actually allowed by the
laws of physics is currently unknown. However, recent
research by Hawking [7] and others [8] indicates that it is
very likely that nature employs a “chronology protection
agency” which prevents the formation of closed timelike
curves. The method of enforcement appears to be the
divergences in vacuum expectation values of the stress-
energy tensor of test fields which accompany the advent
of any self-intersecting null geodesics. It appears that
this behavior is generic with the formation of closed time-
like curves [7,8]. At this point it is not clear whether
these results imply that traversable wormholes cannot ex-
ist at all or that nature just does not permit their conver-
sion into time machines.

It has been known for some time that quantum field
theory allows local violations of the WEC [9] in the form
of locally negative energy densities and fluxes, the most
notable example being the Casimir effect [10]. A major
unresolved issue is whether quantum field theory permits
the macroscopic effects of negative energy required to
maintain traversable wormholes against collapse. Wald
and Yurtsever [11] have recently shown that the AWEC
holds for massless scalar fields in a wide range of space-
times, but that it apparently does not hold in an arbitrary
curved four-dimensional spacetime. It is possible that al-
though violations of the WEC (or AWEC) might be al-
lowed, the magnitude and duration of these violations
may be limited by uncertainty-principle-type inequalities
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which could render gross macroscopic effects of negative
energy unobservable. This appears to be the case for neg-
ative energy fluxes due to quantum coherence effects in
flat spacetime [12]. Such quantum inequalities also ap-
pear to prevent the unambiguous observation of viola-
tions of cosmic censorship in the attempt to produce a
naked singularity from an extreme Reissner-Nordstrom
black hole, in both two and four dimensions [13]. Quan-
tum inequalities also constrain the magnitude and dura-
tion of the negative energy flux seen by an observer freely
into an evaporating two-dimensional Schwarzschild black
hole [14].

Several equally important, though much less explored,
questions are the following. (a) Do the laws of physics
permit the topology change required to create the
wormhole in the first place? In classical general relativi-
ty, such topology change must be accompanied by the
creation of closed timelike curves [7,15]. Also, at least
some topology change issues may be related to energy
conditions [16]. (b) Do the laws of physics permit submi-
croscopic Lorentzian wormholes (e.g., on the Planck
scale [17])? It may be that wormhole formation, although
possibly prohibited on the classical level, might be al-
lowed quantum mechanically. If so, then (c) are there
processes, either natural or artificial, which could lead to
their enlargement to classical size? The present paper
will attempt to address one aspect of the last question.

MT suggest that “[0o]ne can imagine an advanced civili-
zation pulling a wormhole out of the quantum foam and
enlarging it to classical size.” This would seem to be, at
best, wishful thinking. However, consider the following
scenario. Suppose that a submicroscopic MT-type
wormhole could form in the very early Universe via, say,
a quantum fluctuation (the nature of which we will leave
conveniently vague). Is it possible that subsequent
inflation of the universe, if it occurs, could enlarge the
wormbhole to classical size? Or perhaps it might be possi-
ble to artificially enlarge a tiny wormhole by embedding
it in a false-vacuum bubble, as in the ‘“‘creation of a
universe in the laboratory” scenario [18]. The inflation of
quantum fluctuations of a scalar field has previously been
invoked as a mechanism for providing the seeds of galaxy
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formation [19]. Basu, Guth, and Vilenkin [20] have ex-
amined the nucleation and evolution of topological de-
fects during inflation. Mallett [21] has modeled the
effects of inflation on the evaporation of a black hole us-
ing a Vaidya metric embedded in a de Sitter background.
His results suggest that inflation depresses the rate of
black hole evaporation. Sato et al. [22] have studied the
formation of a Schwarzschild—de Sitter wormhole in an
inflationary universe. More recently, Kim [23] has con-
structed a traversable wormhole solution by gluing to-
gether two Schwarzschild—de Sitter metrics across a 6-
function boundary layer, following the methods of Visser
[24]. Hochberg [25] has used a similar technique to con-
struct Lorentzian wormhole solutions in higher-
derivative gravity theories. Hochberg and Kephart [26]
have argued that gravitational squeezing of the vacuum
might provide a natural mechanism for the production of
the negative energy densities required for wormhole sup-
port. However, recent work of Kuo and Ford [27] indi-
cates that many states of quantized fields which involve
negative energy densities are accompanied by large fluc-
tuations in the expectation value of the stress-energy ten-
sor. For such states the semiclassical theory of gravity
may not be a good approximation. The states they exam-
ined included squeezed states and the Casimir vacuum
state.

The outline of the present paper is as follows. In Sec.
IT a new class of metrics is presented which represents a
Lorentzian wormhole embedded in a de Sitter
inflationary background. The embedding is quite “natu-
ral” in that it does not involve “thin shells” or §-function
“transition layers.” The stress-energy tensor of the false
vacuum for de Sitter space barely satisfies the weak ener-
gy condition, since the energy density is exactly equal to
minus the pressure. So these models couple “exotic” (i.e.,
energy-condition-violating) to ‘“near-exotic” matter, in
the terminology of MT. In the limit of vanishing cosmo-
logical constant, the metric reduces to the static MT
traversable wormhole. It is demonstrated that both the
throat and proper length of the wormhole inflate. The re-
sulting stress-energy tensor is constructed by plugging
the metric into the Einstein equations. (Although it is
possible that such a metric might represent a wormhole
which was “‘caught” in an inflationary transition, to show
this definitively one would need to solve the opposite
problem. That is, one would have to come up with a
physically plausible stress-energy tensor and solve the
Einstein equations to find the metric, and then show that
the resulting solution had the desired wormhole charac-
teristics. This is a much more difficult problem than the
one treated here.) The properties of our metrics are dis-
cussed in Sec. III. We use the same metric and curvature
conventions as MT [1], and we work in units where
G=c=1.

II. MORRIS-THORNE WORMHOLE
IN AN INFLATING BACKGROUND

A. Review of static Morris-Thorne wormholes

To make this paper relatively self-contained, we will
review the results of MT [1]. The metric for a general
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MT traversable wormhole is given by
dr?
2 L200r) 5,2 27024 <in2 2
ds e dt 1—b(r)/r+r (d6°+ sin“0d ¢*) ,
2.1

where the two adjustable functions b(r) and ®(r) are re-
ferred to as the “shape function” and “‘redshift function,”
respectively. The shape function b(r) controls the shape
of the wormhole as viewed, for example, in an embedding
diagram. The metric Eq. (2.1) is spherically symmetric
and static. The geometric significance of the radial coor-
dinate r is that the circumference of a circle centered on
the throat of the wormhole is given by 27r. The coordi-
nate 7 is nonmonotonic in that it decreases from + < to a
minimum value b,, representing the location of the
throat of the wormhole, and then it increases from b, to
+ . This behavior of the radial coordinate reflects the
fact that the wormhole connects two separate external
“universes” (or two regions of the same universe). At the
throat, defined by r=b =b,, there.is a coordinate singu-
larity where the metric coefficient g,, becomes divergent,
but the radial proper distance

. r dr
l(r)_ifbo [1—b(r)/r]'?

must be required to be finite everywhere. At the throat,
=0, while / <0 on the “left” side of the throat and / >0
on the “right” side. For the wormhole to be traversable,
it must have no horizons, which implies that
g, = —e?®") must never be allowed to vanish. This con-
dition in turn imposes the constraint that ®(r) must be
finite everywhere.

To construct an embedding diagram [1,28] of the
wormbhole, one considers the geometry of a ¢t =const slice.
Using the spherical symmetry, we can set 8=/2 (an
“equatorial” slice). The metric on the resulting two-
surface is

(2.2)

dr?
1—=b(r)/r

The three-dimensional Euclidean embedding space metric
can be written as

ds?= +r2dg¢? . 2.3

ds’=dz*+dr’+ride?* . (2.4)

Since the embedded surface is axially symmetric, it can
be described by z =z(r), sometimes called the “lift func-
tion” (see [1,28]). The metric on the embedded surface
can then be expressed as

2
dz

1+ dr

ds? dri+ride¢? . (2.5)

Equation (2.5) will be the same as Eq. (2.4) if we identify
the 7,¢ coordinates of the embedding space with those of
the wormhole spacetime and also require
P -1/2
z r
== -1 :
dr ]

2.6
b(r) @6

A graph of z(r) yields the characteristic wormhole pic-
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tures found in [1,28]. For the space to be asymptotically
flat far from the throat, MT require that dz /dr—0 as
| —-+o,ie., b/r—0asl—*w. In order for this condi-
tion to be satisfied, the wormhole must flare outward near
the throat, i.e.,

d’r(z)
>0, (2.7)
dz?
at or near the throat. Therefore
2 !
dr(z) _b br>0’ (2.8)

dz? 2b2
at or near the throat, r =b =b, where the prime denotes

differentiation with respect to r.
MT define an “exoticity function”

£= T—p _b/r=b"—2(r—5)P’
lpl 6'] ’
where p and 7 are the energy density and radial tension,

respectively, as measured by static observers in an ortho-
normal frame. MT show that Eq. (2.9) can be written as

2.9

d?r(z)
dz?

2b?
rlb’|

2(r —b)®’
- (2.10)
|57

;:

and argue (see Sec. III F2 of MT) that Eq. (2.10) reduces
to

_ To~ Po
§0 IPoI

at or near r =b =b,,.

The general strategy is then to choose ®(r) and b(7) to
get a ‘“‘nice” wormhole and to compute the resulting
stress-energy tensor components by plugging ®,b into the
Einstein equations. One can show quite generally [1,5]
that the resulting stress-energy tensor must violate all
known energy conditions, including both the WEC and
AWEC. 1t is known that quantum fields can violate the
WEC [9]. Whether or not the laws of quantum field
theory permit violations of AWEC large enough to sup-
port a macroscopic (or microscopic, for that matter)
traversable wormhole is presently unknown [11].

One class of particularly simple solutions considered
by MT is the class of so-called ‘“zero-tidal-force” solu-
tions, corresponding to the choice b=b(r), ®(r)=0.
The choice of ®=0 yields zero tidal force as seen by sta-
tionary observers. We write the metric for later reference
as

>0, (2.11)

2
dsi=—di2+— 2462+ sin20dd?) . (2.12)
.

1—b(r)/
The energy density p(r), radial tension per unit area,
7(r), and lateral pressure p(r) for this class of wormholes
as seen by static observers in an orthonormal frame are
given by

T, =pn=1"1 . 2.13)
—T,, =1(r)= 57::)3 ) (2.14)
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_b(r)—b'r
167r3

Two examples of this class of wormholes are the fol-
lowing. The first is given by

T@@ :T$$ =p(r) (215)

b3
b(r)=7, o(r)=0 (2.16)
This corresponds to
z(r)=bgyarccosh Lo , (2.17)
which has the shape of a catenary, i.e.,
dz_ o (2.18)

dr  (r—b3)”

The wormhole material is everywhere exotic, i.e., {>0
everywhere. It extends outward from the throat, with p,
7, and p asymptoting to zero as [ =+ 0.

The second example corresponds to the confinement of
the exotic matter to an arbitrarily small region around
the throat. MT call this an “absurdly benign” wormbhole.
It is given by the choice

bol1—(r—bg)/ay)?,

b(r)= ®(r)=0 for by=r=by+a,, (2.19)
b=®=0 for r=by+a, .
For by <r <by+a,,
p(r)=[(—by/ay)/4mr?][1—(r—by)/ay]1<0, (2.20)
(r)=bo[1—(r—by)/ay)?/8mr?, (2.21)
pry=4(r—p). (2.22)

For r=by+ay,
p=1=p=0.

the spacetime is Minkowski, and

B. ®(r )70 inflating wormholes

A simple generalization of the original MT wormhole
metrics, characterized by Eq. (2.1), to a time-dependent
inflationary background is

dS2: _e2<1>(r)dt2
dr?®

+ P54 A A
M e

+r2(d 6+ sin®60d¢?) | .

(2.23)

Here we have simply multiplied the spatial part of the
metric Eq. (2.1) by a de Sitter scale factor e?Y,
where Y=V A /3 and A is the cosmological constant [29].
The coordinates 7,0,¢ are chosen to have the same
geometrical interpretation as before. In particular, cir-
cles of constant r are centered on the throat of the
wormhole. Our coordinate system is chosen to be
“comoving” with the wormhole geometry in the sense
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that the throat of the wormhole is always located at
r=b=>b, for all . [Of course, this does not mean that
two points at different (constant) values of r,0,¢ have
constant proper distance separation.] For ®(r)=b(r)=0,
our metric reduces to a flat de Sitter metric, while for
x =0, it becomes the static wormhole metric Eq. (2.1).
We may let &(r)—0, b/r—0 as r— o, so that the
spacetime is asymptotically de Sitter or we may choose to
let ®(r),b(r) go to zero at some finite value of r, outside
of which the metric is de Sitter. The latter (together with
a few other conditions) would correspond to a cutoff of
the wormhole material at some fixed radius. Examples of
each of these choices are given by Egs. (2.16)-(2.18) and
(2.19)-(2.22), respectively. However, our scheme should
work for any of the original MT metrics. As before, we
also demand that ®(r) be everywhere finite, so that the
only horizons present are cosmological. The spacetime
described by Eq. (2.23), unlike the usual flat de Sitter
spacetime, is inhomogeneous because of the presence of
the wormhole.

Our primary goal in this investigation is to use
inflation to enlarge an initially small (possibly submicro-
scopic) wormhole. We choose ®(r) and b(r) to give a
reasonable wormhole at ¢t =0, which we assume to be the
onset of inflation. To see that the wormhole expands in
size, consider the proper circumference ¢ of the
wormhole throat, r=b=b,, for 6=m/2, at any time
t =const:

c= foz“eX'bod¢=eX'(27rb0) . (2.24)
This is simply eX* times the initial circumference. The ra-
dial proper length through the wormhole between any
two points 4 and B at any ¢ =const is similarly given by

_ "B dr
l(t)_iethrA (1—=b(r)/r]'*’

which is just eX* times the initial radial proper separation.
Thus we see that both the size of the throat and the radial
proper distance between the wormhole mouths increase
exponentially with time.

To see that the ‘“wormhole” form of the metric is
preserved with time, let us embed a ¢t =const, 6=1/2
slice of the spacetime given by Eq. (2.23) in a flat three-
dimensional Euclidean space with metric:

(2.25)

ds’=dz’+dr*+7id¢* . (2.26)
The metric on our slice is

ds’= —le_—zgi(‘—ir’)% +eX2d¢? . (2.27)
Comparing the coefficients of d ¢, we have

F=eX'r |, const > (2.28)

dr=e'dr?|,_ oo - (2.29)

With respect to the Z,7,¢ coordinates, the ‘“wormhole”
form of the metric will be preserved if the metric on the
embedded slice has the form

2
— g,
1—=b(7)/F

ds?= (2.30)
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where 5(7) has a minimum at some b(7,)=b,=7,. We
can rewrite Eq. (2.27) in the form Eq. (2.30) by using Egs.
(2.28), (2.29), and

b(F)=eXb(r) . (2.31)

In particular, one can easily show that Eq. (2.31) is
satisfied for the specific choices of b(r) given by Egs.
(2.16) and (2.19) by rewriting the right-hand sides of these
equations in terms of 7 and using Eq. (2.28). The inflated
wormbhole will have the same overall size and shape rela-
tive to the Z,7,¢ coordinate system, as the initial
wormhole had relative to the initial z,7,¢ embedding-
space coordinate system. This is because the embedding
scheme we have presented corresponds to an embedding
space (or, more properly, a series of embedding spaces,
each corresponding to a particular value of ¢#=const)
whose z, 7 coordinates ‘‘scale” with time. To see this, we
can follow the embedding procedure outlined in Egs.
(2.4)-(2.6), but using Egs. (2.26) and (2.30). It is readily
apparent that

—1/2

az _ 7

dr b(F)
where we have used Egs. (2.28), (2.29), and (2.31). Equa-
tion (2.32) implies

-1 (2.32)

2
dr’

o dr
2m=xf [F/B(F)—1]'2

=eX'z(r) . (2.33)

dr
=gt [— QT
f [r/b(r)—1]'2
Therefore we see that the relation between our embed-
ding space at any time ¢ and the initial embedding space
at t =0 is, from Egs. (2.29) and (2.33),

ds’=dz’+dr*+7’d¢’

=eXdz2+dr’+rid¢?) . (2.34)

It is quite important to keep in mind (especially when
taking derivatives) that Egs. (2.28) and (2.29) do not
represent a “‘coordinate transformation,” but rather a “re-
scaling” of the r coordinate on each t =const slice. Rela-
tive to the z,7, ¢ coordinate system, the wormhole will al-
ways remain the same size; the scaling of the embedding
space compensates for the expansion of the wormbhole.
Of course, the wormhole will change size relative to the
initial £ =0 embedding space.

If we write the analogue of the “flareout condition”
[Eq. (2.7)] for the expanded wormhole, we have

d?*F(z)
dz?

at or near the throat. From Egs. (2.28), (2.29), (2.31), and
(2.32), it follows that

>0, (2.35)

d*r(z) et

_ b—b'r
dEZ

2b?

d?r(z)
2

=e X! (2.36)

>0,

dz

at or near the throat. Rewriting the right-hand side of
Eq. (2.36) relative to the barred coordinates, we obtain
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(2.37)

at or near the throat, where we have used Eqgs. (2.28),
(2.31), and

b _prpy=9b
-

b'(F)=
(7) - dr

(2.38)

We observe that relative to the barred coordinates the
“flareout condition” [Eq. (2.37)] has the same form as
that for the static wormhole. With respect to the un-
barred coordinates, the flareout condition [Eq. (2.36)] ap-
pears as though it might be harder to satisfy as time goes
on because of the decaying exponential factor. However,
this is due to the fact that as the wormhole inflates its
throat size and proper length inflate along with the sur-
rounding space. It therefore necessarily needs to “flare
outward” less and less at its throat as the two external
spaces connected by the wormhole move farther apart
(again, relative to the initial “¢#=0" embedding space).
This behavior is confirmed in an animated “toy” model of
an inflating wormhole produced with MATHEMATICA
[30], where b(r) is given by Eq. (2.16) [31].

Let us now examine the stress-energy tensor that gives
rise to the wormhole described by Eq. (2.23). First,
switch to a set of orthonormal basis vectors defined by

The quantities p, 7, f, and p are respectively, the mass-
energy density, radial tension per unit area, energy flux in
the (outward) radial direction, and lateral pressures as
measured by observers stationed at constant r,0,¢. Note
from Eq. (2.43) that the flux vanishes at the wormhole
throat, as it must by symmetry. If we let ®(r)—0,
b/r—0 as r— o, the stress-energy tensor components
asymptotically assume their de Sitter forms, i.e.,

T,=—-T,

Alternatively, we may wish to cut off the wormhole ma-
terial at some fixed radius r =R. A sufficient condition
for doing this would be to let ®(r)=®'=@""'=p=5b'=0
for r = R. For completeness, the Riemann curvature ten-
sor components are also included in an Appendix. Note
that all the stress-energy and curvature components are
finite for all ¢t and r. For y =0, our expressions reduce to
those of MT [1]. [Note the correction of a sign error in
the (®'b /2r?) term of G4 in their Eq. (12)].

C. Simple examples: the ®(r)=0 cases

A particularly simple example of an inflating wormhole
is obtained by setting ®(r)=0 in Eq. (2.23):

ROMAN

[

e,=e e, ,

e,=e X(1—b/r)%, ,

ey — (2.39)
ep=e Xrle,y,
e$=e“"’(r sin9)—1e¢ .

This basis represents the proper reference frame of a set
of observers who always remain at rest at constant r,0,¢.
The Einstein field equations will be written in the form

G..=R R=817Tm , (2.40)

— 1
w N 28w
so that any ‘“‘cosmological constant” terms will be incor-
porated as part of the stress-energy tensor TM. The com-

ponents of TiW are

1 _ au b’
T.=p(r,t)=— |3yl 2P+ W= .
w=p(r,t) 8 3x‘e e il (2.41)
T,=—1(r,t)
:é —3y%e T —e :’3—2? 1——1:— ],
(2.42)
T?y wf(ryt)
1 b 172
=— 27X 1 —= X(D’], (2.43)
8 r
' ¢' _i___li __é_ " "2
(2.44)
[
ds?=—di*+ e | —U 4 2agey sin’6 d¢*)
1=b(r)/r :

(2.45)

The stress-energy tensor components in an orthonormal
frame [Eq. (2.39) with ®=0] become

T??=p(r,t)=$ 3)(2+e"2’(’1:—; , (2.46)
T, = rt)=—— —3yt—e X LH, (2.47)
87 r3
T,=—f(r,t)=0, (2.48)

y =T$$=p(r,t)=$ —:«sx2+e*2)‘r [%—%
(2.49)

The Riemann curvature tensor components for this
metric are also included in the Appendix. Note that the
stress-energy tensor and Riemann tensor components all
approach their de Sitter space values for large t. [The
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same is true for the expressions of these quantities associ-
ated with the metric Eq. (2.23), modulo some multiplica-
tive factors of e %, which would go to 1 outside the
“wormhole” part of the spacetime, e.g., at large ».] When
X =0, our metric reduces to that of a static “‘zero-tidal-
force” wormhole [Eq. (2.12)].

III. PROPERTIES
OF THE SOLUTIONS AND DISCUSSION

A noticeable difference between the stress-energy ten-
sors associated with the ®(r)#0 versus the ®=0
wormbholes is the presence of a flux term, given by Eq.
(2.43). To understand this, we must clarify the difference
between two ‘‘natural” coordinate systems associated
with the wormhole. The first can be thought of as the rest
frame of the wormhole geometry; i.e., an observer at rest
in this frame is at constant r,0,¢. The second can be
thought of as the rest frame of the wormhole material. In
the absence of a particulate model for the wormhole ma-
terial, the best we can do is to define such a rest frame in
terms of the properties of the stress-energy tensor. More
specifically, we can define the rest frame of the wormhole
material as the one in which an observer comoving with
the material sees zero energy flux. From Eq. (2.43) we see
that for ®(r)0 the wormhole material is not at rest in
the r,0,¢ coordinate system. For the ®(r)=0 metrics
given by Eq. (2.45), the two coordinate systems coincide.

Let Ut=dx"/dr=(U"0,0,0)=(e”*"),0,0,0) be the
four-velocity of an observer who is at rest with respect to
the r,0,¢ coordinate system. The observer’s four-
acceleration is

u
oty
= U“;VUV
=(U* +T4UPU", 3.1
which for the metric Eq. (2.23) gives the components
a'=0,
2
a’™=T}, % (3.2)

= 'Q(1—b/r) .

From the geodesic equation, a radially moving test parti-
cle which is initially at rest has the equation of motion,
2

2
LA S L e (3.3)

dr? "ldr

Therefore we see that a” is the radial component of prop-
er acceleration that an observer must maintain in order
to remain at rest at constant r,0,¢. From Eq. (3.3) it fol-
lows that for ®(r)7*0 wormholes (whether static or
inflating) such observers do not move geodesically (except

e "X (2b2%/r3)[d?r(2)/dz? ]+ (29" /r)(1—b /r)} -
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at the throat), whereas for ®(r)=0 wormholes they do.
In the ®(r )70 case, for observers at fixed r,0, ¢,

)

ar

dr

=Pe®r)
dt

(3.4)

Equation (3.4) can be thought of as the “radial gradient
of the flow of proper time with respect to coordinate
time.” Note that the flux component of the stress-energy
tensor [Eq. (2.43)] goes like y®’'. It therefore depends
both on the time dependence of the spatial part of the
metric and on the “‘radial gradient of proper time flow.”
A wormhole will be called “attractive” if a”>0 (ob-
servers must maintain an outward-directed radial ac-
celeration to keep from being pulled into the wormhole
and “repulsive” if a”<0 (observers must maintain an
inward-directed radial acceleration to avoid being pushed
away from the wormhole). For a"=0, the wormhole is
neither attractive nor repulsive. The sign of the energy
flux depends on the sign of ®' or, equivalently, on the
sign of a’. Since the flux f= —T,, then from Eq. (2.43)
we see that if the wormhole is attractive, there is a nega-
tive energy flow out of it (or, equivalently, a positive ener-
gy flow into it); if it is repulsive, there is a negative energy
flow into it (positive energy flow out of it). In the case
where the wormhole material is cut off at a finite radius
r=R, the energy flux vanishes at both r=R and
r=b=b,, though not necessarily inbetween. For this sit-
uation, we might think of the flux as being due to a redis-
tribution of energy within the wormhole caused by its ex-

pansion.
The exoticity function [Eq. (2.9)] of MT can be written
—T, Wiw?
&= — s (3.5)
| T |

where WE=( W?, W?"0,0)=(1,£1,0,0) is a radial outgo-
ing (ingoing) null vector. This condition is, in some
sense, a measure of the degree to which the wormhole
material violates the WEC. In our case,

£= T—pFf 3.6)
lpl
From Egs. (2.41)-(2.43), it can be shown that
X p b 29’ b
T Whwr=5— | |2 -2 |~ 1-=
av 8w r: p3 r r
1/2
-
+¢ 1—2] x®'e (3.7)
4 r
For ®(r)=0, Eq. (3.6) reduces to
—2xt b’ b
apr=2¢ b _ o
T W = | == (3.8)

Using Eq. (3.6), (3.7), and (2.8), the exoticity function at
any radius and time can be written as

2e X(1—b /r) 2y d'e ?]

6= [3x%e ~2P+e ~2X(b’ /r?)|

(3.9)
[3x%e 2% +e 2 (b' /r?)|
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Comparing Eq. (2.10) with Eq. (3.9), we see that the re-
lationship between the exoticity function and the flareout
condition does not seem to be quite as simple as that for
the static wormhole. The interpretation of Eq. (3.9) is
complicated by the presence of the y? term in the denom-
inator, which could have the opposite sign from the b’
term when the sign of the latter is negative, as well as by
the addition of the flux term. If 3y%e ~2%%e ~2X{(b' /r?)
for all ¢, then, from Eq. (2.41), p is nonzero and finite. In
this case the vanishing of terms such as ®'(1—b/r) at
the throat and Eq. (2.8) allow us to write that

$o>0 at or near the throat, r=b=b, . (3.10)
If p is nonzero and finite for all ¢, then it can be shown
from Eq. (3.9) that the exoticity at the throat {, decays
exponentially at large ¢. This is not terribly surprising in
light of our earlier discussion regarding the “flareout” be-
havior of the wormhole throat during inflation.

Rather than examining the exoticity function, it is
much simpler to just look at the WEC along the null vec-
tors W in the limit r—b,. At the throat this condition
T WEW?®>0 simply reduces to the right-hand side of
Eq. (3.8) evaluated at »=b=b,, for both the ®+#0 and
®=0 cases. The term in parentheses is just the value of
this expression at =0, which is the same as that for the
static wormhole and thus must be negative, from the
original argument of MT. Therefore the violation of the
WEC at the throat of the wormhole decreases exponen-
tially with time.

To understand this behavior, one can give the follow-
ing heuristic argument. Consider the simple static ®=0
wormhole example given by Egs. (2.13)-(2.16), for
different throat sizes. For such a wormhole, the negative
energy density, radial tension per unit area, and lateral
pressure at the throat scale like 1/b 2. They decrease in
magnitude as the size of the throat increases. (Note,
however, that for this wormhole the exoticity §, is in-
dependent of throat size.) This makes sense because the
smaller the wormhole throat, the smaller its radius of
curvature and hence the larger the curvature. The larger
the curvature, the more “prone” is the wormhole to grav-
itational collapse, and therefore the larger the negative
energy density required to hold it open. However, the to-
tal amount of negative energy near the throat scales like
pV~(1/b3Xb3)~b, and therefore must increase as the
throat size increases.

In general, because of the rapid expansion of the sur-
rounding space, the two mouths of the wormhole will
quickly lose causal contact with one another, i.e., they
will move outside of each other’s cosmological horizon.
Each mouth might reenter the other’s horizon after
inflation [32]. If the mouths were to remain in causal
contact throughout the duration of the inflationary
period, then there would be a constraint on the initial size
of the wormhole. To estimate this we will use the simple
®(r)=0 wormhole metric [Eq. (2.45)]. Consider two ob-
servers stationed on opposite sides of the wormhole and
separated by an initial radial proper distance at t =0 of
ly- Let I(T) be their separation at the end of inflation,
t=T. The proper distance Iy of each observer from
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his/her horizon is I ~1/y. If we require that this dis-
tance be less than /(T), then

e XT

Iy < 3.11)

For a typical inflationary scenario (see, for example, [33]),
X '~1073* sec~10"%3 cm ,

xT ~100, which gives I, <107 cm<<lp~1073% cm.
Since the Planck length [/, is usually regarded as the
smallest distance scale which makes physical sense, it
seems that the condition Eq. (3.11) cannot be satisfied (at
least in the usual inflationary scenarios). The same pa-
rameters yield an increase in size of the wormhole by a
factor of ~10**. An initially Planck-sized wormhole
would be enlarged to a size of ~10'° cm~ 1R after
inflation.

It is also possible that the wormhole will continue to be
enlarged by the subsequent Friedmann-Robertson-
Walker (FRW) phase of expansion. One could perform a
similar analysis to ours by replacing the de Sitter scale
factor in Eq. (2.23) by an FRW scale factor a(¢). A naive
estimate yields a total enlargement of wormhole size
which is larger than our present horizon size. However,
since it is difficult to even say what effects the reheating
at the end of inflation will have on the wormhole, we will
not pursue this possibility further.

Since the two mouths of the wormhole lose causal con-
tact during inflation, then presumably issues of traversa-
bility will arise only after inflation. In our discussion we
have therefore avoided the enforcement of additional
“usability criteria,” i.e., requirements proposed by MT
which are designed to make wormhole traversal comfort-
able for human travelers. Also, a wormhole need not
necessarily be traversable by human beings for it to be
useful. Indeed, the more troubling characteristics of
wormbholes, such as their use for possible causality viola-
tion, should be realizable if it is possible te just send sig-
nals through them, in the form of light rays or particles.
In passing, we again note that the Riemann curvature
tensor components, given in the Appendix, are well
behaved for all » and ¢ (e.g., no “exponentially growing”
tidal forces at the throat).

One might think that since two-way passage is practi-
cal only after inflation, the application of the present
scenario to small ordinary Schwarzschild or Reissner-
Nordstrom wormholes might yield large wormholes
which could then later be made traversable. However,
these wormholes have (noncosmological) horizons which
tend to make them collapse very rapidly—an affliction
which would probably be exacerbated by the positive en-
ergy released during the decay of the false vacuum. As-
suming that one could circumvent the latter problem,
then perhaps such a wormhole might be stabilized by the
injection of a flux of negative energy. Unfortunately, the
magnitude and duration of such fluxes would most likely
be limited by ‘‘quantum-inequality-type” restrictions
similar to those found to hold for negative fluxes injected
into an extreme Reissner-Nordstrom black hole [13].
The same would likely be true for the pair-produced ex-
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treme magnetically charged wormholes conjectured by
Garfinkle and Strominger [34].

A nontrivial problem is the maintenance of the
wormhole during and after the decay of the false vacuum.
We saw earlier that although large (static) wormholes
with p <0 required a smaller negative energy density for
maintenance than small ones, the total amount of nega-
tive energy required should increase with increasing
throat size. During inflation, the wormhole throat is
greatly stretched in size because of the rapid cosmologi-
cal expansion. However, note that in Eqgs. (2.41)-(2.44)
the ‘““false-vacuum terms” remain constant with time
while the ‘“exotic wormhole material terms” decay ex-
ponentially with time. For example, in Eq. (2.41) the first
term, which represents the energy density of the false
vacuum, remains constant (at constant r), while the
second term, representing the “exotic” energy density of
the wormhole, decreases with time. Consider the case
where the latter is negative. Then the total amount of
positive energy increases, since the positive energy densi-
ty of the false vacuum remains constant as the volume in-
creases. The total amount of negative energy decreases
because the negative energy density exponentially de-
creases while the volume increases. When the false vacu-
um decays, the exponential stretching will cease and the
positive energy in the false vacuum will be converted into
more conventional forms, such radiation and/or parti-
cles. This potentially huge positive energy might flood
the wormhole, triggering a gravitational collapse of the
throat. Perhaps such a fate might be avoided if the two
energy densities in Eq. (2.41) are roughly comparable in
magnitude at the end of inflation.

As a simple example, let us first consider the inflating
“absurdly benign” wormhole with ® and b given by Eq.
(2.19). From Eq. (2.46), the energy density at the throat

1S

Po~3x*—2e X(bga,) !, (3.12)

where a is the thickness (in r) of the negative energy re-
gion near the throat. Let a,=nb,, where 1 is some frac-
tion, but require by > lp, ay>Ip. For the two terms in
Eq. (3.12) to be comparable at the end of inflation, t =T

e xT
nx

which is almost identical to the condition Eq. (3.11). For
the inflation parameters given earlier, we see that Eq.
(3.13) also leads to a required initial wormhole size
by<<lp. Onme fares a little better with the &(r)70
wormhole. From Eq. (2.41), it appears that by making
®(b,) large enough it might be possible to suppress the
positive y? “false-vacuum” term. The energy density at
the throat goes like [35]

by~ (3.13)

p0~3X2e~2¢(b0)_(e—2xt/b(2)) , (3.14)
which leads to the condition that
—xT
bo~e ™0 — (3.15)

X
For b,~107% cm, ®(b,)~ In(10’*)~78. This corre-
0 0
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sponds to a time dilation factor of dr/dt~10%; i..,
clocks fixed at » =b, must run ~ 10> X faster than clocks
outside the wormhole.

These crude heuristic arguments suggest that in gen-
eral it will be difficult for the negative-energy-density-
type terms to overwhelm the false-vacuum-type terms.
However, it should be mentioned that our simple argu-
ment does not take into account the effects of gravitation-
al energy, and so it is not completely clear as to whether
wormholes are unlikely to survive inflation. Also, the re-
sults in this paper represent only one possible generaliza-
tion of MT wormholes to time-dependent situations.
Even more general solutions might be obtained by allow-
ing ® and b in our metrics to be functions of ¢ as well as r
[36].

On the other hand, if most of the wormholes in the
quantum foam survived inflation, then the Universe
might be far more inhomogeneous and topologically com-
plicated than we observe [37] (unless they all inflated
beyond our current horizon). Perhaps the wormbholes
were all destroyed by the flood of positive energy released
during reheating. It is also possible that a given
wormhole mouth might find itself in a slightly different
gravitational potential from its counterpart. The
quantum-field-theoretic instabilities associated with the
tendency of such a wormhole to form closed timelike
curves [6-8] might destroy it. Perhaps the probability
for the existence of a wormhole in the quantum foam that
has the right properties for inflation is extremely low, or
perhaps none of the foam inflates (after all, galaxies in the
FRW phase do not expand). Since we know very little
about the quantum foam (or whether it even exists at all),
these are difficult questions to answer. (The possibility of
artificially enlarging a tiny wormhole by embedding it in
a false-vacuum bubble is currently under investigation.)

Another part of the problem is that one does not know
what constitutes a “‘generic” wormhole. In classical gen-
eral relativity, the energy conditions determine the
characteristics of ‘“‘reasonable” sources. Quantum field
theory allows some violation of the energy conditions, but
with our present state of knowledge regarding the extent
of these violations, we cannot yet say which types of
wormbholes, if any, are physically reasonable.
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APPENDIX

The following curvature tensor components, as well as
some of the stress-energy tensor components found in the
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text, were computed using MATHTENSOR [38]. For the
metric Eq. (2.23), the Riemann tensor components are

Rigig=~Roug= ~Rigpn = Ruge

t

=—x% 2®+e (D' /r¥)r—b), (A1)
Rissr =Rnp= ~Rapr = ~Ragrp=Rmg
=—ye X(1—b/r) % %', (A2)
Rizio=™ ~Rons™ ~Riype =R
=—x%e P +e (D' /ri)r—b), (A3)
Riop =Roms™ ~Rggp = ~Rigpo™ Rimo
=—ye X(1—b/r)"%e %o’ , (A4)
R,p=—Rp=—R, =R,
=—x’e *®+e X (1—b/r)[®"+(®?)]
+(e "X /2)®'(b /r2—b'/F), (A5)
Rigr= " Roptp = ~Rigg = Ryppg
=x2% 22+ (e "X 2)(b' /r2—b /1), (A6)

R 3056~ ~Rags0= —Rjo0s = Rogos

=x’e **+e H(b/rY), (A7)
R = "Rosp = ~Roms=Roins

=x% 2P+ (e X' /2)(b' /PP —b /1) . (A8B)

For the metric Eq. (2.45), the above components reduce
to

Rips=—X%, (A9)
Rygo=—X" (A10)
R, =—X*, (A11)
R =x>+(e™X/2)(b"/r*=b/r), (A12)
Ryppp=X +e X(b/r), (A13)
Rgm=X"+ (e 2 /2)(b" /rP=b/r’) . (A14)
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