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Discrete quark-lepton symmetry need not pose
a cosmological domain wall problem
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Quarks and leptons may be related to each other through a spontaneously broken discrete sym-
metry. Models with acceptable and interesting collider phenomenology have been constructed which
incorporate this idea. However, the standard hot big bang model of cosmology is generally consid-
ered to eschew spontaneously broken discrete symmetries because they often lead to the formation
of unacceptably massive domain walls. We point out that there are a number of plausible quark-
lepton-symmetric models which do not produce cosmologically troublesome domain walls. We also
raise what we think are some interesting questions concerning anomalous discrete symmetries.

PACS number(s): 98.80.Cq, 12.15.Cc

I. INTRODUCTION

In the early 1960s, a disconcerting imbalance in the
spectrum of quarks and leptons was uncovered. With the
discovery that the muon-neutrino was a distinct flavor
it seemed that there were four fundamental leptons, but
only three quarks. Largely on the basis of aesthetics, sev-
eral people speculated that this asymmetry would even-
tually be rectified by the discovery of a fourth quark [1].
Their sense of aesthetics was vindicated in the mid 1970s
with the experimental detection of charm. The idea that
quarks and leptons are paired up in each fermion gener-
ation is now a familiar and pleasing fact of nature.

Although the charm quark was introduced on the ba-
sis of a desired “symmetry” between quarks and lep-
tons, there really is no symmetry in the rigorous sense of
the word between these fermions in the standard model
(SM). Quarks are colored; leptons are not. Leptons have
integral charge; quarks do not. Quark and lepton masses
are quite different. Furthermore, there is no definitive
evidence for the existence of the right-handed neutrino,
which is the putative partner of the right-handed up
quark. Does all of this mean that the successful aesthetic
of the 1960s is in truth only partially adhered to?

The answer is actually “that we do not know” rather
than a loud “no.” Recently it has become clear that
quarks and leptons might be more closely related to each
other than is currently evident. Furthermore, evidence
for such a relationship could be uncovered at energy
scales as low as a few hundred GeV. This represents an
attractive confluence between theoretical speculation and
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hard-core phenomenology.

This speculative relationship between quarks and lep-
tons involves the ideas of “leptonic color” and “discrete
quark-lepton (g-£) symmetry” [2]. It is a gauge-theoretic
fact that the leptons we observe might be just the light-
est components of triplets under a spontaneously broken
SU(3) gauge symmetry for leptons. This leptonic color
group, if it exists, would nicely reflect the attributes of
its quark cousin. Quarks and leptons would appear much
more like each other than they do in the standard model.

But having gone to the trouble of introducing a spon-
taneously broken leptonic color group, it is very tempt-
ing to push the quark-lepton association still further by
postulating that a rigorous, but spontaneously broken,
discrete symmetry exist between the two sectors. This
would be the logical culmination of the primordial aes-
thetic which lead to the experimentally vindicated hy-
pothesis of charm. Nature may or may not make use of
leptonic color or discrete quark-lepton symmetry. But, it
is surely very interesting to find out.!

Models with ¢-f£ symmetry yield a rich nonstandard
phenomenology [3]: exotic charge i% fermions (liptons)
confined by a new unbroken asymptotically free SU(2)
gauge interaction, light exotic SU(2) glueball states [4],
new heavy gauge bosons and a number of new Higgs
bosons. Since much of this new phenomenology is al-

It is also interesting to wonder about why the quark-lepton
symmetry idea took so long to be proposed. A possible reason
is that grand unified theories (GUT’s) were proposed very
soon after the wide-spread acceptance of the SM in the early
1970s. This alternative way of connecting the quarks and the
leptons became, and still is, very influential, and so people
may have felt that nothing qualitatively different from this
was possible.
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lowed to exist in the 100 GeV to 1 TeV energy regime,
g-¢ symmetric models should be of great interest to the
phenomenologists and experimentalists of today.

Despite the appeal of discrete ¢-£ symmetry from a
purely particle physics perspective, aficionados of the
now standard hot big bang model (HBBM) of cosmol-
ogy are likely to be less than enthusiastic about it, for
reasons we will now explain.

In its simplest form, discrete ¢-£ symmetry is isomor-
phic to the group Z;. When a Z, discrete symmetry
spontaneously breaks, the vacuum manifold consists of
two disconnected pieces which are related by a Z5 trans-
formation. If we ignore all of the other isometries of
this manifold, then we can consider it to consist of only
two (isolated) states which can be transformed into each
other by the discrete symmetry. Since the actual vacuum
state in a causally connected region of spacetime has to
evolve into a unique state after a suitable relaxation time,
one of these two candidate vacua is selected as the actual
vacuum. A cosmological problem arises here, however,
because spacetime immediately after the big bang con-
sists of causally disconnected regions. This means that,
at the time of the cosmological phase transition associ-
ated with the spontaneous breaking of the discrete sym-
metry, randomly different choices for the actual vacuum
will in general be made in the various causally discon-
nected pieces of spacetime. But, as the Universe contin-
ues to expand after this phase transition, regions that
previously had no influence over each other come into
causal contact. Two such regions that happen to have
different vacuum states therefore have to form a domain
wall structure at their boundary, if there is insufficient
energy to flip the vacuum state in one of the domains.
(Although our discussion was restricted to the Z; case
for simplicity, the existence of domain walls follows for
all discrete symmetries.)

This reasoning is born out by examining the classical
solutions of field theories which display spontaneously
broken discrete symmetries, because they include solu-
tions describing topologically stable domain walls. Using
these classical solutions, one can calculate the energy per
unit area of a domain wall and hence conclude that such
structures should dominate the energy content of the ob-
servable Universe (unless the scale of discrete symmetry
breaking is much less than the electroweak scale). Since
this is contrary to observation, theories predicting stable
domain walls are inconsistent with the HBBM of cosmol-
ogy [5]. The purpose of this paper is to show that cer-
tain classes of ¢-¢ symmetric theories evade this potential
problem.

The conclusion that domain walls are a cosmological
calamity relies on a number of assumptions: (i) that the
HBBM is the correct model to use; (ii) that the domain
walls are stable; (iii) that there is a cosmological phase
transition associated with the spontaneous breaking of
the discrete symmetry (in other words, that there exists
a critical temperature T, above which the discrete sym-
metry is restored); (iv) that an inflationary period did
not occur after the discrete symmetry phase transition;
and (v) that the two states in the vacuum manifold are
really degenerate. There may also be other important
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assumptions that we have failed to notice.

In the remainder of this paper we will discuss each of
these five assumptions with special emphasis on their role
in determining the cosmological consequences of spon-
taneously broken ¢-¢ symmetry. In Sec. II we discuss
the status of the HBBM and its connection with parti-
cle physics [see assumption (i) above]. This puts into
perspective the analysis that is to follow. Section III is
devoted to a brief review of the minimal ¢-£ symmetric
model. We then go on to show in Secs. IV-VI that as-
sumptions (ii), (iii), and (iv), respectively, need not hold
in plausible g-¢ symmetric models, thereby demonstrat-
ing the existence of cosmologically benign gauge theories
with discrete g-¢ symmetry. In all of these cases, we will
emphasize that the resulting theories can yield interesting
new phenomenology in the 100 GeV to 1 TeV regime. We
will pose some interesting questions concerning assump-
tion (v) in Sec. VII, but we will not be able to answer
them fully. Section VIII contains our conclusions.

II. STATUS OF THE HOT BIG BANG MODEL

In the last decade or so, the fields of cosmology and
particle physics have become deeply intertwined. The
classical evidence used to support the HBBM (redshifts
and the blackbody microwave background) can now be
augmented by precise calculations relating the abun-
dances of the light nuclei H, He, D, 3He, and "Li to the
expansion rate of the Universe about 1 second after the
big bang. The expansion rate in turn can be connected
with the number of relativistic degrees of freedom at the
time of nucleosynthesis. If the SM of particle physics
is used, then the only relativistic particles during this
era are electrons, positrons, photons, neutrinos, and an-
tineutrinos. Agreement between theory and observation
is achieved only if the number of light neutrino flavors is
three, which concurs with the number of light neutrino
species that have been determined by measurements of
the Z width at the CERN e*e~ collider LEP. This estab-
lishes an interesting quantitative link between cosrmology
and particle physics.

Because of the success so far obtained through this
linkage of microscopic with macroscopic physics, the
derivation of “cosmological constraints” on nonstandard
particle physics models has become commonplace. One
such constraint says that domain walls formed from the
spontaneous breaking of a discrete symmetry are cosmo-
logically ruinous, unless the breaking scale is really very
low. This sort of practice has now become so deeply in-
grained that we feel a few paragraphs devoted to a criti-
cal assessment of its validity are warranted. While some
may claim that many of the views to be expressed below
are well understood and appreciated by the community,
we believe that there is considerable value in them ap-
pearing explicitly stated in a contemporary paper on the
cosmological ramifications of an extension of the SM of
particle physics.

Why should the validity of cosmological constraints on
particle physics be questioned? There are basically two
reasons. First, although the HBBM of cosmology is an
impressive scenario, it is in the nature of cosmology that
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detailed experimental and/or observational data are hard
to obtain, and so all such models face a serious problem
with testability. Second, the naive HBBM has some the-
oretical shortcomings despite its acknowledged success,
and so it cannot be accepted completely without reser-
vation.

As an example of the first difficulty, let us have a
closer look at big bang nucleosynthesis (BBN). In or-
der for these calculations to come out correctly, we need
to postulate several times the number density of baryons
that we can readily account for in luminous bodies. Un-
til this baryonic dark matter is found, there is a seri-
ous loose end in BBN. We feel that this obvious point is
not emphasized enough in the literature. There is some
hope that these extra baryons may be located in galactic
haloes. Astronomers are currently trying to test this idea
through the observation of microlensing. This hope may
or may not be realized. So, we should be aware that one
of the three legs of the tripod upon which the HBBM
stands is yet to be thoroughly checked out.

This is just an example of the type of testability prob-
lem the HBBM has. Another obvious prediction yet to
be verified is the existence of a relic neutrino background.
Of course this background is extremely difficult to detect.
However technical difficulty does not absolve us of the re-
quirement that scientific theories have to be well tested
before they can be considered as established beyond rea-
sonable doubt.

As a completely general statement, we should under-
stand clearly that cosmological models can only be tested
by looking at the present day structure of the Universe
and interpreting various objects as “relics” from an ear-
lier epoch. No direct test of the evolution of the Universe
as such can ever be done, for obvious reasons. There-
fore, cosmological models will never be as testable as, say,
those particle physics models that are humble enough to
pertain to terrestrially accessible energy scales.

Let us now discuss the theoretical shortcomings of
the HBBM. The evident large-scale homogeneity and
isotropy of the observed Universe (its “smoothness”) is
at odds with the existence of causally disconnected re-
gions of spacetime in the early Universe. For instance,
the HBBM asserts that the observable Universe of today
evolved from about 10% causally disconnected spacetime
volumes at the time of radiation decoupling. How then
can the isotropy of the microwave background radiation
be explained? On another tack, we know observation-
ally that the Universe is very close to being spatially flat.
However, the Einstein equations describing the expansion
of the Universe require very special initial conditions in
order to bring this about. In particular, the average mass
density of the Universe must be equal to the critical den-
sity to one part in 10%° at the Planck time. Such a special
value demands an explanation which is not forthcoming
in the HBBM.

An interesting hypothesis advanced to rid the HBBM
of the smoothness and flatness problems is that of infla-
tion [6]. This phenomenon allows the present day uni-
verse to have evolved from within a causally connected
region of spacetime, and thus the smoothness of our Uni-

verse is no longer a mystery. Also, the spatial metric after
the inflationary epoch is flat to an extremely high preci-
sion. As a bonus, the inflationary scenario also provides
a framework for the formation of large scale structure
[7]. There are also other ideas concerning the smooth-
ness problem [8].

Whatever scenario one adopts in response to this prob-
lem, its characteristic predictions will have to be obser-
vationally verified. For instance, a major prediction of
inflationary models is that the energy density of the Uni-
verse is equal to the critical density at an extraordinarily
high precision. Thus far observation has only limited the
energy density to within an order of magnitude or so of
this critical value, which is not nearly precise enough to
be considered a good test of inflation. In addition, the
nature of the “dark matter” is crucial to the formation
of large scale structure. For inflation to be well tested, a
detailed model of structure formation together with the
appropriate experimentally verified dark matter is nec-
essary. In addition, a well-motivated, theoretically con-
sistent, and experimentally verified Higgs field to drive
inflation is needed (for a recent suggestion about how
inflation may be rendered more experimentally testable
see Ref. [9]). We therefore conclude that although in-
flation is an interesting idea, it is not a well-tested idea
(the same conclusion holds for the alternative suggestions
of Ref. [8] as well). And since without inflation (or the
other ideas) the HBBM has theoretical deficiencies, it is
sensible to spend some effort in searching for alternatives
to the HBBM framework itself [10].

By way of contrast, the testability of the SM of parti-
cle physics is manifest; extremely detailed and repeatable
experiments can be performed in the laboratory. It is
therefore somewhat ironic that great currency is given to
constraints on new particle physics derived by demand-
ing that the standard cosmological scenario not be dis-
turbed. Furthermore, low-energy extensions of the SM
are testable at terrestrial facilities, and so we do not need
to use cosmology to evaluate these theories. Since cos-
mological models can only be tested with quite limited
precision, it is not reasonable to view cosmological con-
straints completely without suspicion. Indeed, we may
unwisely dismiss some interesting and potentially impor-
tant ideas in particle physics if we take cosmological con-
straints as completely rigorous. On the other hand the
HBBM (or its inflationary extension) is an impressive
scenario that seems to be consistent with all available
observational data. Therefore we conclude that although
the compatibility of spontaneously broken discrete g-£
symmetry (and any other idea which appears to have
cosmological problems) with standard cosmology is not
necessary for it to be an important idea, it is nevertheless
interesting to see under what circumstances it is in fact
compatible. As we have said, the purpose of this paper
is to study these circumstances.

III. THE MINIMAL QUARK-LEPTON
SYMMETRIC MODEL

In the following we will give a brief summary of the
essential features of the minimal quark-lepton symmetric
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model [2,3]. This will serve as a starting point from which
discussions of other models involving ¢-¢£ symmetry are
based while at the same time establishing the notation
of the paper.

The minimal gauge model illustrating the basic idea
of ¢g-¢ symmetry is obtained by enlarging the standard
model gauge group to Gg¢, where

Gge =8U(3), ® SU(3), ® SU(2)L, ® U(1)x. (1)
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Here SU(3), is the usual color group and SU(3), is its
leptonic partner. This enlargement requires a tripling in
the number of leptons. Each standard lepton (the left-
handed electroweak doublet fr, the right-handed charged
lepton eg, and the right-handed neutrino vg) has two ex-
otic partners, hereafter called “liptons.” The expanded
fermionic generation is defined by the transformation
laws

Fp ~ (3a 172)(_1/3)7 Egp ~ (3: 191)(_4/3)7 Ng ~ (3a 1,1)(2/3)a

(2)

QL~ (173v2)(1/3)a UR ~ (1v37 1)(4/3)’ dr ~ (1a37 1)(_2/3)'

The standard lepton doublet f; is embedded in Fy, er
in Eg, and vg in Ngr. The Z; discrete symmetry

Fy - Qr, Er < ugr, Nr < dg,

(3)
Gl & Gy, Ct = —C*

can now be defined [where Gf;, ¢ are the gauge bosons of
SU(3)4, and C* is the gauge boson of U(1)x]|. Stan-
dard hypercharge is identified as the linear combination
X+%T where T' = diag(—2, 1,1) is a generator of SU(3),.
Standard leptons are identified with the T' = —2 com-
ponents of the leptonic color triplets, while the T' = 1
components are the charge +1/2 liptons.

In order to spontaneously break SU(3), and the quark-
lepton discrete symmetry, and also to give masses to
the liptons, the Higgs bosons x; and x2 are introduced.
These scalars are defined through the Yukawa Lagrangian

C\(xflgk = hi[FL(FL)x1 + QL(Qr) x2]
+ha[Er(NRr)®x1 + Tr(dR)®x2] + Hec., (4)

where hi o are the Yukawa couplings and family indices
have been suppressed. The quantum numbers of the
Higgs fields, and their behavior under the discrete sym-
metry, are

X1~ (5717 1)(—2/3)’ X2 ~ (173-’ 1)(2/3), X1 < X2-

(%)

The T = 2 component of x; develops a nonzero vacuum
expectation value (VEV), while the VEV of x; is com-
pletely zero.

Electroweak symmetry breaking is achieved through a
SM Higgs doublet, which is defined through the analogue
of the standard Yukawa Lagrangian:

£P), = T1(FLEr¢ + Qrure®)
+D2(FLNR¢® + Qrdre) + H.c. (6)

This Lagrangian has the same purpose as in the SM. The
Higgs field ¢ has quantum numbers given by

b~ (1a172)(1)' (7)

f

Under quark-lepton symmetry ¢ has to transform into
its charge conjugate field (i.e., ¢ < ¢°) since the U(1)x
gauge field changes sign (i.e., C*¥ — —CH*) under the
operation of the quark-lepton discrete symmetry.

The Yukawa Lagrangian yields the tree-level mass re-
lations

My = Me, Mg = m,l?irac_ (8)
Here my, ¢ 4, refer to the 3 x 3 mass matrices (u refers to
charge 2/3 uplike quarks, e refers to the charged leptons,
etc.). These mass relations arise as a consequence of (i)
the assumption that quark-lepton symmetry is a symme-
try of the Yukawa Lagrangian and, (ii) using the minimal
Higgs sector of only one doublet. It would be impres-
sive if a ¢-£ symmetric model could be found which con-
tained radiative corrections that transformed these tree-
level mass relations into correct and predictive results.
No such model has as yet been constructed, although a
certain g-¢ symmetric model with a nonminimal gauge
group has been shown to contain radiative corrections
which can yield correct but unpredictive fermion masses
[11] (indeed a further extension of this nonminimal model
will be used in the next section). If the minimal model
is extended to contain two Higgs doublets, then the re-
lations of Eq. (8) can be avoided at the tree level but at
the expense of predictivity. Therefore, discrete g-£ sym-
metry is certainly not incompatible with the measured
quark and lepton masses.

For future reference we mention that the mass rela-
tion involving the neutrinos can be avoided if Majorana
masses are given to the right-handed neutrinos. This can
be achieved through the Higgs multiplet A; as defined in

L) =1 [Nr(Nr)°Ar +dr(dr)°Ag) +He.,,  (9)
where

Ap ~(6,1,1)(4/3), A2~ (1,6,1)(—4/3),
(10)
A1 & A,
It is assumed that the T' = —4 component of A; develops
a nonzero VEV while the VEV of A; remains zero.
The symmetry breaking pattern can be summarized as
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SU(3), ® SU(3), ® SU(2)L ® U(1)x
(A1) 1 (xa)
SU(2) ® SU(3)a ® SU(2)L ® U(1)y
1 (#)
SU(2) ® SU(3), ® U(1)g. (11)

The SU(2)’ is an unbroken gauge symmetry. This gauge
force is expected to be asymptotically free. In analogy
with QCD, we assume that it confines all SU(2)’ colored
states, so that at large distances only color-singlet states
exist in the spectrum.

IV. UNSTABLE DOMAIN WALLS

We will now begin our investigation of assumptions
(ii)—(v) as identified in the Introduction.

In this section, we will discuss one way in which as-
sumption (ii), that domain walls are stable, can be evaded
in g-£ symmetric models. The basic idea is not new: we
find a way to embed the discrete symmetry inside a con-
tinuous symmetry [12]. We then envisage that the con-
tinuous symmetry spontaneously breaks to the discrete
symmetry at a high scale, followed subsequently by the
spontaneous breaking of the discrete symmetry at a lower
scale. During the first cosmological phase transition, a
network of cosmic strings forms. These cosmic strings

|

Fr ~ (3’132)(07_1)a Ep ~ (37 1, 1)(—1a _1>’

QL ~ (173,2)(0’ 1)’ dr ~ (1’ 3, 1)('"1: 1):

where Fy,, Er, and Ng are generalizations of the usual
lepton fields fr = (vp, er)T, er, and vg respectively.
The generator X of Eq. (1) is given by

X =R+V/3, (14)

while, as for the minimal ¢-¢ symmetric model, weak hy-
percharge is given by

Y =X +T/3, (15)

where T' = diag(—2,1,1) in leptonic color space. As be-
fore, the formula for Y identifies the standard leptons as
the T' = —2 components of the SU(3), triplet fermions,
while the T' = 1 components are the exotic charge +1/2
liptons.

Many different types of discrete g-¢ symmetries may
be defined for the fermion spectrum of Eq. (13). We will
consider the one which is defined by the transformations:

FrL - Qr, Er<dr, NRgr© upg,

(16)

GY Gy, WH o WH  REo R, VHE o —VH
where GZ‘ ¢ are quarklike and leptonic gluons respectively,
WH are weak bosons, and R* and V* are the gauge bo-

son fields of U(1)g and U(1)y respectively. Note that
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then have to form the boundaries of the domain walls
produced after the second phase transition. The dynam-
ics of these hybrid string-wall structures is such that the
domain walls are eventually ripped apart, thus rendering
them unstable and cosmologically benign [12].

We will take the dynamics of the string-wall structures
as given [12]. Our task is therefore to show how discrete
g-£ symmetry can be embedded in a continuous symme-
try and how the two stages of spontaneous symmetry
breaking can be induced. We will also have to ensure
that no other cosmological problems are introduced in
the process.

The gauge group of the minimal ¢-£ symmetric model is
given by G in Eq. (1). However, for the purposes of this
section we have to begin with a slightly more complicated
gauge group, given by G;e where

G;Z = SU(3)g ® SU(3)q ® SU(2)L ® U(l)R ® U(l)v.
(12)

The group U(1)g is just the Abelian subgroup of the
(nonexistent) right-handed weak-isospin SU(2) g symme-
try, while U(1)y is a new Abelian invariance intrinsic
to g-¢ symmetric models. Under this slightly extended
gauge group, the fermion field representations are

Ngr ~ (3,1,1)(1,-1),

(13)

ug ~ (1,3,1)(1,1),

this discrete g-¢ symmetry is different from the one in
the minimal model [see Eq. (3)]. It is important to also
realize that any ¢-£ symmetry may be modified by spec-
ifying a relative phase change for the quark and lepton
fields when they interchange. The model specified by
Egs. (12)-(16) has not been explicitly analyzed before in
the literature. However, a close cousin of it is discussed
in Sec. IIIB of Ref. [3].

The gauge group Gy, and a phase-transformed ver-
sion of the discrete symmetry given by Eq. (16) can be
simultaneously embedded in a larger continuous symme-
try. The new gauge group is given by Gg where

Gs = SU(6)ps ® SU(2) @ U(1)g, 17)

where the subscript “PS” refers to Pati-Salam [13]. The
quarks and their corresponding generalized leptons are
placed in the same multiplet under G¢. The fermion
multiplet structure is, in fact,

Y ~ (672)(0)7 YR~ (67 1)(1)a Yar ~ (6, 1)(-1),

(18)

where Fyp and Qp are inside 11, Nr and ug are inside
Y1r, and Eg and dgr are inside ¥or. If we write the sex-
tets as column matrices, then we will identify the quark
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colors with the upper three components while the lower
three components will be the generalized leptons. The
charge V' is now the diagonal generator of SU(6)ps which
is given by diag(1, —1) where 1 is the 3 x 3 unit matrix.

How is the discrete quark-lepton symmetry embedded
in SU(6)ps? The most general matrix which is both an el-
ement of the sextet representation of SU(6) and a quark-
lepton interchange operator is given by C where

c= (i '9)- (19

In this equation, D = diag (%1, ¢%2, €%2) and the phases
01,2,3 correspond to the most generally allowed phase
transformations of the various quark and lepton colors
when they interchange. The matrix C represents ‘the
transformation in Eq. (16) but with a different phase
structure. Since we are not particularly interested in
most of these phase transformations, it is simplest to take
01,2,3 = —7/2. The simplified discrete symmetry matrix
is then given by

c= (_On ’10) : (20)

Note that the minus sign in this simplified matrix is nec-
essary to ensure that C has determinant equal to one.
Therefore one cannot escape from complicating the phase
structure of Eq. (16) a little. Actually, the discrete sym-
metry group left over after SU(6)ps breaking consists of
the elements {Z, —Z = C?, C, C~! = C'} and is isomor-
phic to Zy, rather than the Z; of Eq. (16). The connec-
tion with Z; is provided by the homomorphism Z — Z7,
I ->7I',C - C,C ! — C" from Z4 to Z, where T’
is the Z, identity element and C’? = Z’. This homomor-
phism identifies those elements of the Z4 symmetry which
are related to each other only by a phase transformation.
Note also that the element C?> = —T of Z; is also the
element exp(inV') of U(1)y. Therefore all of the purely
phase transforming actions of the Z; symmetry can be
undone by this U(1)y gauge transformation.

The idea of embedding quark and lepton color inside
an extended Pati-Salam symmetry has already been con-
sidered in Ref. [14]. In this previous paper, the full
SU(2) g right-handed weak-isospin group was postulated,
together with an exact discrete left-right symmetry (par-
ity) which swapped the two weak-isospin sectors. This
made the model possess partial coupling constant uni-
fication, with some attendant constraints on symmetry
breaking scales resulting from a renormalization-group
analysis of the theory [15]. From the point of view of
standard cosmology, however, neither the full SU(2)g
symmetry nor the discrete left-right symmetry should be
imposed. Imposition of the former would lead to a cos-
mological monopole problem, because the initial gauge
group would not have a U(1) factor,? while imposition of

ZNote that the generator R of the Abelian group factor in
G contributes to the formula for electric charge, as given by
Q=1I31+R/24+V/6+T/6. If the U(1) in G¢ had turned out
not to contribute to Q, then topologically stable monopoles
would have been produced at some stage in the symmetry-
breaking process. We will make some more comments on
monopoles later in this section.

the latter would result in its own domain wall problem
[16]. Unlike its close relative in Ref. [14], the gauged Gg
model has no partial coupling constant unification, and
so the symmetry-breaking scales are less constrained.

At the first stage of symmetry breaking we want to
break SU(6)ps down to its SU(3),®SU(3),®U(1)v sub-
group. We would also prefer to have the discrete ¢-¢
symmetry, as given by C in Eq. (20), remain unbroken
after this initial breakdown of the Gg group. If the
discrete symmetry were to break at the same scale as
SU(6)ps then the domain-wall problem would be triv-
ially “solved,” because the discrete symmetry would have
never existed as a free-standing invariance at any energy
scale.® We prefer instead to ensure that the effective the-
ory below the first symmetry-breaking scale is a model
with an exact, unembedded ¢-¢ symmetry.

This first stage of symmetry breaking can be accom-
plished in a number of ways. The simplest method is to
introduce a real Higgs field ® whose Gg transformation
law is given by

& ~ (189,1)(0). (21)

Under the SU(3),®SU(3),®U(1)y subgroup of SU(6)ps,
the field

% — (1,1)(0) @ (1,8)(0) & (8,1)(0) & (8,8)(0)
@ (3,3)(-2) @ (3,3)(2) ® (3,3)(4) & (3,3)(-4)
@ (3,6)(—2) ® (6,3)(2) ® (3,6)(2) © (6,3)(—2). (22)

A nonzero vacuum expectation value (VEV) for the sin-
glet (1,1)(0) component of & performs the gauge symme-
try breaking we require, this being

Gs — SU(3), ® SU(3), ® SU(2)z ® U(1)r ® U(1)y-.
(23)

This breaking is of course just Gg — G;e- The discrete
g-¢ symmetry is also left unbroken, as we will now show.

The 189-plet is actually the lowest dimensional repre-
sentation one can use to leave the discrete g-¢ symmetry
unbroken. The lower dimensional representations 35 and
175 also contain SU(3),®SU(3),®U(1)v singlets. How-
ever, VEV’s for these components would break the dis-
crete symmetry, because they are odd under the discrete

3As a sidelight, we note that a Higgs boson transforming
as a (20,1)(1) multiplet under G can break Gs to the gauge
symmetry Gg-¢ of the minimal model [see Eq. (1)] simulta-
neously with the discrete symmetry. Therefore, in this case
there is definitely no domain-wall problem, but there is also
never a free-standing discrete g-¢£ symmetry. Nevertheless,
since the leptonic color group can remain exact to TeV scales
even though the discrete g-¢£ symmetry might be broken at
a high scale, this scenario is not completely devoid of phe-
nomenological interest. Note also that a Higgs field in the
(35,1)(0) representation can break the discrete symmetry at
the same time as it induces the breaking of Gs down to G;l
(see below).
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symmetry.* To see this, consider the decomposition of
the tensor product

66=1535 (24)

under the subgroup SU(3),®SU(3),8U(1)y, where 6 —
(3,1)(—=1)®(1, 3)(1). Denote the two singlets in the prod-
uct by S; and Ss; they are given by

S1C (1,3)(1) ® (1,3)(-1)
and (25)

Sy C (3,1)(-1) ® (3,1)(1).

Under the operation of the ¢-£ symmetry S; < S3. From
these two singlets we can construct two independent com-
binations, S; + S3 and S; — S, which transform as even
and odd under the g-f symmetry, respectively. By necces-
sity, the g-f—even singlet corresponds to the SU(6) singlet
in the right-hand side of Eq. (24). Therefore the singlet
in the 35-plet must be ¢g-£ odd. [One can check this ex-
plicitly by using the representation given in Eq. (20).] By
using this result and the same method one can show that
the singlet in the 189-plet is g-f—even from the decompo-
sition of

15915 =1 @35 @ 189. (26)

Similarly, the 175-plet can be shown to contain a ¢-¢—odd
singlet by using the decomposition of 20020 = 139353
175 & 189, while the 405-plet can be shown to contain a
g-¢—even singlet by considering 21 ® 21 = 1 & 35 ® 405.

The second stage of symmetry breaking is induced
through Higgs multiplets called x and A (we require
that (x), (A) <« (®) in order to create the possibility
of interesting TeV-scale phenomenology). These fields
possess Yukawa couplings to the fermions given by the
Lagrangian Lyyux where

Lyuk = hpprx(¥L)® + hrirx(Y2r)°

+n1rRA(Y1r)° + He. , (27)
and their transformation properties under Gg are
x ~ (15,1)(0) and A ~ (21,1)(2). (28)

Since Gg — Gfﬂ at the first stage of symmetry breaking,
we also need to know how x and A transform under the

unbroken subgroup. The branching rules to G, are

x— (3,1,1)(0,—2) & (1,3,1)(0,2) & (3,3,1)(0,0),
(29)
X—=X19x2®x,

4The homomorphism from Z4 — Z; discussed above defines
the representation of Z4 under which SU(3),®SU(3),®U(1)v
singlet component Higgs fields transform (with ¢’ = —1).
Since this representation is isomorphic to Z5, the terms “odd”
and “even” are applicable.
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and

A—(6,1,1)(2,-2) & (1,6,1)(2,2) & (3,3,1)(2,0),
(30)
A=A ®Ay A,

where the equation below each branching rule establishes
our notation for the multiplets which are irreducible un-
der the unbroken gauge group. Clearly, under the dis-
crete g-£ symmetry (ignoring the phases),

X1 < X2 and Ay & Ag, (31)

while the components of x’ and A’ transform amongst
themselves. The Higgs fields x1,2 and A; correspond
to their namesakes in the minimal g-¢ symmetric model
reviewed in Sec. III.

The multiplets x; and Az can be represented by an-
tisymmetric and symmetric 3 x 3 matrices, respectively.
Under SU(3), transformations

x1 — Uepx1U7 and Ay — UpgAUE, (32)

where Uy is a triplet representation matrix of an SU(3),
group element. We require the x; and A; components
of the full Higgs multiplets x and A to develop nonzero
VEV’s in order to break both the discrete g-£ symmetry
and the leptonic color group SU(3),. Of course, the other
multiplets inside x and A possess quark color and so we
must demand that their VEV’s be zero. The required
pattern of VEV’s is

0 00
xi)=(0 0 v (33)
0 —-v O
and
v 0 0
(Ar)={0 0 0], (34)
0 0 0

with x2, X', Az, and A’ all having zero VEV’s.

It is important to note that the trilinear term x!x®
appears in the Higgs potential for this model. This term
ensures that the discrete transformation & — —® is not
an accidental symmetry of the theory, and so there is no
accidental domain-wall problem either. One can check
that there are no other accidental discrete symmetries
in the model that are not also elements of a continuous
global symmetry. This term also serves to connect the &
multiplet in a nontrivial way with the other Higgs fields
of the theory.

After the second stage of symmetry breaking, the un-
broken gauge group is SU(2)’ ® Gsum, where Ggy is just
the standard model group SU(3),® SU(2).®U(1)y [with
Y given by Eq. (15)] and SU(2)’ is an unbroken rem-
nant of leptonic color. The exotic partners of the lep-
tons (the liptons) gain mass from the hr g terms in
Eq. (27), while the right-handed neutrinos develop Majo-
rana masses from the n term in the Yukawa Lagrangian.
All of these masses are thus expected to be heavy com-
pared with the usual leptons and quarks (which are still
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massless). The heavy charge +1/2 lipton fields are dou-
blets under the unbroken shard SU(2)’. If the number of
fermion generations is not too large (for instance, if there
are three of them), then SU(2)’ is asymptotically free and
thus is expected to be confining. All particles which have
nontrivial quantum numbers under SU(2)’ (liptons, some
Higgs bosons, and some heavy gauge bosons) are then
confined into unstable, integrally charged bound states.
This neatly evades a potential cosmological abundance
problem, because the lightest half-integrally charged par-
ticle would be stable if it were free.5 Finally, note that a
large Majorana mass for the right-handed neutrinos sets
the stage for the seesaw mechanism [17] once electroweak
symmetry is broken.

The final stage of symmetry breaking just involves the
usual spontaneous violation of the electroweak group.
This is performed in the standard way through elec-
troweak Higgs doublets, which also induce masses for
quarks and the usual leptons (we of course require that
(¢) < (x1),(A1)). If only one doublet is used, then
there are quark-lepton mass relations at the tree level of
the form m, = mD** and m4 = m, due to the discrete
g-¢ symmetry. Note that these mass relations are dif-
ferent from those obtained in the minimal g-£ symmetric
model [see Eq. (8)]. Because of this, radiative corrections
in the model that break the tree-level relations can yield
correct but unpredictive quark and lepton masses [11].
Also, if more than one doublet is used, these mass rela-
tions no longer hold at the tree level (and predictivity is
also unfortunately lost).

This essentially completes our demonstration that the
domain wall problem for spontaneously broken discrete
g-¢ symmetry can be evaded by embedding the discrete
transformation in a continuous gauge group. However,
the attentive reader may have noticed a complication
arising with regard to monopoles because of the way
we have performed the spontaneous symmetry breaking.
This issue requires some further discussion.

The point is that the first stage of symmetry breaking
consists of SU(6)ps — SU(3),®5U(3),®U(1)y, with no
participation from SU(2)®U(1)g. The fact that U(1)y
comes entirely from SU(6)ps means that monopoles ex-
hibiting V-type magnetic charge will be created during
the first phase transition.® Indeed, if no further symme-
try breaking were to take place, these monopoles would
be topologically stable. However, we know that after
the final stage of symmetry breaking Gg has broken
to SU(2)’®SU(3),®U(1)q where the generator R con-
tributes to @ (see footnote 2). Since this breaking cannot
support topologically stable monopoles, the monopolelike
states produced at the first stage of symmetry breaking
must disappear in some manner. Although a detailed

5Strictly speaking, this particle is stable even if it is confined.
However, in this case its stability is not a problem for the same
reason that there are no stable mesons.

To be more precise, the global structure of the un-
broken group is actually SU(3).®SU(3),®U(1)v/Z3 so the
monopoles also carry some non-Abelian magnetic charge.
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analysis of how this occurs is well beyond the scope of
this paper, we can fairly easily identify at least two im-
portant processes. First, since they are not topologi-
cally stable once all of the symmetry breaking is com-
plete, it must be true that the monopoles can just decay
into ordinary forms of energy. Second, at some point
after the first phase transition we have to break a U(1)
gauge group, which should lead to the formation of cos-
mic strings [which are different from the cosmic strings
produced when the Pati-Salam SU(6) breaks to the dis-
crete symmetry]. Since the generator V' contributes to
the generator of this broken U(1), we would expect these
cosmic strings to end in monopoles and antimonopoles, so
enhancing their annihilation rate [18]. We therefore con-
clude that although monopole-like states will exist during
a certain epoch in the early Universe, they will ultimately
disappear and thus in all probability not cause any cos-
mological problems.”

In order to round off the discussion, we will now briefly
address some further issues. (i) There are many phe-
nomenological constraints one could place on this model.
We will not derive any bounds here, because we do not
want to obscure our essential point about how the do-
main wall problem can be avoided. (ii) The scale at which
SU(2)’ confines is approximately calculable, because the
leptonic color coupling constant is equal to the strong
coupling constant at the scale of ¢g-¢£ symmetry-breaking.
If the ¢-¢ symmetry-breaking scale is not much higher
than the lipton mass scale, then the confinement energy
turns out to be about the same as for QCD. If there is
a splitting between the discrete symmetry breaking scale
and the lipton mass scale (i.e., if (A1) > (x1)), then
the SU(2) confinement energy is lower than its QCD
counterpart. (iii) That the SU(2)’ confinement scale is of
the order of hundreds of MeV or lower implies that the
lowest mass survivors from the underlying ¢-¢ symmetric
model are the SU(2)’ glueballs. These objects may give
rise to interesting phenomenology, and they are also of
potential cosmological significance because they are long
lived. If these glueballs are very light (~ 1 keV), then
it has been shown that they do not interfere with stan-
dard big bang nucleosynthesis, and that they are a dark
matter candidate [14]. If, on the other hand, the glue-
balls have masses in the 1 GeV range, then they have to
decay in less than about 1 sec in order to be compati-
ble with standard BBN. Although a detailed analysis of
glueballs in this mass range has not as yet been carried

If the U(1)y symmetry never exists as an exact symmetry
in its unembedded form, then of course no monopoles, unsta-
ble or otherwise, ever form. This will be true, for instance, if
(®) ~ (x1) or (®) ~ (A1) (of course in this case the discrete
g-¢£ symmetry would also not exist as a free-standing invari-
ance). The requirement that the monopoles disappear quickly
enough to be cosmologically acceptable therefore translates
into an upper bound on [(®) —(x1)| or [(®) —(A1}|. A detailed
dynamical calculation would be necessary to determine this
bound, but we expect that reasonable values for the VEV’s
would be allowed.
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out for g-¢ symmetric models, a brief study was made
in Ref. [4] which suggested that a range of parameters
for the model allowing the glueballs to be cosmologically
acceptable exists [19].

V. SPONTANEOUS DISCRETE SYMMETRY
BREAKING AND THE COSMOLOGICAL
PHASE TRANSITION

In this section we will examine whether or not there
is necessarily a cosmological phase transition associated
with the spontaneous breaking of the discrete symme-
try [20]. If no such phase transition need exist (i.e., if no
symmetry restoration need occur at some critical temper-
ature T¢), then one can consistently attribute the broken
symmetry as a special initial condition of the big bang.
If this is the case then we can arrange for the vacua in
casually disconnected regions to be the same. Hence the
formation of domain walls is avoided. Of course, this very
special initial condition would ultimately require a deep
explanation. However, for our present purposes it is not
necessary to push the analysis to this extreme, given our
overwhelming ignorance of physics at the Planck scale
[21].

Before proceeding, note that we are assuming that it
is fundamental Higgs scalars which are responsible for
the origin of spontaneous symmetry breaking. However,
the Higgs sector of the SM is experimentally untested
so the origin of spontaneous symmetry breaking remains
unclear. It could well be that spontaneous symmetry
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breaking is dynamical in origin and has nothing to do
with fundamental scalars [22]. If this is the case then it is
still an open question as to whether symmetry restoration
occurs at high temperatures [23].

Consider the zero-temperature Higgs potential of the
minimal ¢-¢ symmetric model given by

2
Ww=MXA [x'{xl + x}x2 — vz]
2
+xexixaxdxe + As (676 — u?)

2
+A4 [45145 —u? + xix1 + xhxe — Uz] . (35)

(For illustrative purposes, we have kept the Higgs poten-
tial simple by not including the fields A; 2 or multiple
copies of ¢.) If the coefficients, A;, are all positive then
the above potential is minimized where u and v are the
nonzero VEV’s of the ¢ and x; fields respectively. This
then leads to the symmetry breaking pattern given in
Eq. (11). As a result of this symmetry breaking, there
will be two residual neutral Higgs bosons (coming from
¢ and x1) whose mass (squared) matrix is given by

4(A3 -+ /\4)u2 4 4uv (36)
4 4uv 4\ + /\4)’1)2 '

There will also be the charge 1/3 color triplet Higgs mul-
tiplet x2 with mass given by M2, = A\v2.

For the purposes of this section we will rewrite Eq. (35)
in a more convenient form as

2
Vo = —u3'6+ (ha+Aa) (¢79)” + 20 (¢19) [xhxx +xdxe] + @M + 20+ 22) xdxaxdee

—u? [xixl + xEXz] + (A1 + M) [(xba)z + (x2m)2] : (37)

The minimization conditions then become

ku® = (A1 + Aa)pd — Aapik,
(38)
kv? = (A3 + Aa)p2 — Aap,

where k = 2 (A1 Az + A1 Ag + AzAy).

Now consider the finite temperature contributions to
the effective Higgs potential. We will only consider the
terms proportional to T2 since it is sufficient for us to
work within the high-temperature expansion approxima-
tion. By using the usual calculational techniques [24], the
finite-temperature corrections® modify the minimization
conditions of Eq. (38) to become

8In our high T approximation we have neglected the contri-
butions that are proportional to T" and the logarithmic correc-
tions to the coefficients of the quartic terms in the potential.

ku? = (A1 + Ag) (03 — GT?) — Mg (12 — GT?),

(39)
kv? = (As + M) (42 — GT?) — Mg (03 — G T?),
where
1 3 3 5, 1 45 1,
Q=3+ M+ g0+ pox + 5T
(40)

7 1 3 1
(o= ~6-/\1 + Z/\Q + 5)\4 + ggg + 3—]69§(,

and gx,2,3 are the U(1)x, SU(2)z, SU(3),,e gauge cou-
pling constants respectively and I'; is the t-quark Yukawa
coupling constant. (Note that our theory has two Yukawa
coupling constants equal to I'; because of the discrete
symmetry.) To simplify Eq. (39) let A3 < A4 and
©= pg ~ py. Then

ku? ~ A\p? — A\g(T2,
(41)
kv? ~ Aap? + AgCT2,
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wiere

1 7 1 1 1 3 5
S VS WS VOIS - B By S
¢ 5 gM g 2+ 5l — 395+ pg2 + 9%

(42)

Therefore v2 can remain nonzero, and hence ¢g-¢ symme-
try unbroken, provided ¢ > 0. Clearly, a range of param-
eters exists for which this is true.® More specifically we
can choose, for example,

7 1
> -~ -
A3z > 3/\1 + 2/\2,
(43)

2 3 5
rz> -3‘9§ - gg% - Egﬁ,

where the couplings are evaluated at high T'. For such a
range of parameters, the neutral Higgs-boson masses at
zero temperature from Eq. (36) are given by

2 ) ,12
¢ ( 1 3 1 1’;2

(44)
Mil ~dhg (u? + vz) ;

For a Higgs boson, mass greater than about 50 GeV (the
current lower limit is 48 GeV [25]) gives A1 + A3 > 0.02
which is consistent with the chosen range of parameters
in our example.

The Higgs sector we analyzed above is of course un-
realistic from the point of view of fermion mass relations
(see Sec III). We have, however, checked that a realistic
theory containing two electroweak Higgs doublets yields
the same qualitative conclusions as we reached in our
simple illustrative model. For reasons of clarity we have
therefore chosen to explicitly display only the simplified
analysis.

So the minimal ¢-¢ symmetric model has the neces-
sary ingredients to prevent a restoration of g-¢ discrete
symmetry at high temperatures (and, for that matter, a
restoration of leptonic color symmetry). Clearly, in ex-
tensions of the minimal model, where the Higgs sector
will generally be more complicated, this will also be the
case (the two electroweak doublet extension alluded to in
the preceding paragraph is an example). Such a scenario

9Note, however, that the electroweak phase transition is still
expected to take place. This is because for temperatures lower
than the mass of the lightest exotic particle (be it a lipton or
an exotic Higgs boson or whatever), the effect of all these
nonstandard states is Boltzmann suppressed, and so the ef-
fective finite-temperature field theory is essentially that of the
SM. The nature of the electroweak phase transition may be
altered because the lightest Higgs-boson mass eigenstate may
have different properties from the standard Higgs boson and
because of the possibility that one or more of the exotic par-
ticies may fortuitously have masses as low as, say, 100 GeV.
However, interesting though they may be, these details are
unimportant for our present purpose.

provides one way of evading the domain-wall problem.
It is interesting to also note that electroweak symmetry
can be restored even though the g-¢ symmetry remains
broken. This may prove useful for baryogenesis at the
electroweak scale.

VI. DOMAIN WALLS AND INFLATION

As we discussed in Sec. II, the unadorned hot big bang
model cannot account for the smoothness and flatness of
our Universe (although it is compatible with it). The
interesting idea of “inflation” has been much studied as
a way of remedying this deficiency [6]. At some very
early stage in the evolution of the Universe, a finite pe-
riod of exponential expansion is postulated, which ren-
ders spacetime almost perfectly flat after the exponential
expansion ceases. Also, the present observable Universe
arises from within a causally connected region of the very
early Universe, thus explaining its palpable smoothness.

Since its inception, inflation has also served to rid the
Universe of otherwise troubling topological defects, pro-
vided the period of inflation occurs after the cosmologi-
cal phase transition that creates the topological defects.
For instance, one of the original motivations for infla-
tion was to cure grand unified theories (GUT’s) of their
monopole abundance problem. The cure is so efficacious,
in fact, that from the pre-inflation prediction that GUT
monopoles dominate the energy density of the Universe
by many orders of magnitude, the Universe observable to
us today after inflation is predicted to contain at most
one monopole.

As for monopoles, an inflationary epoch after a cos-
mological phase transition associated with spontaneous
discrete symmetry breaking also eliminates domain walls
from the observable Universe. Clearly, therefore, domain
walls generated by discrete ¢g-¢ symmetry can be rendered
innocuous by this means.

The only issue we have to really discuss in this re-
gard is the relative positioning of the scales of symme-
try breaking in ¢-£ symmetric models and the scale Ajn¢
at which inflation occurs.l® In the past, the inflation-
ary phase transition was generally arranged to occur at
about 1014 GeV. Recently, it has been pointed out that
inflation could occur at energies as low as the electroweak
scale [9]. If inflation is taken to occur at the electroweak
scale then clearly any extension of the SM which pro-

OFor inflation to solve the smoothness and flatness prob-
lems, the period of exponential expansion must be sufficiently
long. The scale Ains is then to be interpreted as correspond-
ing to the temperature at which inflation begins. During the
inflationary phase, the Universe supercools so that Ains no
longer even approximately corresponds to the temperature of
the Universe at that time. When inflation ceases the Universe
is reheated by the conversion of false vacuum energy into ther-
mal energy for the particle soup. The reheating temperature
turns out to be less than Ains so inflation does not restart and
the discrete g-£ symmetry is not restored.
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duces naively troublesome topological defects at a higher
scale will see these defects inflated away. Therefore, low-
scale inflation can cure the g-£ symmetric models of their
domain wall problem. However, if inflation is taken to
occur at a much higher scale than the electroweak, then
we must arrange spontaneous g-¢ symmetry breaking to
occur at an even higher scale yet. In the rest of this sec-
tion we will assume that inflation occurs for Aj,s > My,
and see what needs to be done to ensure that the domain
walls are still inflated away.

Since we would like a lot of new phenomenology to
occur in the TeV energy regime, we may like to consider
divorcing the discrete symmetry-breaking scale Ag, from
the leptonic color breaking scale Az and/or the lipton
mass scale Ay. It is sensible, in fact, to consider three
hierarchical patterns:

Age > A > Az ~ A (45)
or

Aqg > Ams > Az > Ap (46)
or

Aqg ~ A3 > AInf > AL. (47)

Let us begin thinking about these patterns in terms of the
minimal g-£ symmetric model introduced in Sec. III.11
(Do not worry, for the near future, about how the scale
of inflation Aj,¢ is to be generated. We will just assume
in an ad hoc way that an inflaton field can be added to
the model to bring about inflation at any desired scale.
Fitting the inflaton field into the rest of particle physics
in an elegant way is a very deep and unsolved problem
which we are not going to address.) It is immediately
apparent that we have to extend the Higgs sector of the
minimal ¢-¢ symmetric model in order to generate the
hierarchies of Egs. (45) and (46) (call them hierarchy 1
and hierarchy 2 respectively). This is because the Higgs
fields x1 and A; introduced in Sec. III both simultane-
ously break the discrete symmetry and leptonic color.
Thus we need to introduce another Higgs field o which
is a gauge singlet but which is odd under ¢g-£ symmetry.
Note, however, that x; and A; are sufficient in order to
generate hierarchy 3 [see Eq. (47)).
In terms of VEV’s for Higgs fields,

Aql ~ max({), (x1), (A1),

Ar ~ (x1),

Az ~ max({x1), (A1)
Hierarchies 1, 2, and 3 are generated, respectively, if

(49)

(48)

(@) > Ains > (A1) ~ (x1),
or

(o) > Aint > (A1) > (x1), (50)

' Generically, we would expect the scales A3,z to roughly
correspond to the temperatures at which the associated cos-
mological phase transitions occur. Note, however, that this
need not be true for reasons outlined in the preceding section.
Note also that if the reheating temperature after inflation is
lower than either Az or A or both, then the associated phase
transition(s) will not occur in the post-inflationary Universe.
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or

(Al) > Ajps > <X1>. (51)

We should be aware that some fine-tuning of parameters
will be necessary in order to generate these hierarchies.
Since the purpose of the present paper is to show how
domain walls can be made cosmologically safe, we do not
want to cloud the issue by including complicated spec-
ulations about how the gauge hierarchy problem might
eventually be alleviated. It is sufficient for us that such
hierarchies can be induced.

We do not need to discuss hierarchy 3 much further.
We simply fine-tune the Higgs potential parameters to
create this hierarchy, and we throw in an inflaton field.
Note also that a fine-tuning is necessary to keep the lip-
ton masses light after leptonic color is broken, because
the gauge group SU(2)’ ® GsMm cannot by itself prevent
the radiative generation of nonzero lipton masses. If we
extend the minimal ¢-¢ symmetric model gauge group,
then it is possible to have a symmetry left over after the
first stage of symmetry breaking in hierarchy 3 which
does prevent the liptons from gaining mass [3].

Hierarchies 1 and 2 require the additional Higgs field
o. This is a real Higgs field which is odd under discrete
g-¢ symmetry. It couples to the other fields in the model
through the Higgs potential terms

V, = —u§02 + A0t + Gx(XIX1 - X£X2)U
+aa(ATAL — ALAL)o + Aoy (xix1 + Xhx2)0?
+Aoa(AlA] + AlA2)o? + V (9, 0), (52)

where V(¢,0) describes the coupling of ¢ to however
many electroweak doublets ¢ we have in our theory. The
two trilinear terms in this equation establish o’s g-f—odd
credentials. Again, we fine-tune the parameters in the
full Higgs potential in order to generate either hierarchy
1 or hierarchy 2. Note that after the discrete symmetry
is spontaneously broken, the coupling constants of the
two color forces will evolve a little differently under the
renormalization group, due to the fact that the leptoni-
cally colored Higgs fields will now have different masses
from those with quark color.

So, we conclude this section by saying that it is pos-
sible to inflate away the domain walls from ¢-¢ symme-
try breaking, while also preserving the feature of having
new low-energy phenomenology. This new phenomenol-
ogy can be either the existence of light liptons (say 100
GeV and above), or the existence of both light liptons
and all the new physics associated with the breaking of
leptonic color (Higgs fields and heavy gauge bosons).

VII. LIFTING THE VACUUM DEGENERACY

When a Z; discrete symmetry spontaneously breaks,
the standard perturbative analysis of the Higgs potential
reveals a vacuum manifold consisting of two degenerate
states that can be transformed into each other. An exact
degeneracy is necessary for the resulting domain walls to
be completely stable.

If a perturbation is added to the theory that explic-



47 DISCRETE QUARK-LEPTON SYMMETRY NEED NOT POSE A . .. 1367

itly breaks the discrete symmetry, then these two states
are no longer exactly degenerate. Provided the explicit
breaking is small enough, domain-wall structures can still
form, but they will no longer be stable. Since it is ener-
getically favored for the true vacuum state to be estab-
lished throughout the Universe, these domain walls have
to break up eventually. One can view this process as
being caused by a pressure differential across the domain
wall, due to the slightly different energy densities on each
side.

A “cheap and nasty” way out of the domain-wall prob-
lem for g-¢ symmetric models is therefore to include a
small amount of explicit breaking. One can even be so
sophisticated as to include only soft breaking terms. One
would also have to be careful to make the explicit break-
ing strong enough so that the domain walls break up
quickly enough. However, we view such models as un-
palatable since they render the term “quark-lepton sym-
metry” a misnomer.

A somewhat more attractive possibility exists, how-
ever, for it could turn out that nonperturbative effects
lift the degeneracy. A class of discrete symmetry models
for which this is supposed to occur has recently been dis-
cussed in the literature [26]. They are known as theories
with “anomalous discrete symmetries” [26, 27].

The examples of this phenomenon studied in the liter-
ature to date refer to discrete Z,, symmetries that can be
embedded inside the continuous group U(1) (in a num-
ber of different ways, in general) [27, 28]. Such a Z,
discrete symmetry is termed anomalous if all of the as-
sociated U(1) parents are anomalous with respect to the
gauge symmetries of the model. In an interesting anal-
ysis, Preskill et al. [26] have argued that the discrete
symmetry imposed to prevent Higgs-induced tree-level
flavor-changing process in the two-Higgs-doublet model
is anomalous, and thus the putative vacuum degeneracy
is lifted by instanton effects.!? They go on to argue that

2An as yet unresolved controversy exists as to whether
anomalous symmetries are “explicitly” or “spontaneously”
broken [29]. In the past, this contentious issue has of course
revolved around anomalous continuous symmetries [and in
particular the axial U(1) transformations that are an approx-
imate symmetry of QCD]. It seems reasonable that a similar
uncertainty should also exist about the status of anomalous
discrete symmetries. If it turns out that anomalous symme-
tries are to be properly regarded as explicitly broken, then
such transformations are not really symmetries in the first
place. Anomalous ¢g-¢ symmetries, should they exist, would
therefore be as misnamed as their “cheap and nasty” cousins
in the case mentioned above. However, if the alternative
view prevails that anomalous symmetries are in truth spon-
taneously broken, then this method of avoiding the domain-
wall problem would be rather more attractive. Note that this
point of view requires one to view the physical consequences
of spontaneous breaking differently for anomalous symmetries
compared with those broken in the more conventional manner.
For the axial U(1) of QCD, for instance, Goldstone’s theorem
no longer holds, while for anomalous discrete symmetries the
vacuum degeneracy does not occur. We have nothing new to
contribute to this old debate, but merely wish to alert the
uninitiated reader to its existence.

domain walls caused by this discrete symmetry decay in
time to prevent cosmological difficulties.

Can such a phenomenon also occur for discrete quark-
lepton symmetry? Before addressing this question, we
have to generalize the notion of an anomalous discrete
Z,, symmetry to include embeddings inside SU(N) rather
than just U(1). This is because discrete symmetry sub-
groups of U(1) act by changing the relative phases of
fields, while g-¢ symmetry is an example of a discrete
symmetry that interchanges flavors. We will call such a
group a “flavor interchanging discrete (FID) symmetry.”

The discussion pertaining to Eq. (20) illustrates how
flavor interchanging embeddings of Z4 inside SU(2N)
are established. To generalize the discussion slightly,
consider the SU(N);® SU(N);® U(1) subgroup of
SU(2N). The element of the fundamental representa-
tion of SU(2N) that interchanges the two SU(N) sectors
is given by

Cxn = (_]? é‘) (53)

where 1 is the N X N unit matrix (and we have fixed
the phases). We will call the resulting FID symmetry
anomaly-free (anomalous) if the parent SU(2N) gauge
theory is anomaly-free (anomalous). This is, of course, a
fairly obvious generalization of the U(1) example studied
in the literature.

In Sec. IV we showed that the discrete symmetry of
Eq. (16) could be embedded within an anomaly-free rep-
resentation of Gg = SU(6)ps®SU(2), ®U(1)g. There-
fore, this particular version of ¢-£ symmetry is anomaly-
free according to our definition. Thus effects related to
anomalies cannot lift the vacuum degeneracy, if the anal-
ysis of Ref. [26] can be validly extended to FID symme-
tries (and we see no obvious reason why it cannot be).

We now consider how the alternative version of g¢-¢
symmetry given by Eq. (3), as used in the minimal model,
may be embedded into the Gg model. Since the minimal-
model form of ¢g-¢ symmetry has the interchanges Er <
ur and Np < dg, it clearly is not an element of Gg.
However, if the discrete symmetry R given by

Y1r <> 2R, RF <o —RH (54)

is also imposed, then the discrete symmetry of the min-
imal model is given by the diagonal subgroup of R ® C
[where C is defined in Eq. (20)].

Is this new discrete symmetry R anomaly-free or not?
It is trivial to embed (a phase-transformed version of)
this discrete symmetry into an anomaly-free gauge the-
ory. The symmetry R is just a remnant of the right-
handed weak-isospin group SU(2)g. Under the gauge
group SU(6)ps® SU(2)® SU(2)Rg, the fermion transfor-
mation laws are

YL ~ (6; 2, 1)» Yr ~ (6y 1, 2) (55)
Since this fermion spectrum is anomaly-free, so is R.
Therefore it follows that the version of quark-lepton sym-
metry employed in the minimal model (up to phases)
is anomaly-free. [Of course, if the symmetry SU(6)ps®
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SU(2)L® SU(2)r were actually gauged, then the model
would have a monopole problem, provided the monopoles
were not inflated away, and provided that the full gauge
symmetry were restored at high temperature.]

There are other versions of g-£ symmetry that we
should also consider. Take for instance the g-£ symmetric
model that also features left-right symmetry [3, 30]. The
gauge group is GgeLr Where

GyLr = SU(3), ® SU(3)q ®SU(2)L ® SU(2)r ® U(1)v,
(56)
under which the fermion classifications are

Fr ~(3,1,2,1)(-1), Fr ~ (3,1,1,2)(-1),
QL ~ (1a3»2$ 1)(1)7 QR ~ (1a3a 172)(1)' (57)

The two g¢-¢ symmetries we have considered hitherto
have involved interchanging left-handed leptons with left-
handed quarks, and right-handed leptons with right-
handed quarks (in two different ways). But the discrete
g-{ symmetry

Fr < (Qr)°, Fp < (QL)° (58)

is also worth looking at. Note that we have not writ-
ten down the obvious interchanges of gauge fields nec-
essary to define this symmetry. In order for this dis-
crete symmetry to be classified either as anomalous or
anomaly-free, we have to find a way of placing [FL, (Qr)]
and [Fg, (@L)°] into non-Abelian gauge group represen-
tations. Such a group would have to be large enough to
contain the whole of GgLr as a subgroup (it would be
a simple GUT group, in fact). It is clear that there is
no such group with the necessary representations. (Note
that we want to do this embedding without introducing
any other fermions into the same GUT multiplets with
the pre-existing leptons and quarks.) We therefore con-
clude that the symmetry of Eq. (58) is neither an anoma-
lous nor an anomaly-free discrete symmetry.

So, we cannot use the argument pertaining to anoma-
lous discrete symmetries to conclude that domain walls
are unstable in this model, even though the discrete sym-
metry is not anomaly-free. The authors do not know if
there are nonperturbative effects different from those as-
sociated with anomalies that might lift the vacuum de-
generacy in a case such as this.

There is yet one more class of discrete ¢-£ symmetry
we should discuss: those also involving the discrete space-
time symmetries of parity and time reversal [31,2]. An
example will suffice. Consider the minimal g-£ symmetric
model gauge group G, and its fermion spectrum Eq. (2).
The ¢-£ symmetry,

H. LEW AND R. R. VOLKAS 47

Fr < (QL)°, Er <+ (ur)®, Nr<+ (dr)>, (59)
is also a parity symmetry, and requires the spacetime par-
ity transformation for its consistent definition. (Gauge
boson interchanges are not displayed, and the Lorentz
structure is suppressed.) There are other examples of
g-¢ symmetries that are also spacetime symmetries [31].
Clearly these transformations cannot be embedded into
any gauge group representation. Therefore, they are
also neither anomalous nor anomaly-free discrete sym-
metries. Can any nonperturbative effects lift the vac-
uum degeneracies naively implied by spacetime discrete
symmetries? Again, the authors do not know the answer
to this question. (Note that the answer to this question
would also be relevant to the usual discrete parity sym-
metry of left-right symmetric models, and to CP trans-
formations, and so on.)

So, we conclude that all g-{ symmetries are either
manifestly anomaly-free or not embeddable into a gauge
group. Models using the former varieties are expected to
have an exact vacuum degeneracy, while the latter vari-
eties could perhaps do with some further analysis.

VIII. CONCLUSION

We have demonstrated that spontaneously broken dis-
crete quark-lepton symmetry can be consistent with the
standard hot big bang model of cosmology. The domain-
wall problem can be avoided by rendering inoperative one
or more of the usual assumptions made in the standard
argument that domain walls are a cosmological disaster.
We found (i) that domain walls can be made unstable by
embedding the discrete symmetry into a continuous sym-
metry; (ii) that the necessary cosmological phase transi-
tion need not occur; and (iii) that stable domain walls can
be inflated-away even if they form. In each of these sce-
narios, much interesting new phenomenology can occur
at the TeV scale. The cosmological domain wall problem
therefore does not in any way rule out the possibility of
finding evidence at the TeV scale for an underlying quark-
lepton symmetry in nature. We also discussed the idea
of anomalous discrete symmetries, but did not find any
clear-cut version of quark-lepton symmetry that could
have its vacuum degeneracy lifted by nonperturbative ef-
fects.
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