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General-relativistic approach to the nonlinear evolution of collisionless matter
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A new general-relativistic algorithm is developed to study the nonlinear evolution of scalar (density)
perturbations of an irrotational collisionless fluid up to shell crossing, under the approximation of
neglecting the interaction with tensor (gravitational-wave) perturbations. The dynamics of each fluid

element is separately followed in its own inertial rest frame by a system of twelve coupled first-order or-
dinary differential equations, which can be further reduced to six under very general conditions. Initial
conditions are obtained in a cosmological framework, from linear theory, in terms of a single gauge-
invariant potential. Physical observables, which are expressed in the Lagrangian form at different times,
can be traced back to the Eulerian picture by solving supplementary first-order differential equations for
the relative position vectors of neighboring fluid elements. Similarly to the Zel dovich approximation, in

our approach the evolution of each fluid element is completely determined by the local initial conditions
and can be independently followed up to the time when it enters a multistream region. Unlike the
Zel dovich approximation, however, our approach is correct also in three dimensions (except for the pos-
sible role of gravitational waves). The accuracy of our numerical procedure is tested by integrating the
nonlinear evolution of a spherical perturbation in an otherwise spatially flat Friedmann-Robertson-
Walker universe and comparing the results with the exact Tolman-Bondi solution for the same initial
profile. An exact solution for the planar symmetric case is also given, which turns out to be locally iden-

tical to the Zel'dovich solution.

PACS number(s): 98.80.Bp, 04.20.Jb

I. INTRODUCTION

The dynamics of a system of particles having negligible
nongravitational interactions, i.e., of a self-gravitating
collisionless Quid, is of extreme importance in cosmology;
this is in fact a well-motivated and widely applied ap-
proximation when dealing with the evolution of both cold
and hot dark matter components. This problem is usual-
ly approached with difFerent techniques, depending on
the specific application. For instance, the evolution of
small-amplitude disturbances of a Friedmann-
Robertson-Walker (FRW) background is followed by
analytical methods: Among these are the metric pertur-
bation approach, originally due to Lifshitz [1], the fluid-
flow approach initiated by Hawking [2], and the gauge-
invariant method pioneered by Bardeen [3]. In the latter
case, one relates physical observables to quantities which
are invariant under changes of the map between the phys-
ical (perturbed) and the background (unperturbed)
space-time. Specific perturbative treatments exist for the
collisionless case or for the case of a mixture of a general
perfect fiuid with a collisionless gas (e.g. , Ref. [4] and
references therein). A post-Newtonian-type approxima-
tion has been followed by Futamase [5] to describe the
dynamics of a clumpy universe. The nonlinear evolution
in cases where some symmetries are present can some-
times be followed analytically: Typical examples are the
spherical top-hat model for the Newtonian case (e.g. , Ref.
[6]) and the Tolman-Bondi (TB) solution [7] in general

relativity (GR). A number of semianalytical treatments
exist for the mildly nonlinear evolution of perturbations
in Newtonian theory, such as the celebrated Zel'dovich
approximation [8] and more recent refinements [9,10] or
alternative approximations [11—13]. The most general
problem of studying the fully nonlinear dynamics of a
self-gravitating collisionless quid can, however, only be
followed by numerical techniques, such as X-body codes
(e.g. , Ref. [14]). A numerical fluid model for the non-
linear evolution of density Auctuations has been also pro-
posed [15]. A large effort has been spent in the literature
to analyze the spherical case in connection to the estab-
lishing of a self-similar regime both in the Newtonian [16]
and GR cases [17]. The role of small deviations from
spherical symmetry has also been investigated in this
respect [18].

One can generally say that the following attitude has
been followed so far in the literature on cosmological is-
sues: A GR approach has been applied either in connec-
tion with the linear perturbation problem on large scales
or when dealing with symmetric solutions of Einstein's
equations; the most general nonlinear case, where no
symmetries are present, is instead usually treated within
Newtonian theory (in expanding coordinates). Newtoni-
an mechanics is indeed expected to apply in regions small
compared to the Hubble radius but large compared to the
typical Schwarzschild radii of collapsing bodies; the
universe outside these regions only aft'ects the dynamics
through tidal interactions (e.g. , Ref. [6]). Relativistic
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effects could then be relevant either in connection with
structures extending over very large scales or with high
bulk motions. Although, at present, the biggest coherent
structures which have been observed have size of about
one order of magnitude below the horizon scale and typi-
cal peculiar velocities are largely nonrelativistic, it can
nevertheless be useful to have a general formalism able to
describe correctly structures on even larger scales. More-
over, we believe that having a fully relativistic treatment
of the evolution of structures in the Universe able to de-
scribe the nonlinear regime is itself an important theoreti-
cal issue.

We propose here a GR approach to the nonlinear evo-
lution of scalar perturbations of a pressureless Auid. Our
main assumptions are the absence of vortical motions and
the disregarding of gravitational-wave interactions with
the rest of the system. The kind of initial conditions we
assume (only scalar modes present) is consistent with the
predictions of inflation, an epoch of accelerated expan-
sion in the early Universe when curvature Auctuations
have been created in a causal way. Scalar perturbation
modes arise from zero-point quantum fluctuations of the
field driving inflation and are subsequently magnified by
the accelerated Universe expansion to cosrnologically
relevant scales (e.g. , Ref. [19] and references therein).
Inflation also predicts that vortical perturbations either
exactly vanish or have extremely small amplitude (e.g. ,
Ref. [20] and references therein). As far as gravitational
waves are concerned, the situation is as follows: A sto-
chastic background of gravitons is created during
inflation, whose rms amplitude at the Hubble-radius
crossing can be comparable to that of density perturba-
tions (e.g. , Ref. [21] and references therein). Alternative
mechanisms also exist for generating such a
gravitational-wave background on large scales. Inside the
Hubble radius, gravitational waves are redshifted and di-
luted by the universe expansion unless they are able to in-
teract with the matter. If, as in our case, the rnatter con-
tent is described by a perfect Auid, no interactions occur
at the linear level, so that these primordial gravitons free-
ly propagate in the space-time generated by the sur-
rounding rnatter. Moreover, no Jeans-like instability ex-
ists for tensor modes, and so, if these waves have small

amplitude at early times, they will remain so at later
times. The only possible interactions with matter may
occur when density perturbations become large and non-
linear structures start to form. Because of these facts, we
believe that disregarding the role of gravitational waves
in large-scale structure evolution is a very good approxi-
mation.

Of course, one could exploit to a larger extent the irro-
tational character of our Auid motions: A single scalar
potential would in fact allow a complete description of
the fluid properties in a given metric (e.g. , Ref. [22] and
references therein), although some care is required when
dealing with a Auid of dust. Newtonian calculations
show that the overall dynamics of a self-gravitating pres-
sureless Auid can indeed be described in terms of a single
scalar variable (which could be identified either with the
velocity potential or with the peculiar gravitational one)
up to the time of the first shell crossing [23]. The GR

problem is, however, complicated by the presence of the
metric tensor: It is not at all obvious that a single poten-
tial can be used to describe the space-time geometry
created by a Auid of dust deeply into the nonlinear re-
gime. Also, because of this problem, we decided to avoid
using scalar potentials and followed the Auid and space-
time dynamics in terms of more direct quantities: the
density, the expansion scalar, the shear tensor, and the ti-
dal force one. In terms of these variables, the GR prob-
lem is reduced, for each Auid element, to first-order
time-evolution equations. No spatial gradients appear in
these equations provided one refers to the rest frame of
observers comoving with the fluid; the absence of
nongravitational interactions ("collisions" ) implies that
these observers freely fall in the gravitational field created
by the Auid, while the equivalence principle ensures that
they do not feel gravity locally. General relativity there-
fore proves an economic way to account for the mutual
gravitational interactions among different Auid elements
without the need of simultaneously evolving all of them.
However, as soon as the first caustics form, multistream
regions appear and nonlocal effects start to play a
relevant role in the subsequent evolution of these regions.
It is worth noting the strong similarity between our
method and the Zel'dovich approximation: In both cases
the evolution of each Auid element is completely deter-
mined by the local initial conditions and can be indepen-
dently followed up to the time when it enters a multis-
tream region. Note, however, that our method is exact
(except for having disregarded gravitational waves) in the
most general three-dimensional case, while the Zel'dovich
approximation is only exact for one-dimensional pertur-
bations (where we shall in fact refer to it as Zel'dovich
solu tion )

Because of our choice of Auid variables and reference
frame, our method is a Lagrangian one: At the end of
our calculations, physical observables are known in the
rest frame of each Auid element. The next step is then to
reconstruct the Eulerian density and peculiar velocity
fields on suitable spacelike hypersurfaces. As we will
show, this is indeed possible by integrating additional
first-order equations to follow the relative displacement
of neighboring elements. It would be interesting to com-
pare our GR approach with the approximate solutions
obtained by Buchert [24] by a Lagrangian approach
within the Newtonian framework. A Lagrangian ap-
proach has also been recently used by Moutarde et al.
[11](see also Ref. [25]).

The plan of the paper is as follows. Section II intro-
duces the equations which govern the relativistic dynam-
ics of a self-gravitating collisionless fiuid and defines our
main approximations. Section III presents our algorithm
for obtaining physical initial conditions, performing the
integration of dynamical equations, and providing the
final Eulerian representation of the results. Section IV
deals with the evolution of a spherical perturbation: The
results of numerical integrations are compared with exact
Tolman-Bondi solutions in order to check the accuracy of
our numerical method. Section V gives an exact solution
of our set of equations for the particular case of planar
symmetry. Section VI contains a general discussion of
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the results.
We use the signature ( —,+, +, + ); latin indices refer

to space-time coordinates, (0,1,2,3), greek indices to spa-
tial ones, (1,2,3). Units are such that the speed of light is
1.

II. RELATIVISTIC DYNAMICS
OF SELF-GRAVITATING DUST

In this section we shall introduce the equations which
govern the dynamics of a collisionless perfect fluid in GR.
The dynamical equations are written in terms of observ-
able Iluid quantities (such as density, shear, etc.) and oth-
er tensor quantities which directly describe the space-
time curvature (instead of the metric tensor). A complete
treatment of the problem, as well as a full derivation of
the equations presented here, can be found in the classical
review by Ellis [26].

The relativistic dynamics of a collisionless (i.e. , with
vanishing pressure) self-gravitating perfect Iluid is deter-
mined by Einstein's field equations and by the continuity
equations for the matter stress-energy tensor T,b =pu, ub,
where p is the energy density and u ' the four-velocity of
the fluid, such that u'u, = —1. It is also useful to define
the spatial projection tensor h' =g' +u'u, for which
h,bu =0. By di6'erentiating the velocity field, one ob-
tains the tensor v, b

——h, 'hb "u, .d, for which v,b u =0, and
the acceleration vector u'=—u'. bu, which is also space-
like, u'u, =0, as it follows from the normalization condi-
tion. An overdot denotes convective di6'erentiation with
respect to the proper time t of fluid particles, namely, for
a general n-index tensor, 3, , . . . , = 2, , . . . , .bu .

1 2 n 1 2 n'

Being flow orthogonal, the tensor v, b has only nine in-
dependent components: Its antisymmetric part defines
the vorticity tensor co,b ——v(,b) (where the square brackets
denote antisymmetrization, while parentheses denote
symmetrization). Because of its antisymmetric character,
the latter tensor has only three independent components
which correspond to the vorticity vector
cu'= —'g' «ubm, d, where g,b« is the completely antisym-
metric four-index tensor. Equivalently, cu, b =g,b,dec'u".
The vorticity components describe rigid rotations of fluid
elements with respect to a locally inertial rest frame. One
has two more relevant quantities: the trace of the tensor
v,b, called the volume-expansion scalar 0:—v'„and its
symmetric and traceless part o,b

——v[,b~
—

—,'Oh, b, called
the shear tensor. From the volume expansion scalar, giv-
ing the local rate of isotropic expansion (or contraction),
one can also define a length scale l by the equation
0=3l /l, which would just correspond to the scale factor
a (t) of homogeneous and isotropic FRW models; in that
particular case, 0=3H, where H (t) is Hubble's constant.
The shear tensor, on the other hand, describes a pure
straining in which a spherical fluid volume is distorted
into an ellipsoid with axis lengths changing at rates deter-
mined by the three o'b eigenvalues o.

&,
o.2, and

o 3= —(o &+o 2). The vanishing trace condition implies
that this deformation leaves the fluid volume invariant,
while, in the absence of vorticity, the principal axes of the
shear tensor keep their direction fixed during the evolu-

tion in a local inertial rest frame.
The fluid acceleration is only caused by pressure gra-

dients, and so, in our case,

u =0. (2.1)

which, if integrated along a world line y, gives the con-
stancy of the product pl (conservation of rest mass).
The expansion scalar satisfies the Raychaudhuri equation

0=A —30 +2(cv — cr ) 4m—Gp, — (2.3)

where 6 is Newton's constant and we have introduced
the cosmological constant A and the scalars co =—co'co,
=—2'co' co,b and o. —=—2'0' o.,b. Note that in the homo-
geneous and isotropic case, cu,b=o.,b

=0 and the latter
equation reduces to the familiar Friedmann one
3(H+H )= —4m. Gp+A. The vorticity vector evolves
according to

co —Oco +0 co (2.4)

The shear is determined by the equation

o'gb o gqo b cocci)b +
3 hgb(2cr +cd ) 3

00 gb Eab

(2.5)

where E,—=C,b«u u" is the electric part of the Weyl or
conformal tensor C,b,d (the latter being the part of the
Riemann curvature not determined by local sources,
which can be taken as representing the free gravitational
field); E'b is also called the tidal force field, since it con-
tains that part of the gravitational field which describes
tidal interactions; it is symmetric, traceless, and flow or-
thogonal, E,bu b=0. Tidal forces act on the fluid flow by
inducing shear distortions. The tensor E b can be diago-
nalized by going to its principal axes (which do not gen-
erally coincide with those of the shear tensor), with eigen-
values E„E2,and E3 = —(E, +E2 ).

From the Weyl tensor, one defines another tensor, its
m~g««c pa«H„= —2g.b 'Cgh«u u". The tensor H, b

(which is also symmetric, traceless, and flow orthogonal)
contains the part of the gravitational field which de-
scribes gravitational waves. Actually, gravitational waves
are represented by the transverse traceless parts of E,b
and H,b, satisfying h 'E,b , =0 and h 'H, b.., =0 (e.g. ,
Ref. [27]). While the tidal force field has a straightfor-
ward Newtonian analogue, which can be written in terms
of derivatives of the gravitational potential, the magnetic
part H, b has no Newtonian counterpart. The important
point is that, while in Newton's theory the gravitational
potential is usually determined through a constraint
equation, namely, Poisson's equation, in GR both E,b
and H, b can be calculated by solving suitable evolution
equations.

In the absence of pressure, each fluid element moves along
a geodesic. In our pressureless case, the continuity equa-
tions for the energy density p and for the particle-number
density take the same form, the two quantities being
directly proportional. One has

(2.2)
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In what follows we shall make an important approxi-
mation, which will greatly simplify our system of equa-
tions, namely, we shall neglect the infiPuence of H, b on the
euolution of the tidal force field E,b. For initially scalar
perturbations of an irrotational perfect Quid, this
amounts to neglecting the interaction of gravitational
waves (tensor modes) with the system. This approxima-
tion, together with the absence of pressure in the Quid,
implies that no explicit spatial gradients (i.e., not includ-
ed in total derivatives) are present in the evolution equa-
tions. We note that a similar approximation has been ap-
plied to follow the nonlinear evolution of long-
wavelength metric fluctuations during inflation [28]. In
such a simplified case, the tidal force field evolves accord-
ing to

E,b
= —h,bo'"E,~

—8E,b +E,(,cub)

+3Ec (a + b) 4~OP+ ab (2.6)

g,b=0 . (2.7)

In our case of zero acceleration, this also implies h, b =0.
Before concluding this section, let us brieQy discuss the

main limitations of our approach.
First, the assumption of vanishing pressure: This is a

key one, since it allows to follow different Quid trajec-
tories independently. However, as we have already men-
tioned in the Introduction, this is a good description in
most cosmological applications.

Second, the assumption of neglecting H, b.. Although
this is the only actual approximation we have made, we
consider it as a very minor limitation in most cosmologi-
cal applications of the method. Its validity can be, how-
ever, verified by calculating this tensor through the con-
straint equation

FI b: h hb (co(~~' +o(~~' )r) )~q
u' (2.8)

and evaluating how much this would affect the evolution

Besides the evolution equations [Eqs. (2. 1)—(2.6)], there
are several constraint equations that our variables have to
satisfy. These equations will be automatically satisfied at
any time during the evolution provided we consistently
set up our initial conditions: This will be easily done by
building up the initial values of all our scalars, vectors,
and tensors within linear theory.

The great advantage of having assumed zero pressure
and neglected the interaction with gravitational waves is
that no spatial derivatives appear explicitly in the equa-
tions. There are in the general case, however, spatial
derivatives hidden in the convective time differentiation of
tensors (the overdot), because of the presence of the affine
connection I b, in covariant derivatives. In fact, while
for a scalar quantity convective differentiation and simple
differentiation can be made to coincide, provided one uses
a reference frame comoving with the Quid, this no longer
holds for a vector such as u' or for two-index tensors
such as o.,„and E,b. In all our previous equations,
another tensor variable is always present, together with
its partial derivatives, the metric tensor, which satisfies
the evolution equation

of E,b [this would, for course, require the complete form
of the equations, including terms containing H, b which
are not reported here (e.g. , Ref. [26])]. The general case
of exact solutions of Einstein's equation with
H,b=m, b=0 is considered by Barnes and Rowlingson
[29].

We also assume zero vorticity for the Quid, co,b=0.
According to Kelvin s circulation theorem, in the ab-
sence of dissipation, vorticity is conserved along each
Quid trajectory; in particular, a Quid with vanishing ini-
tial vorticity will forever remain irrotational. However,
for a collisionless Quid, such a property breaks down after
caustic formation: A vorticity component is created in
multistream regions, simply because the local Eulerian
velocity field takes contributions from different Lagrang-
ian Quid elements at the same position. On the other
hand, this problem can be avoided if one restricts the
analysis to suitably large scales, where stream lines evolve
without crossing each other. These points are discussed
in detail by Dekel, Bertschinger, and Faber [30] for the
Newtonian case. It is nevertheless important to stress
that our method does not in principle require irrotational
motion. This assumption is, however, useful in order to
reduce the number of equations and dynamical variables.
It also eases the construction of spatial hypersurfaces and
simplifies the final interpretation of the results.

III. GENERAL-RELATIVISTIC APPROACH

In this section we develop a general method to study
the evolution of a self-gravitating collisionless perfect
Quid, which is based on the CxR formalism described in
Sec. II. Linear approaches based on the same formalism
have been given by Hawking [2] and Olson [31] and more
recently by Lyth and co-workers [32], while a gauge-
invariant formulation has also been considered [33,34].
Our method can be divided into four main steps: (i) An
initial grid is defined and only the world lines of Quid ele-
ments corresponding to the nodes are considered; (ii) for
each world line y, the most suitable coordinate system is
chosen; (iii) initial conditions for the integration of
dynamical equations are assumed and the integration is
performed along each world line; (iv) finally, the results of
the integration along all world lines of the nodes are in-
terpreted. Points (i) —(iv) are analyzed in detail in Secs.
III A —III D below.

A. Initial grid and its evolution

In the space-time created by an irrotational pressure-
less perfect Quid, the time coordinate t can be defined in
such a way that any hypersurface t =const is orthogonal
to the world lines of the Quid elements at any point and
the variation of t along each world line coincides with the
proper time variation along it. The time coordinate of
the comoving time orthogonal gauge-(e.g. , Ref. [3]),which
will be introduced in Sec. III C, has precisely these prop-
erties: This is because comoving hypersurfaces (orthogo-
nal to the energy flow) and synchronous ones (orthogonal
to geodesics) coincide in the absence of pressure gra-
dients. Thus, in such a gauge, if the initial grid is located



47 GENERAL-RELATIVISTIC APPROACH TO THE NONLINEAR. . . 1315

on the hypersurface t =t;„, orthogonal to the Row lines,
and the integration of the equations is carried out over
the same proper time interval At for every node, the end
points of the integrations will lie on the final hypersurface
t = t;„+ht, also orthogonal to the How lines.

A measure of the curvature of any hypersurface
t =const is provided by the three-dimensional Ricci sca-
lar (e.g. , Ref. [26])

O +2o +16~Gp+2A3 (3.1)

(3.2)

The spatial distance between two arbitrary neighboring
nodes P and Q of the initial grid will be assumed to be
much smaller than I/[~A' '(t;„)~]', so that the quanti-
ties 0, xQ —xp', XQ

—xp and xQ —xp' can be considered as
the components of the (infinitesimal) relatiue position uec
tor P, tangent to the hypersurface t =t;„at P. More in
general g, u'=0. These neighboring points are finally
mapped into the points P(t) and Q(t) on the final hyper-
surface t =t;„+b,t, whose curvature is %' '(t) Wh. en, for
a given b, t, the distance 5l =(h,bing )'~ between two
neighboring points becomes larger than 1/[~A' ~(t)~ ]'
in some region, one can increase the initial grid resolu-
tion and perform the integration only for the Quid ele-
ments corresponding to the new grid points. The vector
P evolves according to the well-known equation (e.g. ,
Ref. [26])

the minimum number required to fix rigidly the evolved
grid.

B. Coordinate system

In the absence of pressure, any world line of the Quid
corresponds to a freely falling "observer" evolving in a
purely gravitational field. Thanks to the weak
equivalence principle, such an observer does not feel
gravity locally. This means that there are comoving
coordinate systems where the afFine connection vanishes
all along y. In these locally inertial rest frames (IRF's),
one has

0

1 2

d =a
1 2 n gt 1 2 n

(3.3)

and the overdot stands for a derivative with respect to
the proper time t of the observer y. Thus, in the IRF of
y, the system formed by A plus Eq. (3.2) becomes a set of
ordinary first-order differential equations with t as the in-
dependent variable. From Eqs. (2.1) and (2.7), we then
conclude that the four-velocity and the metric do not
change in the IRF of y. In some IRF's this constant
metric takes a Minkowskian form. These local Min-
kowskian frames (LMF's) are therefore the best coordi-
nates to integrate our system, which is therefore reduced
to a system of ordinary first-order differential equations
without spatial derivatives and can be integrated by stan-
dard numerical methods.

which will be only considered here in the irrotational case
co b =0.

The values of the P components depend on the coordi-
nate system. In spherically symmetric cases, such as the
TB one of Sec. IV, each Cartesian axis passing through
the center of symmetry, say, x, is just one possible radial
direction, and so a one-dimensional grid along that axis is
enough. Thus g' and g can be taken to vanish identical-
ly and 6l becomes the radial distance between neighbor-
ing nodes. A number of simplifications will generally
occur in symmetric cases. Even in applications of the
method to symmetric cases, it is important that, at the in-
itial time, each quantity be calculated in the comoving
time-orthogonal gauge: The grid can be then built on a
hypersurface t =t;„orthogonal to the How lines and the
integrations carried out over the same At for each node.

The system formed by Eqs. (2.2) —(2.6) with co,b
=0

(hereafter system A) is a set of 12 coupled partial
differential equations involving 12 independent variables:
o.,b (five independent variables), E,b (five independent
variables), plus p and O. As we shall see in Sec. III C,
this system can be reduced to a set of six equations for
the same number of unknowns by going to the simultane-
ous local principal axes of the shear and tidal force fields.
The three supplementary differential equations (3.2) have
to be solved next to compute the components of each vec-
tor P needed to reconstruct the final grid. For a cubic
grid with X~ nodes, one would then need to solve 6Ng
first-order equations to obtain the dynamical variables
plus 3(N —1)(Ng +Ns+1) extra ones (still of first order)
for the relative-position-vector components, this being

C. Initial conditions and time evolution

System A is integrated along each world line of the
Quid, indeed, along the world lines passing through the
nodes of the initial grid. For each line y, the integration
is carried out in a different coordinate system, namely, in
one LMF of y, but the initial conditions at different
points are not independent because quantities such as the
tidal force field have a nonlocal dependence on the mass
distribution. Note, in fact, that E,b, in the Newtonian
limit, reduces to E &=/ &

—
—,'5 &V P (commas denote

partial spatial derivatives, while 5 & stands for the
Kronecker symbol), where the gravitational potential P is
determined by the total mass distribution via Poisson's
equation V $=4vrGp Aand suitabl—e boundary condi-
tions. The initial conditions at different grid points must
be solutions of Einstein and Quid-conservation equations,
in order to ensure the compatibility between the initial
conditions at each grid point and the global structure of
the system. Two types of solutions can be used to fix the
initial conditions: solutions of the linearized cosmologi-
cal equations and exact symmetric solutions. Any
cosmologically relevant energy perturbation was indeed
linear at sufficiently early times; thus, linearized solutions
allow one to study completely general perturbations. On
the other hand, exact symmetric solutions, such as the
TB one, can be useful in order to test the accuracy of our
numerical algorithm. This will be done in Sec. IV. In ad-
dition, in Sec. V we will show how our system reproduces
the well-known Zel'dovich solution [8] for a planar sym-
metric perturbation.
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Linear perturbations on a FRW background are con-
structed by using the gauge-invariant Bardeen formalism
[3]. Scalar modes defined in this formalism imply vanish-
ing initial values for the tensor co,b and H, b. Further-
more, the inclusion of small-amplitude tensor modes
(gravitational waves) is still compatible with our general
assumptions. A matter-dominated and spatially ffat (i.e.,
Einstein —de Sitter) FRW background with vanishing
cosmological constant is introduced. The line element is
ds = dt +—a 5 iidx dx~, whose scale factor grows with
the cosmic time as a(t)=a;„(tlt;„) . The background
density is p~ =1/6~Gt, while O~ =2/t. A generaliza-
tion to the open and closed matter-dominated FRW
cases, as well as the inclusion of a nonzero cosmological
constant, is straightforward.

Since only scalar perturbations are actually relevant,
perturbations of physical variables, scalars, and tensor
components can be expressed as linear superpositions of
scalar harmonics Qi, (x) with gauge-invariant, generally
time-dependent, amplitudes labeled by the eigenvalues k,
these harmonics being defined as solutions of the scalar
Helmholtz equation V' Qk = —k Qk (e.g. , plane waves).

Owing to our choice of FRW model, the spatial curva-
ture is zero in the background; then, at the linear level,
Eq. (3.1) implies AI„'=(40a;„/9t;„)V2y.

General initial conditions are therefore completely
defined by the choice of the potential q&(x). These could
be obtained, for instance, by a realization of a homogene-
ous and isotropic random (e.g. , Gaussian) field in the re-
gion covered by the grid.

2. Initial conditions
in locally Minkowskian coordinates

+ Bg(xp—)I i (xp )(x xp )(x xp ) (3.9)

with

At a given node P of the initial grid, defining the world
line y, the initial conditions must be given in a LMF.
These can be easily obtained from those in the comoving
gauge. At this node the coordinate change (e.g. , Ref.
[35])

x'=B'b(xp)(x —xp )

Initial conditions in the comouing gauge

We can now define a linearly perturbed FRW line ele-
ment in the comoving time-orthogonal gauge. It reads

ds = dt +a (t—)[5 &
—2a(t)y &(x)]dx dx~ . (3.4)

p(x, t)= [1+a(t)V y(x)],1

6~Gt 2 (3.5)

O(x, t)= — 1 — V y(x)
2 a(t) 2

t 3
(3.6)

cr ~(x, t)= — [5»8 c) —
—,'5 ~V ]q(x),2a (t)

(3.7)

E.i'(x, r)=, [5»a.a, ,'5.i'V ]~(x),——2a (r)
t' (3.&)

and 0. o:0:Eo:E:0 The shear and tidal-force-
field tensors, which identically vanish in the background,
are already gauge invariant (e.g. , Ref. [33]).

The scalar perturbations of the metric-tensor components
have been written in terms of the single gauge-invariant
variable y, which is related to Bardeen's %0 by
y= —(3t;„l2a;„)NH; the smallness of the perturbations
is here monitored by the smallness of the initial scale fac-
tor a;„. Although our general algorithm can work with
arbitrary initial conditions, we restrict ourselves here
only to the case of vanishing nongrowing modes. Instead
of the curvature perturbation, or peculiar gravitational
potential y, which has the advantage of remaining con-
stant in the linear regime, one could have referred to oth-
er variables such as the gauge-invariant density perturba-
tion c =aV y, corresponding to the true density Auc-
tuation 6—:6p/p in our comoving, time-orthogonal
gauge.

The variables involved in system 3 can be written in
terms of y as

and g,b, the Minkowski tensor, locally relates comoving
coordinates to a LMF, where the metric becomes Min-
kowskian and the affine connection locally vanishes,
I b, (xp)=0. Here the affine connection components are
calculated from the metric (3.4). For each node P, one
has a different change of the form of Eq. (3.9). It is well
known that the quantities B'b are defined up to a local
Lorentz transformation. In particular, we can choose
our new basis so that B 0= 1 and B =B O=O: In such
a case, uz =0 and the LMF coordinates x ' are comoving
for the observer defined by P.

The spatial components B
&

are specified up to a local
spatial rotation. We shaH fix them by requiring that the
bases defined at difFerent nodes be parallel among them-
selves. A set of parallel spatial axes can be obtained as
follows. Starting from comoving coordinates, we can
choose an arbitrary orthonormal basis B &(xo ) in a given
point 0 chosen as the origin. Given any other point P of
the initial grid, we can choose an arbitrary path on the
grid joining 0 to P. Then the basis B &(xo ) can be paral-
lel transported out to P along this path. This procedure
is performed in the original comoving coordinates where
the affine connection coefficients have been calculated
from the metric (3.4) and the components of these paral-
lel transported bases in each point P, C &(xp), are then
given in comoving coordinates. By requiring that
B p(xp ) =C p(xp ), we have that the new basis,
representing the LMF in P, is also paraHel to that in the
origin O.

3. Reduction to principal axes
of the shear and tidal force tensors

An analysis of the initial conditions for system
shows that there is another preferred choice of spatial
axes for the LMF in which the total number of equations
and unknowns can be largely reduced. These correspond
to the simultaneous principal axes of the shear and tidal
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2Qin
o ~(t;„)= — (2A, ~

—
A, ,

—A3),
in

while for the tidal force field one has

2Qin
E, (t;„)= (2A, ,

—A, —
A,3),

9t;n

2Qin
E2(t,„)= (2A.2

—
A, ,

—A3),
9t;n

(3.10)

(3.1 1)

where A, (x, t;„) are the eigenvalues of y &, which should
be evaluated at each grid pint.

Because of the absence of vorticity, these principal axes
do not rotate in a LMF of y, and so the shear and tidal
force fields will both remain diagonal there at any succes-
sive time. In fact, from Eqs. (2.5) and (2.6), one can easily
verify that the off-diagonal components remain zero if
they were zero initially (see also Ref. [29]). The system of
equations 3 is therefore reduced to the six first-order
equations

8= ,'0 —2(—o., +—o 2+cr, o 2) 4irGp—,

o. = ——'cr +—'o. (o. +cr )
——'Ocr, E, ,

—

cr2 ——
—,'o &+ —', o. ,(crz+o, ) ——38crz —Ez,2

Ei =Ei (crt —cr2) —E2(cr i+2o 2) OEi 4mGpcr i-,—
E2 =E2(cr2 —cri) Ei(cr2+2cr i)—O—Ei 4m Gpcr2—,

(3.12)

with initial conditions given by Eqs. (3.5), (3.6) (note that
V y =A, i +Az+ A3 ), (3.10) and (3.1 1).

The relative position vector's, written in the
transformed coordinates P=A g~ evolve according to
the equations

P= (cr + —'O)P (3.13)

where cr =(cr i, cr2, —cr i
—crz) and no summation over the

index a is understood.

force fields at the initial time. These LMF's are related to
the ones defined above by a simple local spatial rotation.

Since at the initial time cr
& and E &, computed in the

comoving gauge, are both proportional to the symmetric
tensor y &, which is also responsible for the nondiagonal
character of the perturbed metric, a local rotation from
the comoving coordinates to the principal axes makes the
perturbed line element locally diagonal too. Then a local
transformation of the form (3.9) with diagonal 8 & leads
to LMF's with coordinate axes parallel to the principal
ones. The latter transformation does not affect the com-
ponents of the diagonalized mixed tensors o.

& and E &.
The total transformation is described by the matrices
A &(x, t;„), whose explicit form can be easily evaluated at
each grid point.

At the initial time, one has the following independent
eigenvalues for the shear,

2Qin
cr, (t;„)= — (2A, ,

—
A, ~

—
A,3),

in

To summarize, the main steps of this method are the
following. Given the second derivatives of the initial
peculiar gravitational potential y & at every grid point,
one calculates its eigenvalues and eigenvectors. The local
rotation to principal axes provides a simultaneous diago-
nalization of the metric, shear, and tidal force tensors.
The reduced system (3.12) is then integrated along the
world line of the fIuid element defined at each grid point
up to the final time. Also, the relative position vectors of
different grid points are evolved in the rotated bases ac-
cording to Eq. (3.13).

As we have already stressed above, the simultaneous
diagonalization of the shear and tidal force fields is en-
sured by our choice of linear initial conditions and it is
also fully consistent with nonlinear dynamics: no off-
diagonal terms can develop in o.

&
or E

&
if they were not

present in the initial conditions. On the other hand, if we
had evolved the system in a general frame, where these
two tensors are not initially diagonal, small numerical in-
stabilities might develop, which would forbid simultane-
ous diagonalization at a later stage. One could argue that
these instabilities mimic physical phenomena such as
viscous forces, collisions, etc. , which would be present in
a less idealized situation. On the other hand, we do not
expect these effects to become relevant before caustic for-
mation, and so we believe that our diagonalized system
allows a good description up to that epoch.

D. Interpretation of results: Kulerian picture

Since a different coordinate system has been used for
each node of the grid, the results require interpretation.
The value of a scalar does not depend on the coordinates;
thus, for any node, the energy density p=T,bu'u" and
the expansion O=u'. „obtained by numerical integra-
tion, represent the true physical quantities measured by
freely falling observers with four-velocity u'. The emerg-
ing description of the Quid How represents a Lagrangian
picture.

After numerical integration we are interested in the
spatial distance among the final nodes and their peculiar
velocities in order to reconstruct the Eulerian density and
peculiar velocity field on the final hypersurface. Unfor-
tunately, most of this information is stored in the tensor
components of the shear and metric, i.e., not in scalar
quantities. These components are not computed in a
well-defined coordinate system independent of the as-
sumed node. Thus a suitable method leading to the re-
quired information about positions and velocities is need-
ed.

In the LMF attached to the nodes of the grid, the ini-
tial spatial bases have been chosen to be orthonorrnal.
Moreover they are either parallel among themselves (our
first choice) or easily related to parallel bases by local spa-
tial rotations (our choice of axes parallel to the principal
ones). These bases are parallel transported along the
geodesics of the Quid particles; thanks to the absence of
vorticity, no rotation, no gyroscopic precession is implied
(e.g. , Ref. [35]). As a consequence, the transported coor-
dinate bases are also orthonorrnal at t =t;„+At, for any
At. Owing to the presence of curvature, however, these
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bases are no longer parallel among themselves. Our final
spatial bases can be, however, considered as quasiparallel,
since the curvature induced by any cosmologically
relevant perturbation remains small even in the strongly
nonlinear regime. A relevant exception comes from caus-
tics, where a shell-crossing singularity arises (e.g. , Ref.
[36]). This is, however, an artifact of having extrapolated
our approximation down to zero distance, and it is
reasonable to expect that, with a more realistic treatment
of the Quid, this singular behavior might disappear. No
simplification on the curvature has been assumed, neither
in the initial conditions nor in the integrations; only in
the three-dimensional representation of the final positions
and velocities will the curvature on the t =t;„+At hyper-
surface be neglected. The deformation induced by this
approximation is not expected to hide the main features
of the matter distribution.

The relative position vectors and relative velocities
among the nodes are generally obtained by integrating
Eq. (3.2). If, in particular, the evolution has been followed
in a frame with axes coinciding with the principal ones of
the shear and tidal force fields, the relative position vec-
tors are easily obtained in the initial locally comoving
frame by inverting the matrix A &, namely,
P(t) =(A ') g~(t). One then obtains

vanishing inhomogeneity. In the spherically symmetric
TB case discussed in the next section, the origin is the
center of symmetry. The second method is general: It
applies when the peculiar velocity of any node is un-
known. In such a case, the origin can be located in a ran-
dom set of nodes, the velocity of each node with respect
to each origin is calculated, and, finally, the velocity of
each node is defined as the average of its relative veloci-
ties with respect to all of the origins.

IV. TESTING THE METHOD
WITH A SPHERICAL PERTURBATION

In this section we shall test the accuracy of our algo-
rithm by numerically integrating the nonlinear evolution
of a spherically symmetric perturbation in an otherwise
spatially Aat matter-dominated FRW space-time. The
advantages of this example are that there is a known GR
exact solution for this case, namely, the Tolman-Bondi
metric [7], and that no gravitational waves arise during
the evolution, and so our set of equations contains no ap-
proximations in such a special case. The TB solution has
been recently applied by a number of authors to model
large-scale structures such as large voids in the galaxy
distribution or the great attractor region (e.g. , Refs.
[37,38]).

P=(A ') &A~~P„exp(f&),

where

ft3(t) = f dt'[oz(t')+ ,'8(t')] . —
in

(3.14)

(3.15)

A. Topman-Bondi space-time

Before describing our approach, let us review the TB
solution. The TB line element can be written in comov-
ing coordinates t, M, 9, P as

Similarly, the relative velocity between neighboring ele-
ments reads

2
1 aR

r2 a~ dM +R (dg +sin Odg ),
V =—P+(A ') pA~ P„(crtt+ ,'O)exp(fp) .— (3.16) (4.1)

A Eulerian picture of the results can now be obtained
as follows. A suitable node 0 is chosen as the origin of
coordinates in the three-dimensional Euclidean space. In
order to find Cartesian coordinates x of any other node
S, a path connecting 0 to S is chosen on the grid and the
quantities g corresponding to each pair of neighboring
nodes of this path are added. If the approximation of
neglecting the curvature was correct, the coordinates of
any node S should be almost independent of the chosen
path (one could also define the S coordinates as the mean
of those obtained by several paths). The velocity of a
given node S with respect to the origin 0 can be obtained
by adding relative velocities V of neighboring nodes be-
longing to an arbitrary path OS; this sum can be per-
formed according to the standard Euclidean rules; no rel-
ativistic corrections become necessary, since, in the
cosmologically interesting cases, the typical velocities are
expected to be much smaller than the speed of light, pro-
vided we deal with distances much smaller than the hor-
izon size. To compute the velocities with respect to the
background (i.e., the space-time obtained by spatially
averaging over a comoving hypersurface at each time),
two methods can be followed. The simplest method is to
choose an origin at rest with the background and com-
pute relative velocities with respect to it. The origin can
be chosen to lie in a region far from an asymptotically

where R =R (M, t) is a radial "Eulerian" coordinate,
2

I =1+f(M)=1+ aR
at

2GM
R

(4.2)

R =(GM/f)(cosh' g), —

t —t„(M)=(GM/f ~ )(sinhg —g) .
(4.3)

(ii) f (0:

R = —(GM/f)(1 —cosy),

t t„(M)=(GM/~f—
~ )(y —sing) .

(iii) f =0:
R =(9GM/2)' [t —t (M)]

(4.4)

(4.5)

The source of TB space-time is given by a spherically
symmetric distribution of dust with mass density
p= 1/4' (BR/BM). According to Eq. (4.1), the radial

and f represents the conserved specific energy of a shell
of radius R.

The explicit form of the function R (M, t) depends on
the sign of f. Three cases can be distinguished.

(i) f)0:
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distance from the center to M, on the hypersurface
t =const, is D(M)= jo™dM(1/I)(BR/BM), while the
radial velocity of a Quid particle in M is

where pz ( t;„) is the initial background density and the
perturbation is assumed to be of the form

bp(M, t;„)=cps(t;„)t1+[R (M, t;„)/R~] ] (4.6)

where the parameter e determines the amplitude of the
density contrast and R z fixes the size of the inhomogenei-
ty. The equation t„(M)=0 defines the second indepen-
dent profile.

The function R (M, t;„) becomes implicitly defined by
the equation

4vrPs ( t;„)M= IR +3eRi, [R —Ri,arctan(R /Rv)] j .
3

(4.7)

V = =I dM—
dt 0 I BM Bt

Identifying the two quantities R and D (or BR/Bt and
Vz) is meaningful only for small enough distances from
the center. By assuming I =1—~r, with ~=1,0, —1,
R =a (t)r, and M =4vrp&R /3, with uniform ps, the line
element of Eq. (4.1) reduces to that for the closed, fiat,
and open FRW models, with scale factor a(t). A FRW
universe can then be considered as a special case of the
TB one, and any cosmologically admissible TB solution
must tend to a FRW universe as the spatial distance from
the center of symmetry increases. Such a FRW space-
time will be therefore referred to as the "background
space-time. " In this work the FRW background is taken
to be a Oat one.

The TB solution involves two arbitrary functions
t„(M) and f(M) to be determined from the initial
profiles of two independent quantities. The remainder of
this section is devoted to the description of the procedure
used to obtain the final profiles of physical quantities
from two initial profiles defining a particular realization
of the TB solution.

A map = from the TB space-time to the FRW one will
be defined as follows: If a point I' belongs to the back-
ground FRW space-time and a point Q belongs to the
physical TB one, P =:-(Q) if and only if P and Q have
the same coordinates t, M, 8,P. Since these coordinates
are comoving in both space-times, = actually defines a
comoving gauge. The perturbation of any quantity A at
a point Q in the physical space-time with respect to the
same quantity in the background is defined as
&& = & (Q) —& (:-(Q)).

At the time t;„, the density contrast is taken to be
much smaller than unity, so that the TB solution de-
scribes a spherically symmetric perturbation superposed
on FRW space-time. According to our previous discus-
sion, the initial conditions can be fixed by assuming the
initial profile b, A (M, t;„) for two quantities. We consider
the set formed by the density p and by t„(M) [t„(M)=0
in FRW space-time]. The initial density profile is

Given M, this equation can be numerically solved to ob-
tain R (M, t;„) and then Eq. (4.6) can be used to get
bp(M, t;„). The function f (M) can be found from the in-
itial profiles of p and t„as follows. Replacing t„(M)=0
in Eq. (4.3), one obtains, for f )0,

t;„=(GM/f )[[(Rf/GM) +2(Rf/GM)]'i
—arccosh[1+(Rf /GM)]] . (4.8)

In a similar way, we obtain two more equations for t;„
from Eq. (4.4), for f (0, and from Eq. (4.5), for f =0,
whose explicit form will not be reported here. The func-
tion f (M) can be obtained from one of these three equa-
tions: For a given M, only one of them has a solution,
which can be numerically calculated. The profile
R (M, t;„), defined by Eq. (4.7), can then be replaced into
that equation to obtain f (M), which finally determines
our TB solution. One can then compute R, BR /Bt,
BR/BM, 0 R/BM Bt, and other functions of M and t.
The TB metric, the density, the radial distance from the
center, the radial velocity of each shell of Quid, the ex-
pansion, and all the physically relevant quantities can be
calculated at any time.

According to Ref. [39], the necessary and sufficient
conditions which ensure the absence of shell crossing in
the t, (M)=0 case are df/dR )0, for f ~0, and
df /dR + 2f /3M, for f (0. These conditions have been
numerically verified in our case.

B. Initial conditions from the TB solution

The application of the general method described in
Sec. III to the present case of spherical symmetry re-
quires initial conditions in a comoving gauge and a one-
dimension radial grid on the hypersurface t =t;„. Carte-
sian coordinates x must be used both in the physical TB
space-time and in the FRW background. The TB solu-
tion has been completely determined and its initial condi-
tions have been fixed by using the comoving gauge = and
the coordinates t, M, O, Q both in TB and FRW space-
times. A change of coordinates in both space-times does
not change the gauge =, and so the required comoving
gauge with Cartesian coordinates on the background hy-
persurfaces t =const is obtained.

The grid is taken along the x axis. The distance from
a node to the center and the velocities relative to this
center are then calculated according to the methods
presented in Sec. III D.

C. Numerical integration
and interpretation of the results

As a specific example, the initial time t;„ is taken to
correspond to the redshift z,„=—a(to)/a(t;„) —1=50, con-
sidering the final time to of the integration as the
"present time" (z =0). The initial conditions are com-
pletely specified by the value of e, while the physical
length scale attached to R~ would fix the astrophysical
problem under consideration; we considered the two
cases @=1.87X10 (case I) and @=3.3X10 (case II).
In both cases we shall present results obtained with
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ers. Actually, thanks to the spherical symmetry, for any
point lying on our radial axis there is only one indepen-
dent eigenvalue for the shear and one for the tidal force
field, cri=oz and Ei =E2 (see also Sec. V). However, in
the present work, we are also interested in checking the
accuracy of the numerical solution, and so we preferred
to integrate all of the components of the shear and tidal
force fields and use the corresponding constraint equa-
tions to check the accuracy of the code. The numerical
results show that these are satisfied better than 1 part in
10' for o.,b and 1 part in 10' for E,b in both cases. The
relative radial distances between the nodes and their ve-
locities were finally computed from Eqs. (3.14)—(3.16).

Figure 1 shows some relevant Quid quantities for case I
at the present time: It shows the density contrast, the rel-
ative change of the expansion scalar with the respect to
the background value, (0—Os )/Oii, and the peculiar ra-
dial velocity from the center computed according to our
algorithm, as functions of the Eulerian radial distance
from the origin in units of Ri,(ao/a;„). Figure 2 shows
the same quantities but for case II. The comparison with
the TB profiles computed from the exact solution shows
very good agreement both in cases I and II. The
difference in the velocity curve between the exact and nu-
merical solutions is related to the grid resolution. We
have verified that by doubling the number of grid points,
the difference between the two curves is halved. Finally,
similar curves obtained for other scalar quantities, such
as o. , E,bE', and o,bE', in the numerical integration
are completely indistinguishable from the exact solution
in both cases.

V. EXACT SOLUTIONS:
THE PLANAR SYMMETRIC CASE

In the system (3.12), the FRW background expansion
can be factored out, which turns out to be particularly
useful when looking for exact solutions. We then define
the comoving density 1+5:—p/p~, where 5 represents
the fractional density Auctuation, the scaled peculiar ex-
pansion 8—:( 1/a )(0—O~ ), shear eigenvalues
s =(1/a)o, and, finally, the scaled eigenvalues of the
tidal force tensor, e =(t/a )E—. It will also prove con-
venient to use as time variable the scale factor a (t) itself.
The system (3.12) reduces to

5'= —(1+5)8,

8——6 —2(s +s +ss) — 5,2 2 2 3
2Q 3 1 2 1 2 2Q2

5;„=—a;„8;„=a;„(A,, + A,z+ A,3),
s = —e = ——'(2A, ,

—
A, 2

—
A,3)lin 1 in 3 1 2 3

s = —e = ——'(2A, 2
—

A, ,
—A.3) .21n 21n

(5.2)

Note that, in the limit Q;„~0 at finite y, the Quid starts
with uniform density, 6;„=0.

The comoving relative displacements along the local
principal axes y evolve according to

y' =(s + —,'8)y (5.3)

while the components of the physical relative peculiar ve-
locity correspond to v =aay' (the rotation to principal
axes and its inverse are clearly not affected by our rescal-
ing). Particularly interesting is the case in which two ei-
genvalues, say, k, and X2, are equal, this being both the
case of spherical and planar symmetries. In the spheri-
cally symmetric case, y=y(r), giving A, i=kz=r 'dyldr
and A,3=d y/dr, for any point lying on the x axis. The
case of symmetry on the (x', x ) plane corresponds to
A, 1=A,2=0. In both cases one clearly has sl =s2 ——s and
ei =e2 —=e at all times and the system (5.1) is further

simplified to

5'= —(1+5)8,
3 1 2 2 38——8 —6s — 6,

2Q 3 2Q

ts
3 2 —2 —3s+s ——SB— e,

2Q 3 2Q

(5.4)

1 1e' = ——e —ed —3es ——( 1+5)s .
Q Q

In what follows we shall only consider the planar sym-
metric case. In such a case, the absence of perturbations
on the (x', x ) plane implies that s = —

—,'8. One immedi-
ately gets the following solution, along a Auid trajectory:

1+a;„A,3(q)
1+5(q, t)=

e' = ——ei+ei(s, —s2 —8)—ez(s, +2s2)
1

Q

——(1+5)s, ,
1

Q

e' = ——e2+e2(s2 —s, —8)—e, (s2+2s, )
1

Q

——( I+5)sz,1

Q

where the prime denotes differentiation with respect to Q.
The initial conditions read

$1 =

$2=

3 1 2
s, ——s, (s, +28)+—s2(s, +s2)

2Q '

3
2Q

3 1 2
s2 ——s2(s2+28)+ —si(s2+si )

2Q

3
2Q

A, 3(q)

1 —k (q)7

A, 3(q)

31—X,()'
A,3(q)

3 1 —ri, 3(q)

(5.5)
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where q is the Lagrangian (i.e, . initial) comoving (with
respect to FRW space-time) longitudinal coordinate la-
beling the fluid element and ~—=a —a,„. This solution is
valid up to the first orbit crossing, which occurs at the
"time" r, = I /X3(q), for A,3)0 (i.e., for initially overdense
regions). The infinitesimal Eulerian distance between
neighboring elements is easily obtained from Eq. (3.13):

dy = [1—X3(q)r]dq . (5.6)

This can be integrated to give the finite distance between
two points 0 and S,

ys yo qs qo «q 4(q)
go

or, recalling that A, (q) =d y/dq,
dy(q)y(q, i)=q —i

dq

(5.7)

(5.8)

VI. DISCUSSION AND CONCLUSIONS

In this work we have proposed a GR approach to the
fully three-dimensional nonlinear evolution of a self-
gravitating collisionless fluid up to the epoch of first caus-
tic formation. Our method relies on the approximation
of neglecting the interaction for gravitational waves with
the rest of the system. Also, we assume that the fluid
motion is irrotational. Under these assumptions a simple
Lagrangian picture is obtained, which, after self-
consistent initial conditions have been assigned to an ini-
tial grid, allows one to follow the evolution for each fluid
element (grid node) separately in its own local inertial
rest frame. This method has two evident advantages:
First, being Lagrangian, it automatically guarantees
enhanced resolution in regions of higher density, i.e.,
where it is more needed; second, it allows one to follow

This solution is identical to the well-known Zel dovich
one [8] for the Newtonian case. It is, however, worth
noting that in deriving Eq. (5.7) some of the curvature
effects were disregarded. The peculiar velocity of the
fiuid element q (i.e., the velocity with respect to the FRW
background after Hubble fiow subtraction) is immediately
obtained from Eq. (5.8) [or from Eq. (5.7) by the method
described in Sec. III D]:

v [y(q, t)]=—aa. dye(q) (5.9)

where t =t;„(I+r/a;„) ~ . This analytical solution also
allows one to check that the physical distance between
neighboring nodes remains smaller than the local curva-
ture length

I/[ W"'(q, t)l]'"=[9t /4016(q, t) ]'"
during the evolution, provided it was so initially.

In this case the planar symmetry of the system implies
that the magnetic part of the Weyl tensor, H,b, identical-
ly vanishes during the whole evolution, and so our solu-
tion of Eqs. (5.5) and (5.6) is exact.

each fluid element as being completely independent of the
others, which obviously reduces the amount of computer
storage needed to evolve the system. Only at the initial
time should the conditions be specified simultaneously on
the whole grid, and this requires an amount of computer
memory comparable to the one required to construct the
initial conditions in an N-body code. For instance, if we
consider an initial random (e.g., Gaussian) realization of
the peculiar gravitational potential in momentum space,
y(k) (e.g. , for a given choice of its power spectrum), ini-
tial conditions on the grid should be obtained by inverse
Fourier transforming the symmetric tensor k k&g(k). A
clear advantage of our method is then that it allows one
to concentrate on the evolution for a given region, where
structures are forming, while its gravitational interaction
with the rest of the universe has been already included by
the setup of the initial conditions.

The choice of a pressureless fluid and the approxima-
tion of disregarding gravitational waves have partially
limited the occurrence of truly relativistic effects in our
problem: These would show up, for instance, as finite-
distance effects through the curvature of comoving hy-
persurfaces and through the relativistic velocities of fluid
elements with horizon-size distance, although these
effects have been partially hidden by our approach to ob-
tain the Eulerian representation of the results. Our final
picture has been constructed on a fixed synchronous-time
hypersurface; however, one could also figure out how to
implement our algorithm in order to reproduce the
matter distribution as seen by a comoving observer in his
past light cone.

It is clearly important to understand how to follow the
evolution of the system in the multistream regions which
occur after caustic formation. The occurrence of caustics
is indicated by the vanishing of the distance 6l between
neighboring elements or by the local divergence of the
density. In the literature several semianalytical methods
have been developed in order to follow the evolution in
the early nonlinear phases or to reconstruct the initial
conditions of the clustering process. Most of these
methods try to circumvent caustic formation: This can
be obtained either by suitable smoothing procedures (e.g. ,
Ref. [30]), or by artificially sticking the particles as their
orbits first cross [9], or by asymptotically slowing down
particle motions so that orbit mixing never occurs [13].
Also, one could consider the possibility of replacing the
fluid approximation with the more realistic picture of a
system of noninteracting particles. An extension of our
method, dealing with the problem of orbit crossing, will
be the subject of future investigation.
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