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Evolution of soliton stars in the Lee-Wick model
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We study the evolution of soliton stars in the Lee-Wick model at finite temperatures. Our discussion
uses exact temperature dependence at T„ the critical temperature of the phase transition, and carries on
until the solitons attain their present cold configuration. The effects of gravity at T, have been included
by coupling the Newtonian gravitational field to the energy density. It turns out that the gravitational
energy, though smaller by at least an order of magnitude compared to the surface term, has the impor-
tant effect of removing the metastable equilibrium state for a rather small number of particles. This
however, does not correspond to the Schwarzschild criterion of black-hole formation but precludes the
existence of any stable soliton star configuration. Further, the critical number of particles at T, depends
on the parameters of the theory and, by carefully choosing these, it is indeed possible in some cases to
have solitons that survive until the present time. We discuss the properties of such stars.

PACS numberE, 's): 97.60.Sm, 11.10.Lm

I. INTRODUCTION

Recently in a series of papers Lee and collaborators [1]
proposed that, by using the nontopological soliton solu-
tion in the Lee-Wick model [2], one can obtain cold stel-
lar configurations having a very large number of particles
( ) 10 ). They found that huge soliton stars with a mass
of —10' —10' solar mass Mo and a size of -0. 1 —100
light years can be formed without becoming black holes.
The existence of such large stars has not been verified ex-
perimentally and it is important to note that their proper-
ties depend critically on the choice of parameters in the
Lee-Wick model.

Cottingham and Mau [3] have shown that by making a
different choice of parameters in the Lee-Wick model one
can obtain soliton stars with properties more like those of
white dwarfs and neutron stars. In their choice of pa-
rameters the conditions for the existence of degenerate
vacuum in the Lee-Wick model are relaxed. The interior
of the soliton is now a false vacuum endowed with a con-
stant energy density (much like bag pressure) and is
separated by a shell of width -m ' from the exterior
which is the true vacuum. This results in a volume term
contributing to the total energy of the soliton in addition
to the usual surface term. They then showed that by tak-
ing a large number of fermions, X, at zero temperature
and by taking the effect of gravity by coupling the
Newtonian gravitational field to the energy density (treat-
ing this as a constant), one gets stars having critical pa-
rameters N, —10, M, —3Mo and R, —25 km (for
B' =100 MeV) which are like those of neutron stars. In
the limit of the vanishing volume term they obtained the
same critical N„M„and R, as obtained by Lee and
Pang in Ref. [1] and showed their result to be consistent
with the Schwarzschild criterion of stability (i.e.,
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R ) 2GM) on the one hand and with detailed general rel-
ativistic calculations of Ref. [1]on the other.

The authors of Ref. [3] then introduced temperature
dependence in the Lee-Wick model and explored the pos-
sibility of a phase transition from one type of soliton to
another. They found that at a temperature greater than
the critical temperature T, [T,=(180B/7m. )' —100
MeV for B 'r —100 MeV] the soliton phase would fill the
whole of space and, as the Universe cools, at T=T, a
phase transition would occur and a soliton would be
formed. The soliton would then have characteristics
similar to those considered in Ref. [1]but at temperature
T„and for large N would be stable against dispersion of
fermions. Such a soliton could have been formed in the
early Universe at a time —10 s after the big bang.
They estimated the effect of gravity with the
Schwarzschild limit and obtained a critical fermion num-
ber N, —10, much smaller than that found in Ref. [1] at
zero temperature. This yields at the formation time a
maximum soliton star of mass 20Mo and radius 60 km.

In these studies, since the early Universe was hot, the
contribution of the internal Fermi pressure to the free en-
ergy density was approximated by taking the parameter
P n (where ii= 1/kT and n is the fermion number densi-
ty) to be small, and taking only the first nonzero
temperature-dependent contribution 3(P n ) /2 in the
free energy density. This is a perfectly valid approxima-
tion at T= T„but as the star cools, this approximation is
eventually violated as has also been pointed out by the
authors. In this paper we have carried out the above
analysis with the exact free energy density correct at all
temperatures for massless fermions. Also, the effects of
gravity have been included at T, by coupling the
Newtonian gravitational field to the energy density. We
find that stable solitons in such a case do not exist beyond
X—10 ', which is much smaller compared to the value
obtained in Ref. [3], namely N-10 . The soliton star
continues to be bound by the surface tension at T= T,
and though the contribution of gravitational energy to
the free energy remains more than an order of magnitude
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smaller than the surface contribution, it has the most im-
portant effect of removing the metastable equilibrium for
a rather small number of particles. It is worth noting
that the Schwarzschild criterion for black-hole formation
is not met at N —10 ' but there cannot be any stable soli-
ton star configuration. However, if our parameters,
namely the volume energy density B and scalar mass m
are adjusted, we can get stable solitons at T=T, for
1V —10 ' —10, and some of these may survive to this date
when the Universe has cooled to T =0. We have studied
their evolution with temperature.

The plan of the paper is as follows. In Sec. II we study
the Lee-Wick model at finite temperatures and discuss
the properties of stable soliton stars for a given number of
particles in terms of the parameters of the model, and we
study the evolution of such stars with temperature as the
Universe cools. In Sec. III we incorporate the effects of
gravity on the stability of such stars and find that stable
solutions depend very much on the number of particles
one starts with. By adjusting the parameters B and m
we can get solitons which would survive until the present
age. Section IV is devoted to the study of soliton stars at
T=O, and we obtain the parameters of stable soliton
stars for N ) 10 (where the surface effects can be
neglected) by solving the Tolman-Oppenheimer-Volkoff
equation. We find that the maximum mass is -4Mo
with a radius of -23 km for X—10 . We briefly discuss
some of the properties of these stars. In Sec. V we dis-
cuss our results.

ever, for T «m, the contribution from the scalar field
is not significantly changed, whereas inside the soliton,
fermions —being effectively massless due to their interac-
tion with the o. field —would be copiously produced as
fermion-antifermion pairs and would give a substantial
contribution to the free energy.

The thermodynamic potential of fermions and antifer-
mions valid at all temperatures for massless particles is
given by

n=n -= — "~+"p +
12' 6 180 P

where p is the chemical potential. The total free energy
of a spherical soliton of radius R can be written as

F=(pn+0) R +B R +4rrR s
4~ g

4m.

3 3

"P + "P'+BP 7—' 4 R'+4 R';
6 4~2 180 p 3

n is the net fermion number density and is given by the
usual relation

n=n —n-=—BQ p . p
ap 3 ' 3P'

The total number of particles, N, is given by

II. SOLITON STARS AT FINITE TEMPERATURE

The Lee-Wick model in the fermion case is defined by
the Lagrangian [2]

X(x)= —,'c)„od"cr+gy"d„g mg(1 —o lao)g U—(o ) . —

The self-interaction of the o. field is taken to be of the
form

U(cr ) = —,
' m o ( 1 —o lcr 0) +B t 4(o lo 0) —3(cr lo 0) ],

(2)

4m.R + (pP)
p +

9P
(8)

It is easy to see from Eqs. (6) and (8) that at tempera-
tures above T, free energy becomes negative and the
whole of space is filled up with the soliton phase. At T, a
phase transition occurs and the phase o. =o.o, with fer-
mions in this false vacuum left as bubbles to form the sol-
iton star. Below T, the stable soliton-star configuration
of a finite radius R is obtained by minimizing the free en-
ergy under the constraint that 1V and T are fixed. This is
achieved by the Lagrange method of undetermined multi-
pliers and amounts to setting the external pressure to
zero, i.e.,

where o. =0 is assigned to the normal absolute vacuum
state and o =o0 to the abnormal (local) minimum of U,
which has an energy density B. A soliton of radius R has
an interior where o. =o.o, near the boundary a shell of
width m ' over which o changes from o.z to 0, and an
exterior that is the true vacuum. The o. field energy in
addition to a surface energy [4] E, =4mR s, where the
surface tension

C7ps= f 't/2U(cr)der= —,'m oo,

also contains a volume energy term given by

2$P= —0—B— =0 .
R

The minimization thus leads to

(24sP )P
rr x (2+x 12a/m' x )—

1+
~(24sP )9' x (2+x —12a/vr x )

(9)

(10)

E„= (4vr/3)R B . (4)

When the temperature dependence is introduced in the
Lee-Wick model, the effective potential energy (2) is
modified and becomes temperature dependent [5]. How- 3m P x (2+x —12a/m x )
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M=E=
3

(24sP )
1

9' P
9+—',x —6B13'/rr x +21/10x

X
x (2+x —12a/vr x )

R B+12mR s
16~

3
(13)

10

3
10

+10
I—

where x =13@/~ and a =BP 7'—/180.
The radius R, mass M, and F;„for the soliton star can

now be obtained by solving Eq. (11) for x for fixed given
values of N and /3 and then using Eqs. (10), (12), and (13).
In Ref. [3] such a study was done under the approxima-
tion x ((1 which is quite, adequate for X& 10 and at
T= T, =(180B/7n )', the critical temperature. Our
expressions above reduce to their expressions under this
approximation: namely,

2/5 ' ' 3/5

R= N 2/5

4 s
(14)

and

3 ~6//5
M=

270 2s133
(15)

20

——12
CY:,CL

0 I l I

10 10 10 10 10 10

(1 —T/' Tc ]

The soliton has properties similar to those considered by
Lee and Pang and is stabilized by the surface term. The
stabilization occurs at the mass and radius given in Eqs.
(14) and (15). During this whole process the temperature
remains fixed at T, . As the Universe cools and the tem-
perature falls below T„ the volume energy term B takes
over and plays the dominant role in compressing the soli-
ton. Starting from the birth of a soliton at T, with a fixed
number of particles, one can then chart its evolution
down to its cold configuration at the present time without
being hampered by the constraint x ((1. The maximum
number of particles in the soliton at the time of formation
at T, has been estimated by using the Schwarzschild limit
R ) 2GM and is found to be N, —10 for B=(100 MeV)
and s=(30 GeV) /6. In Fig. 1 we have plotted the ra-

10

10

10 10 10 10 10
—10 —8 —6 —4 —2

(1-T/' Tc j

10

FIG. 2. Evolution of the soliton star mass with temperature.
Graphs are labeled as in Fig. 1.

dius of the soliton as a function of temperature T going
from T, to 0 for a fixed given number of particles (for
fixed B and s). Changing B readjusts the critical temper-
ature to T, =(180B/7' )'/ and an increase in s and/or a
decrease in B results in pushing the critical number to a
higher value, beyond which the soliton becomes unstable.
In this analysis we have neglected the evaporation from
its surface [6] as well as the reabsorption of hadrons and
nucleation of bubbles [7] inside the soliton. In Fig. 2 we
have shown the variation in mass of the soliton as it cools
from T, to its cold configuration. As noted in Ref. [3],
for particle number X) 10 the star formed at T, would
survive to the present epoch. The critical number N„
however, depends on the parameters and, as we show
below, the effect of coupling is to remove the metastable
minimum of the free energy, thereby pushing the soliton
to an unstable configuration for a much smaller critical
number N, than is required by the gravitational singulari-

ty leading to black-hole formation.

III. EFFECTS OF GRAVITY ON SOI.ITON STARS

For large N, one expects gravity to play an increasingly
important role in determining the stability of the soliton
star. As in Ref. [3], one can estimate it either by the
Schwarzschild limit to get N, beyond which a soliton star
collapses into a black hole, or by coupling the Newtonian
gravitational field to the free energy density inside the
soliton, treating this as a constant throughout. Cotting-
ham and Mau [9] showed that the two approaches give
identical results at T =0 which are further in agreement
with the calculations of the authors of Ref. [1] in a gen-
eral relativistic framework. We find that the latter pro-
cedure for the existence of stable solutions gives a much
smaller bound at T, than that estimated by the
Schwarzschild criterion. To see this, we write the total
free energy of the soliton including the gravitational self-
energy by treating the total energy density p as a constant
throughout the star as

FIG. 1. Evolution of the soliton star radius with tempera-
ture. Graphs (a) and (b) correspond to the number of particles
10 ' [B' =100 MeV, s=(30 CreV) /6] and 10 [B' =40
MeV, s =(650 CleV) /6], respectively. The solid lines show the
eA'ects of gravity and the dashed lines give the evolution without
gravity.

2 2 4~F= "~ +"" +4~Z25
6 4~' p'

7 2

+ B— V — (pV)
180P'

(16)
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At T =0 we have a Lee-Pang model of solitons where
the confinement is provided by surface tension, and we
have another model discussed by Cottingham and Mau in
which the bag pressure as well as the surface tension
prevents the fermions from dispersing. It is found that,
at the critical temperature, a phase transition from one
type of soliton to another takes place, and that for
X) 10 the surface contribution is negligible and the
confinement is mainly provided by the volume term. In
this section we study the stellar parameters and other
properties of cold soliton stars by ignoring the surface
term.

It is well known that the mass-radius relation of a
spherically symmetric cold steller configuration can be
obtained by solving the Tolman-Oppenheimer-Volkoff
(TOV) equations of hydrostatic equilibrium in general re-
lativity for a given equation of state. The equation of
state P=P(p) is easily obtained for fermions in the Lee-
Wick model. The total energy density p and external
pressure P at T =0 are given by

p=p, /(4~ )+B

P = —0 B=p /(1—2~ ) B—
giving a very simple equation of state, namely,

(25)

gy results in wiping out the metastable minima [Fig. 3(b)].
In Fig. 1 we have also shown the evolution of radius with
temperature by including gravity.

IV. COLD SOLITON STARS

B = (100 MeV j

2
X:

0
0 8 12

R(km)
16 20 24

FIG. 4. Mass-radius relation of a cold soliton star for
B' = 100 MeV and neglecting surface effects.

different values of B by taking each model from the origi-
nal sequence and applying the scale transformations

p'=ap, P'=aP, M'=a ' M, and R'=a ' R,
(30)

where

a =(B'/B) . (31)

In Figs. 4 and 5 we show the mass and total number of
particles as a function of radius. We find, just as for
strange stars [9],M-R for soliton stars of M-O. SMO.
In this region gravity plays essentially no role and the
confinement is provided by the bag pressure B. As mass
increases gravity becomes important and the mass
reaches a maximum, and then becomes double valued:

P = (p 4B ) /3 . — (26) B 1/4
M „=4

100 MeV

—2

o,
For a given fixed value of B, we now solve the TOV equa-
tions

dM (r) =4~r p(r)
dr

and =10"
max

B 1/4

100 MeV

B 1/4
R „=23

100 MeV

—2

km,

—3

(32)

dP(r) GM(r) I+4nr P(r)/M(r)

(27)

with the boundary condition that M~O as r —+0 and
P ~0 at the surface r =R. Once the equation of state is
known, the properties of the star are determined by
choosing a central density and integrating outwards till
P~O. The total number of particles N in the star is
given by

—1/2

In contrast, conventional (neutron) star radii decrease
with increasing mass and there is a minimum mass be-

14

12—

Ii 10

8—
CO

4
& 2 1

2GM r
0 r

(28)

where the number density

n(r)=p (r)/(3m )= ', V'2/vr(p B—) ~—(29)
0

0 12

R(km)

16 20 24 28

It has been shown that, for our simple equation of
state, the TOV equation admits a simple scaling law [8],
and one can obtain a new sequence of model stars with

FIG. 5. Number of particles versus radius for the cold soliton
star as in Fig. 4.
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24

16

0 8—

0 4 B
I I I
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FIG. 6. Density profile for some soliton stars of Fig. 4.
Profiles (a), (b), (c), and (d) correspond to 0.59Mo, 2.01Mo,
3.87Mo, and maximum mass (4.23MO) models respectively.

V. CONCLUSIONS

We have studied the evolution of soliton stars formed
during phase transition at some critical temperature

cause for neutron stars p~0 and P~O on the surface,
whereas for soliton stars density drops abruptly from
p=4B =0.933X 10' gm/cm (for B'~ =100 MeV) to
zero, and there is no minimum mass. We also find (Fig.
6) that as we move away from center to the surface, there
is only a modest variation of density in contrast with neu-
tron stars. The soliton stars, being very much like the
strange stars, share some interesting properties with the
latter, namely, (a) soliton stars being self-bound like
strange stars have higher mean density and are therefore
capable of sustaining faster rotation [10], and (b) the sur-
face of a soliton star, being principally bound by bag
pressure and not by gravity, is very different from a con-
ventional star. An immediate consequence of this is that
the luminosity of a soliton star can be much higher than
that of a conventional star and is not bound by the Ed-
dington limit.

T, =(180B/7n )'~ in the early Universe and discussed
under what parameters would they survive until the
present time in their cold configuration. We used exact
temperature dependence starting at T, and carried on un-
til the solitons cooled to their present state. The effects of
gravity were included by coupling the Newtonian gravi-
tational field to the energy density. It was found that at
the time of formation at T, the soliton star, though
bound by surface tension, is stable for a rather small
number of particles. The effect of gravity is to wipe out
the metastable minima in the total free energy of the soli-
ton thereby making the configuration unstable for a
smaller number of particles than would be required for
the formation of a black hole by the Schwarszchild cri-
terion. We find that Lee-Pang-type solitons are indeed
possible at T=T, but the choice B' =100 MeV and
s=(30 GeV) /6 gives us stable solitons with N, —10 ',
which probably would evaporate and would not survive.
But for another choice of parameters [B' =80 MeV,
s =(300 CxeV) /6] it is possible to have stable solitons for
N - 10 that would survive. The mass and radius of
such a star at the time of formation and after evolution to
the present epoch would be

MT -3 4X10 Mo, RT —3.5X10 km,

Mo-2 4X10 ' Mo, Ro —3 1X10 km .

Finally, at T =0 we studied the properties of soliton
stars bound principally by the bag pressure by solving the
TOV equation of hydrostatic equilibrium. We found the
properties of such soliton stars to be similar to those of
strange stars.
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