PHYSICAL REVIEW D

VOLUME 47, NUMBER 1

1 JANUARY 1993

Target dependence of intermittency and multifractality of multiplicity fluctuations
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The scaled factorial moments and multifractal moments were investigated for secondary particles for
various targets in 800-GeV interactions with emulsion nuclei. The results show clear evidence for inter-
mittent behavior according to the self-similar cascade mechanism. The self-similar structure is also ob-
served from the analysis of multifractality as the spectrum of scaling indices, f (c,) shows a self-similar
behavior in these interactions. The self-similar multifractal structure is found to be consistent with the
jet cascading mechanism. The universality of pseudorapidity distribution in interactions with various
targets is found from the analysis of the rescaled spectrum function f (&,). The phase transition is not
indicated in our data, either from the analysis of intermittency or from the multifractal analysis.

PACS number(s): 13.85.Hd

I. INTRODUCTION

The large density fluctuations in multiparticle produc-
tion in small rapidity regions at high energies possess
self-similar properties [1-4] as the resolution in phase
space is increased up to the experimental or statistical
limit. Bialas and Peschanski [5] have called such multi-
plicity fluctuations intermittency which is based on the
idea of the analogous bursts of turbulence in the theory of
chaos [6]. It was suggested [5] that there is a power-law
dependence of the scaled factorial moments of multiplici-
ty distribution on the rapidity bin width. This intermit-
tent behavior has been observed in various collision pro-
cesses with various beams and targets at different high
energies [1,3,4]. The present day models on hadronic col-
lisions are unable to reproduce the intermittent behavior
of the experimental data [1,4]. For e e annihilation,
the Lund parton shower model [7] reproduces the experi-
mental results very well [1,4] especially in the framework
of the Monte Carlo code JETSET [8]. It is useful to find
out the various sources that contribute to multiparticle
fluctuations which characterize the dynamical process of
particle production.

The scaled factorial moments are defined for positive
integral orders. In order to extend to negative moments,
the multifractal analysis has been proposed [9-11]. Hwa
[10] has suggested an alternative set of moments G,
which is used to investigate the large density fluctuations
in terms of the multifractal formalism. These moments
are more direct in exploring the multiplicity fluctuations
in rapidity space. Thus, if the multiplicity fluctuations in
multiparticle production have a dynamical origin and not
statistical, the fractal properties [12] can be used to inves-
tigate the hadronization in high-energy collisions. It is
found that the spectral function f(e,) characterizes the
nature of fluctuations [13] for various types of reactions.
Such structure has been found to be exhibited in e Te ™
annihilations [14], pp collisions [15,16], #*p and K *p
collisions [17], and pp and pd collisions [18—-20].

In this paper, we present results on intermittency in
multiparticle production in proton interactions with vari-
ous target nuclei in emulsion at 800 GeV, which is the
highest available energy for fixed targets. The depen-
dence of the scaled factorial moments on the shape of the
single-particle pseudorapidity distribution has been
corrected [21]. We have also studied the slope and the
fractal dimension [9,10] of the scaled factorial moments
for these targets. As predicted by QCD the existence of a
phase transition [22] in the present interactions has been
investigated. The multifractal analysis of the interactions
has also been studied. We have studied the spectrum [10]
f(a,) of scaling indices which is characteristic of the na-
ture of fluctuations taking place in these interactions. We
are also presenting the results of the fractal dimension
[23] of the multifractal moments, the formalism for
which has been recently developed [23-27] and applied
effectively in multiparticle production [10]. We have
rescaled the spectral function as suggested by Chiu and
Hwa [28] which is useful in looking into the form of
universality that unifies the multifractal structure for pos-
itive order of moments of our analysis for different tar-
gets in emulsion. It is the universality between various
types of interactions in emulsion which signifies the frac-
tal dimensions and other generalized indices, fundamen-
tally.

II. THE EXPERIMENT

A stack of 40 Ilford G5 emulsion pellicles of dimen-
sions 10X 8X0.06 cm® was exposed to a proton beam of
energy 800 GeV at Fermilab. The beam flux was
8.7 X 10* particles/cm?. The scanning of the interactions
was done under 40X objective of the high-resolution mi-
croscopes by the area scanning method. Using the dou-
ble scan data, the scanning efficiency was calculated for
each observer and the overall efficiency was found to be
~96%. In order to make sure that the interactions are
due to beam only all the interactions were followed back.
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TABLE 1. The statistics for various categories of interactions in 800-GeV p-emulsion nuclei interac-

tions, with N; > 10. The errors are statistical.

Category Number of events (N,) (N, (N,)in Ap=0.5-5.5
p-nucleon 212 0.32+0.02 15.76+1.08 14.67£1.01
pCNO 393 3.52+0.18 18.44+0.93 17.28+0.87
p-AgBr 864 16.05+0.55 25.28+0.86 23.69+0.81

The interactions lying within 25 yum each from the air
and the glass surface has not been considered for mea-
surement purposes. Following these criteria, the total
number of events selected for measurement were found to
be 2318. All the measurements were done under 100X oil
immersion objectives. Following the usual terminology
[29], the secondary particles having B(v/c)>0.7 and
<0.7 were designated as shower and heavy tracks, re-
spectively, the multiplicities of which were designated as
N, and N, respectively. The angles of the shower tracks
with respect to beam axis were measured by the coordi-
nate method. The values of x, y, and z coordinates at the
vertex and two points each on the shower and beam
tracks were measured. The polar angle (8) for each
shower particle was calculated using the three-
dimensional (3D) coordinate geometry formulation. The
uncertainty in angle measurement was determined to be
8X 107 % rad. The basic parameter which shows the fluc-
tuations is the rapidity (y) which is defined as

y=1im[(E+P;)/(E—P.)], (1)

where E and P; are the energy and the longitudinal
momentum of the shower particles, respectively. In the

present investigation, we have used pseudorapidity (7) of
the shower particles, which is given by

n=—In[tan(6/2)] (2)
which is a good approximation to rapidity (y) for very
high energies.

It has been shown [29] that the target nucleus can be
broadly identified on the basis of value of N, as the value
of N, reflects the number of nucleons that have partici-
pated in the interaction. The interactions having N, =1,
2<N, <5, and N, =29 can be assumed to belong to nu-
cleon, CNO, and AgBr targets, respectively. The interac-
tions with N, <1 are either due to collision with pure H
nuclei or due to the interactions with a single nucleon of
other emulsion nuclei wherein the rest of the nucleus
remains a spectator during the collision [30]. The shower
particle production takes place only in the elementary
proton-nucleon collision. = The interactions with
2<N, <5 were considered [30] to belong mostly to
proton-light nuclei (CNO) interactions. The interactions
with 6 <N, <8 are not considered as they could be from
collisions with light nuclei as well as with heavy nuclei.
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FIG. 1. Single-particle pseudorapidity distribution p(7) for p-nucleon interactions (dashed lines), p-CNO interactions (solid lines),

and p-AgBr interactions (dotted lines) in the laboratory frame.



47 TARGET DEPENDENCE OF INTERMITTENCY AND. .. 125

The interactions with N, =9 are unambiguous interac-
tions with AgBr nuclei [30].

In the present work, only the interactions with N, > 10
are considered as the events with N, <10 have large sta-
tistical fluctuations, which might mask the dynamical
effects. The density fluctuations are studied in a limited
pseudorapidity range An=0.5-5.5 leaving the fragmen-
tation tails where the statistics are low. Table I shows
the number of interactions for various targets with
N, > 10 along with the corresponding values of (N, ),
(N,),and (N, ) in An.

The single-particle pseudorapidity density is defined as

1 dN,
N, dn

p(n)= , 3)

where N, is the number of interactions for different
categories of target (“‘ev” denotes event). Figure 1 shows
the single-particle pseudorapidity distribution for interac-
tions with nucleon, CNO, and AgBr having N, >10in a
bin width =0.2 unit/bin. The three regions, namely, tar-
get fragmentation region, central region, and projectile
fragmentation region are clear from the above 7 distribu-
tion. It is clear that the contribution of the target frag-

mentation region increases with the increase in target
size.

III. THE INTERMITTENCY

Consider the pseudorapidity range A7 which is divided
into M bins of equal width 87=A%n/M. Then for an en-
semble of events of varying multiplicity, the gth-order
scaled factorial moment is given by [5]

L g et & Kl =1 ey =g +1)
N. &M 2 (N7

(F,)=

4)

where k,, is the number of shower particles in the mth
bin for a single event and (N ) is the average multiplicity
in the pseudorapidity range A7n. The factorial moment
(Fq) averaged over many events are equal to be mo-
ments of a true probability distribution of the particle
density in pseudorapidity space [5]. Thus the problem of
statistical fluctuations due to a finite number of particles
per event is reduced.

The nonstatistical fluctuations of particle changes the
absolute value of moments and also influences the varia-
tion of moments with the size of the pseudorapidity bin
width 87. An intermittent pattern of the multiplicity
fluctuation leads to a power-law behavior of the moments
[5] which is given by

(F,)=[An/8m]"", 0<¢,<q—1, 5)

where ¢, characterizes the strength of intermittency sig-
nal. Hence, a characteristic linear rise of In(F,) with
—1Ind7 for all bin widths 87 down to the smallest, i.e., up
to the limit of experimental resolution or the statistical
limit, is predicted. The physical meaning of ¢, has been
well explained [5] on the basis of the self-similar cascade
model.
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FIG. 2. In(F,) as a function of —In8 for (a) p-nucleon in-
teractions, (b) p-CNO interactions and (c) p-AgBr interactions.
The solid lines indicate the least-squares fit to the data points.
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TABLE II. Values of the slopes ¢, obtained from least-square fits of Eq. (6) (text) to the data for the
gth-order scaled factorial moments [Eq. (4) in the text] for various targets. The errors are standard.

Category é, b3 b4 bs b6

p-nucleon 0.140%0.012 0.422+0.033 0.825+0.059 1.278+0.103 1.689+0.170
p-CNO 0.1114+0.008 0.304+0.025 0.642+0.061 1.1194+0.122 1.624+0.199
p-AgBr 0.070%0.006 0.163+0.014 0.266+0.027 0.372+0.048 0.489+0.081

The scaled factorial moments (F,) with ¢ =2-6 are
calculated according to Eq. (4) for interactions with nu-
cleon, CNO, and AgBr targets. Figures 2(a)-2(c) show
In(F,) as a function of —Ind7 for interactions with nu-
cleon, CNO, and AgBr targets, respectively. The values
of ln(Fq ) for interactions with nucleon and CNO targets
are almost equal and much larger than those for interac-
tions with AgBr targets. This is due to the presence of
more low multiplicity interactions with nucleon and
CNO targets than with AgBr targets. In these figures the
errors shown are statistical. The error bars for interac-
tions with nucleon and CNO targets are large which is
due to low statistics. The distribution for high orders of
moments exhibit an irregular behavior more in interac-
tions with nucleon and CNO targets than in the AgBr
targets. In all the three cases, a linear rise of moments
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FIG. 3. The anomalous fractal dimension d, as a function of
q (order of the moments) for p-nucleon interactions [circles], p-
CNO interactions [triangles], and p-AgBr interactions [squares]
for the scaled factorial moments.

with decreasing bin width 87 is observed and thus we
conclude that indeed an intermittent behavior is being
observed in all the three classes of interactions. The
slope ¢q, a characteristic parameter of the intermittency,
is obtained by fitting the data points to the relation

In(F,)=A4—¢,Indy , (6)

where A is a constant. The region of fit in all the three
figures is for —Ind7=0.00-1.92. The solid line in Figs.
2(a)-2(c) denotes the least-squares fit to the data. Table
I1 shows the values of the slopes for interactions with nu-
cleon, CNO, and AgBr targets. Thus, it is found that
with the increase in target mass, the slope decreases for
each order of moments.

The scaling behavior of factorial moments has been
correlated [9] to the physics of fractal objects (particle
emission sources) through the anomalous fractal dimen-
sion d, which can be computed directly from the fitted
slopes ¢, by the relation [10]

dy=¢,/(q—1). %)

Figure 3 shows the values of d, versus order (g) of the
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FIG. 4. A, as a function of g (order of the moments) for p-
nucleon interactions [circles], p-CNO interactions [triangles],
and p-AgBr interactions [squares] for the scaled factorial mo-
ments.
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moments for interactions with nucleon, CNO, and AgBr
targets. The errors shown are standard errors. It is clear
from Fig. 3 that as target mass increases, the dimension
d, decreases for each order of moments. The observed
behavior of dimension d, is suggestive of a self-similar
cascade mechanism for interactions with nucleon, CNO,
and AgBr targets. Similar behavior is also found in
lepton-hadron and hadron-hadron interactions [31].

Peschanski [22] suggested a theoretical relation be-
tween intermittency, random-cascading model, and sta-
tistical mechanics of systems with disorder such as a
spin-glass phase. Such a system leads to nonthermal
phase transition and if such a nonthermal phase is
present, then the function [32]

A, =(¢,+1)/q (8)

should have a minimum at a certain value of ¢ =¢, and
cannot have a maximum in the region q¢ = 1. Here, Aq
plays the role of a (generalized) free-energy density and g

J
where 8,, denotes the mth pseudorapidity bin. The gth-
order scaled factorial moment is, then, corrected as

(F))eorn={F,)/R, . (10)

M q

1
>
Mm=1

1
5—f5 p(n)dn

m m

R, (8m)=

From Fig. 1, it is clear that p(7) distribution is not flat
for the pseudorapidity range A7n=0.5-5.5 for interac-
tions with nucleon, CNO, and AgBr targets and hence
the correction factor R, plays an important role.

Figures 5(a)-5(c) show the value of In{(F,),, as a
function of —In&7. The errors shown here are statistical.
It is clear from these three figures that as the interacting
targets becomes heavier, the variation of In{F, ), for a
range of 877 becomes less irregular for each order of mo-
ments. The regions of fit in all the three figures are the
same as considered in Figs. 2(a)-2(c). The slopes ¢, are
obtained by least-squares fit of Eq. (6) of the data points.
The solid lines are the least-squares fit to the data points
for each order of moments for interactions with nucleon,
CNO, and AgBr targets. The slope ¢, thus obtained are
listed in Table III and it is found that even after the
corrections, ¢, (nucleon targets ) >¢, (CNO targets)
>¢, (AgBr targets) for each order of moments. The
anomalous fractal dimension d; [9,10] are computed us-
ing Eq. (7) and are shown in Fig. 6 for interactions with
nucleon, CNO, and AgBr targets. The observed pattern
of d, is suggestive of a self-similar cascade mechanism
[31]. Even after the corrections, it is found that d, (nu-
cleon targets)>d, (CNO targets)>d, (AgBr targets).
The errors shown here are standard errors. Using Eq. (8)
we have calculated the values of A, [32] for each order of
moment and are plotted in Fig. 7 as a function of g. The
errors shown are standard errors. The solid line indicates

1
A7 S, pimdn

plays the role of inverse temperature. Figure 4 shows the
variation of A, as a function of g for interactions with nu-
cleon, CNO, and AgBr targets. The errors shown are
standard errors. The solid line indicates the nonexistence
of intermittency. The data points of our investigation for
interactions with nucleon, CNO, and AgBr targets devi-
ate from this solid line which indicates the presence of in-
termittency. For the CNO data, the low value of Aq at
g =4 is not statistically different (within 1 standard devia-
tion) than the values of A, at ¢ =5 and 6. Thus no
minimum is clearly discernible from the CNO distribu-
tion. Further, the minimum value of kq for a certain
value of ¢ =g, is not obtained for the nucleon and AgBr
data as well. Hence the presence of nonthermal phase
transition is not clearly indicated. Similar deviations are
found for data from NA22 and KLM collaborations [32].

In order to take account of the nonuniform shape of
the single-particle pseudorapidity distribution, it was sug-
gested by Fialkowski, Wosiek, and Wosiek [21] that the
factorial moments can be corrected by including a factor
R, given by

q9
) )

f

the nonexistence of intermittency and the deviation of
data points of our investigation indicates the presence of
intermittency for all the three types of interactions. The
error bars for interactions with nucleon and CNO targets
are large and hence the existence of phase transition is
not clearly indicated.

IV. MULTIFRACTALITY

In order to study the multifractal structure in mul-
tiparticle production at high energy, Hwa [10] has pro-
posed a set of moments G, where g is the order of mo-
ment, positive or negative and real. Initially, Hwa [10]
proposed the vertical analysis, but this analysis has not
been applied to any model or data. Later on, Chiu and
Hwa [11] proposed the horizontal analysis and applied it
to the ¢° and gluon models. The horizontal analysis also
maximize the information on multiplicity fluctuation.
This method of analysis has been applied to e *e ~ annihi-
lation [14], pp collision [15,16] 7 p and K *p collisions
[17], and pp and ud collisions [18-20]. Here, we also
consider the horizontal analysis of G, moments.

Let the pseudorapidity range An be divided into M
bins of equal width §7=A7n/M. Let N be the number of
shower particles in one event in pseudorapidity range A7
and k,, be the number of particles in the mth bin. Then
multifractal moment G, is defined as [11]

k

M S
m | = e, (11)
m=1

G,= X

m=1

N

where p,, =k,, /N is the probability of shower particles in
mth bin for one event. Here, ¢ is a real number and the
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FIG. 5. ln(Fq Ycorr @s a function of —Ind for (a) p-nucleon
interactions, (b) p-CNO interactions, and (c) p-AgBr interac-
tions. The solid lines indicate the least-squares fit to the data
points.

summation in Eq. (11) is carried over nonempty bins
only. If multifractal structure is exhibited by the particle
production process in a region of 87 then the moments
G, should have a power-law behavior [11] as

G,a(dn)Y(q) . (12)

The lowest limit of k,, for a nonempty bin is 1. Hence,
by Eq. (11) when 87—0, G, approaches N''~¢ for an
event with N shower particles. Hence 67—0 limit is
trivial and the power-law behavior defined in Eq. (12)
does not appear for 67—0. Thus, the problem in mul-
tiparticle production is different from those in geometri-
cal and statistical problems [33]. Hence, in order to ex-
tract the slope {Y(q)) we consider the region where M is
not very large.

For an ensemble of events, Eq. (11) is applied as

1
N,

<lan )= > InG, , (13)

ev Nev

i.e., the average of InG, is taken over all the events of the
sample [34] and the slope, thus calculated is designated as
{Y(q)).

The value of (lan) is calculated, according to Eq.
(13), for the ensemble of events for ¢ ranging from —6.0
to 6.0. The step size is 0.5 except in the region
—1.0<g<1.0 where the step size is 0.1. Figures
8(a)—8(c) show the values of (lan) as a function of
—Indyn for interactions with nucleon, CNO, and AgBr
targets, respectively. In all the three figures, the values of
(lan) are plotted for a few values of ¢ as indicated in
the figures in the interest of clarity. For the same reason,
only some representative statistical errors are plotted in
the three figures. However, the statistical errors are
~7% for nucleon targets [Fig. 8(a)], ~5% for CNO tar-
gets [Fig. 8(b)], and ~3% for AgBr targets [Fig. 8(c)].
The saturation behavior is observed in the large —Indyn
region for low values of g (g <1). Also, early saturation
is observed in Fig. 8(a) (nucleon targets) than in Fig. 8(c)
(AgBr targets), which is due to the presence of more low
multiplicity events in interactions with nucleon targets
than with AgBr targets.

The average slopes (Y(q)) are calculated by the
method of least-squares fit applied to the data between
M =1and M =5.

The generalized dimension (Renyi dimension) D, is re-
lated to the slope {Y(q)) by [24]

_AY(q))
D, -1 (14)

Thus, the generalized dimension D, is calculated for the

TABLE III. Value of the slopes ¢, obtained from least-square fits of Eq. (6) (text) to the data for
gth-order scaled factorial moment [Eq. (10) in the text] for various targets. The errors are standard.

Category [ &3 2 és b

p-nucleon 0.093+0.008 0.295+0.020 0.593+0.044 0.918+0.097 1.184+0.178
p-CNO 0.077+0.004 0.216%£0.015 0.483+0.040 0.875+0.087 1.281+0.153
p-AgBr 0.046+0.003 0.108+0.009 0.1714+0.021 0.2301+0.041 0.291+0.073
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FIG. 6. The anomalous fractal dimension d, as a function of
g (order of the moments) for p-nucleon interactions [circles], p-
CNO interactions [triangles], and p-AgBr interactions [squares]
for the corrected scaled factorial moments.
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FIG. 7. A, as a function of g (order of the moments) for p-
nucleon interactions [circles], p-CNO interactions [triangles],
and p-AgBr interactions [squares] for the corrected scaled fac-
torial moments.
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FIG. 9. The generalized dimensions (Renyi dimensions) D, as a function of g (order of the moments) for p-nucleon interactions

(X), p-CNO interactions (@), and p-AgBr interactions (O ).

three ensemble of interactions and is plotted in Fig. 9 as a
function of g, the order of the moments. For all the three
types of interactions, the observed behavior of D, with
respect to g is in agreement with the multifractal cascade
model [35]. As the target mass increases, { N, ) increases
and hence the dimension D, also increases.

Applying the theory of multifractals [23,26,27], we cal-
culate the function [10] f (e, ) from {Y(q)) for a range of

q using
(15)

and
flay)=qa,—(Y(q)) .

Since a derivative is involved, hence (Y(q)) is deter-
mined for small incremental changes of g in the neighbor-
hood of ¢ =0, ie., for —1.0<g <1.0, where f(a,) has
its maximum. So, a, and f(a,) are calculated for in-
teractions with nucleon, CNO, and AgBr targets. Figure
10 shows the spectrum f(a,) as a function of a, for all
the three cases. The entire spectrum f(a,) contains far
more information than the intermittency indices. The
spectrum f(a,) is concave for all the three cases cen-
tered at a,—q, which is compatible with the gluon model
[11]. The peak of the spectrum f(a,) is located at
a,=0=0.95 (for nucleon targets), 0.99 (for CNO targets),
and 1.04 (for AgBr targets). The left wing (for ¢ >0) of
the spectrum f(a,) describes the peaks and the right
wing (for g <0) of the spectrum f (e, ) describes the val-

(16)

leys of the single-particle pseudorapidity distribution [11]
of the ensemble of events. The width of the spectrum de-
scribes the inhomogeneity of the pseudorapidity distribu-
tion. Thus the single-particle pseudorapidity distribution
for nucleon interactions is more inhomogeneous than
that for AgBr interactions, which is clearly observed in
Fig. 1. The 45° line, drawn in Fig. 10 is tangent to the
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FIG. 10. The spectrum f(a,) as a function of a, for p-
nucleon interactions ( X ), p-CNO interactions (@), and p-AgBr
interactions (O ).
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TABLE IV. Values of various dimension (D,) obtained from the spectrum f(a,) [Eq. (16) in the
text] for various targets. The errors are statistical.

Fractal dimension Information dimension Correlation dimension

Category Dy=f(ap) D, =f(a;) D,=2a,— f(a,)
p-nucleon 0.841+0.058 0.700%0.048 0.670+0.046
p-CNO 0.883+0.045 0.742+0.037 0.713+0.036
p-AgBr 0.932+0.032 0.801%0.027 0.773+0.026

spectrum f(a,) at a,—; for all the three categories,
which is a general property of the multifractals [11]. The
maximum value of f(a,) is for ¢ =0 and it is =0.84,
0.88, and 0.93 for interactions with nucleon, CNO, and
AgBr targets, respectively. This implies that the number
of empty bins is more in nucleon interactions and less in
AgBr interactions for a range of 87 in which the self-
similarity is observed. Thus, as the target mass increases,
the peak value increases and shifts towards the higher
value of a,. The end points of the spectrum f(a,), i.e.,
for g =+ seems to be all positive, which can be inter-
preted as ‘“no phase transition” in the a model [22]. The
spectrum f (a,) can be used in determining the fractal di-
mension Dy=f(ay), the information dimension
D, = f(a;) and the correlation dimension
D,=2a,— f(a,) [13,24]. The values of these three di-
mensions is calculated and listed in Table IV for interac-
tions with nucleon, CNO, and AgBr targets. The values
of these three dimension are higher for AgBr interactions
and lower for nucleon interactions. These three dimen-
sions are sensitive to the production mechanism of the
multiparticle production process [13]. The spectrum
f(a,) characterizes completely the dynamics of the par-
ticle production, as revealed in the multiplicity fluctua-
tion.

From Eq. (11), it is clear that G, =1 for all values of M
and hence {InG, ) =0 for all interactions, which is obvi-
ous from Eq. (13). Hence {Y(1))=0 thus Eq. (16) yields
fla;)=a,;. Hence at ¢ =1.0, «; is the information di-
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FIG. 11. The rescaled spectrum f(&,) as a function of &, for
p-nucleon interactions (X), p-CNO interactions (@), and p-
AgBr interactions (O).

mension [13,24]. In order to sharpen the relationship
among the various targets spectra, let us rescale the spec-
trum f (a,) [28] as

a,=a,/o 17)
and
f_(c_zq)=f(aq)/f(a1)=f(aq)/a1 . (18)

Figure 11 shows the rescaled spectrum f( a,) for interac-
tions with nucleon, CNO, and AgBr targets in which all
the three curves coincide at & = f(&;)=1. All the three
curves coincide for &, <1 and it is a form of universality
for multifractal structure for ¢ >1. For &,>1 (g <1),
the universality holds between curves for nucleon and
CNO interactions, but not for AgBr interactions. Thus,
universality is obtained between the three curves for in-
teractions with nucleon, CNO, and AgBr targets in the
peaks of single-particle pseudorapidity distributions since
the curves for ¢ > 1 describe the peaks of the pseudorapi-
dity distribution. In case of valleys of the pseudorapidity
distribution, universality is found between nucleon and
CNO interactions. When comparing the pseudorapidity
distribution between the interactions with nucleon, CNO,
and AgBr targets, it is concluded that the AgBr interac-
tions have less valleys than those for nucleon and CNO
interactions because the rescaled spectrum f (@&,) has less
space in the ¢ < 1.0 region. All the three rescaled curves
are wide enough to resemble a multifractal multiplicity
fluctuation and not a monofractal type.

V. CONCLUSION

We have studied the intermittency and multifractality
for various targets namely, the nucleon, CNO, and AgBr
targets in the emulsion experiment at 800 GeV.

From the study of intermittency, we conclude that an
intermittent pattern is observed for all the three targets,
which is more pronounced in nucleon interactions as
compared to AgBr interactions. The observed pattern of
anomalous fractal dimension d, suggests that particle
production is due to the self-similar cascade mechanism.
The intermittent pattern is still obtained when the scaled
factorial moment is corrected for the nonuniform shape
of the pseudorapidity distribution and it is more pro-
nounced in nucleon interactions compared to AgBr in-
teractions. No evidence for phase transition is found
even after the corrections.

From the multifractal analysis, we obtain more infor-
mation on multiplicity fluctuation in the form of a
smooth function f(c,) than the intermittency. The



132 R. K. SHIVPURI AND V. K. VERMA 47

function f(a,) leads to a better understanding about the
peaks and valleys of the single-particle pseudorapidity
distribution. If quarks and gluons are produced in the
form of jets of particles by a cascade mechanism then the
particles inside the jet show the self-similar behavior
which leads to the fractal structure. Also, the more mul-
tifractal structure is pronounced, the more complex the
collision and the higher the multiplicity. The multiplicity
is an essential parameter which is related to the impact
parameter of the collision. The spectrum f(a,) also in-
dicates that no phase transition is taking place in the in-
teractions under study. The rescaled spectrum f (&)
shows universality which is free from the complexity of
the collision process in the region @, <1. The rescaled
f (a,) distributions are wide enough to signify that the

multiplicity fluctuation is multifractal and not monofrac-
tal.

Finally, we conclude that the multifractal analysis pro-
vides a better approach for studying and understanding
the multiplicity fluctuations of multiparticle production
than the intermittency.
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